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I. INTRODUCTION

We describe two constructions for tail-biting trellises that are
very similar to the well known BCJR construction for conven-
tional trellises. The constructions lead to a simple proof of the
fact that there exist linear tail-biting trellises for a linear code
and its dual, which have the same state-complexity profiles.

II. MAIN RESULTS

Let C be an (n, k) linear code over F; with generator matrix
G = {g1,82,---,8k}. Given a codeword ¢ € C, the linear
span of c, is the semi-open interval (4, j] corresponding to the
smallest closed interval [¢,j], j > %, which contains all the
non-zero positions of c. A circular span has exactly the same
definition with ¢ > j. Note that for a given vector, the linear
span is unique, but circular spans are not— they depend on
the runs of consecutive zeros chosen for the complement of
the span with respect to the index set Z.

Koetter and Vardy [1] have shown that any linear trellis
may be constructed from a generator matrix whose rows
have been partitioned into linear span rows and circular span
rows. Let G; and G. denote the sub-matrices of G containing
vectors of linear span and circular span respectively. Let
H = [h h h, | be the parity check matrix
for the code. The algorithms BCJR-TBT and BCJR-TBT*
respectively, construct non-mergeable [3] linear tail-biting
trellises T and T for C and its dual C*, given G and H.

Algorithm BCJR-TBT

Input: The matrices G, H and a span (linear or circular)
associated with every g € G.

Output: A non-mergeable linear tail-biting trellis
T = (V, E,F,) representing C.

Let {dx }xec as follows:

if x € (gi), gi € G

with circular span (a, b]

0 otherwise

Step 1: Construct the BCJR labeled trellis for the subcode
generated by G, using the matrix H instead of the par-
ity check matrix for the code G;. Let Vb, Vi...V, be
the vertex sets created and Ei, Es,...E, be the edge
sets created.

Initialization: G;,: = G.
2 i—a Tihy
dy =

Step 2: for each row vector g of G.

for each x € (g), y in the rowspace of Gin:.

{
Let z denote the codeword x + y.
let d, = dx + dy.
Vo =Vy=VoU{ds}.
Vi=Viu{ds + X} zhy . 1<i<n,
There is an edge e = (u, 2;,v) € Ej,
ucvVi_, veV, 1<i<niff

dz + Z;;ll zjhj =uand d, + E;:I zihj = v.
}
Gint = Gint + g.

Algorithm BCJR-TBT*
Input: The matrices G and H.
Output: A non-mergeable tail-biting trellis T+ = (V, E,F,)
representing C.
Initialization: V; |o<i<n= Ei |1<i<n= ¢.
for each y = (y1,y2,...,yn) € C*.

{
let d¥ = (did> ... d}) s.t.

{ 0 if1<4<1
di = n
2 ima YiGii

otherwise

where g; € G has circular span (a, b)].
Vo =Vo=VoU{d}.
Vi=Viu {d + z;’=1 Yi{95,195,2 - - gj,k)T}.
There is an edge e = (u, 2;,v) € F;, u € Vi_1,
veV,l<i<n,iff

d+ 375, vi(951, 95,2

d+ z:;':1 ¥i(95,1, 95,2, -

s j,k)T =u, and
T

19ik) = V.

}

The preceding algorithms lead us to our main result.

Theorem 1 Let T be a non-mergeable linear trellis, either
conventional or tail-biting, for a linear code C. Then there
exists a non-mergeable linear dual trellis T+ for C+ such that
the state-complezity profile of T is identical to the state-
complexity profile of T'.

Finally, as we know that for tail-biting trellises there are
several measures of minimality [2], if any of these definitions
requires the trellis to be non-mergeable, it immediately follows
that there exist under that definition of minimality, minimal
trellises for a code and its dual with identical state-complexity
profiles.
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