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Abstract. Robot navigation is one of the most studied problems in
robotics and the key capability for robot autonomy. Navigation tech-
niques have become more and more reliable, but evaluation mainly fo-
cused on individual navigation components (i.e., mapping, localization,
and planning) using datasets or simulations. The goal of this paper is to
define an experimental protocol to evaluate the whole navigation system,
deployed in a real environment. To ensure repeatability and reproducibil-
ity of experiments, our benchmark protocol provides detailed definitions
and controls the environment dynamics. We define standardized environ-
ments and introduce the concept of a reference robot to allow comparison
between different navigation systems at different experimentation sites.
We present applications of our protocol in experiments in two different
research groups, showing the usefulness of the benchmark.

Keywords: benchmark, autonomous navigation, indoor robots, dynamic
environments

1 Introduction

Robot navigation is a widely studied topic in robotics due to its cornerstone
function for robot autonomy. Prior work on benchmarking robot navigation pri-
marily focused on simultaneous localization and mapping (SLAM) techniques,
and in particular on assessing the accuracy of the generated maps [4, 20]. These
evaluations are useful when the robot task is to compute a precise map, e.g., for
architectural or other surveying purposes. However, when the map is built for
autonomous navigation, its metric accuracy does not necessarily relate to the
performance of the robot. A robot navigating in a real-world environment must
be able to localize and reach destinations in environments that are populated
with dynamic objects and that are changed with respect to the initial conditions.
This includes environments shared with people or environments where objects
may be moved around.

In this paper, we formulate an experimental protocol for benchmarking robot
navigation. This fills the void of a missing evaluation method for repeatable,
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reproducible and comparable tests for autonomous indoor navigation consisting
of performance metrics, methodology and baseline. We aim at accommodating
for hardware differences between comparable solutions and for differences in
sensors. In particular, we aim at reproducing identical environments, including
environment dynamics between multiple runs at an experimentation site.

This paper represents the first time that navigation is quantified in a fash-
ion similar to other hard sciences where environmental conditions are key for
reproducibility and fair comparison. In other computer science disciplines, such
as computer vision and machine learning, benchmarks had a large impact to
standardize and to uniform evaluation procedures [1,11]. Differently from these
sciences, robot navigation cannot be evaluated only with datasets. The robot is
immersed in the environment and interacts with it. For this reason, we provide
to the community ways of measuring ground truth and suggest a reference robot.

In our benchmark, we aim to compute statistics about a simulated year of
continuous robot operation. For this, we provide detailed definitions for the
experimental environment and conditions. The experimental setup consists of
definitions about the size, the dynamics, the environmental conditions and the
overall duration of an experiment. This includes the number and the size of the
rooms, the number of people walking in the scene, the kinds and amounts of
objects and furniture that are moved and the number of goals for each envi-
ronment. As reference robot, we selected the widespread commercial platform
Pioneer P3-DX. We applied the benchmarking protocol to conduct experiments
in two different research groups by using two different kinds of robots, show-
ing the usefulness of the benchmark. The complete benchmark protocol along
with detailed instructions and our evaluation software is publicly available at
http://research.microsoft.com/brin/.

2 Related Work

Benchmarking plays an important role for comparison and evaluation in science.
In particular, there are many benchmarking works in several fields related to
robotics, including machine learning, computer vision and artificial intelligence.
Machine learning is probably the field that received most attention, thanks to
the use of very large evaluation datasets for different tasks [1,2,16]. Similarly,
computer vision has many procedures and benchmarks available [6,9,11,17].
Despite being one of the most studied field in robotics, there is a relatively
small amount of literature related to benchmarking robot navigation. This is
probably caused by the fact that robot navigation cannot be evaluated on a
dataset. The robot navigates in a dynamic environment that is constantly chang-
ing. In NaviGates [14], the authors present an early benchmark for robot naviga-
tion. Here, they concentrate on robot skills and architecture but they do not take
in account how to systematically evaluate the robot performance in a changing
environment. Gutmann et al. [12] presented a set of extensive experiments eval-
uating the accuracy and robustness of localization systems using datasets. Calisi
et al. [5] propose a benchmark framework that concentrates only on the evalua-
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tion of vehicle motion algorithms. Borenstein and Feng [3] introduce a method
for measuring odometry errors of mobile robots. Specifically, it focuses on quan-
titative evaluation of systematic and non systematic errors. The work of Nowack
et al. [15] presents an investigation for an evaluation of two specific robot tasks,
namely path planning and obstacle avoidance. In that work, the environment
is considered static. Del Pobil et al. [8] and Dillmann et al. [10] survey efforts
in quantification for a set of robot tasks, including robot cleaning, robot rescue
and autonomous driving. Another way of evaluating navigation systems is to let
them compete in a challenge such as the DARPA urban challenge [7]. However,
such challenges typically require to transport all robot systems to one location
and their outcome is rather a ranking of systems than an analysis.

3 Experimental Protocol

In this section, we provide a detailed description of the proposed experimental
protocol. Further details beyond the presentation here are available at http:
//research.microsoft.com/brin/. The goal of the protocol is to evaluate and
compare the performance of navigation systems (hardware and software) in real
environments over long periods of time. In order to allow comparison between
different navigation systems at different physical locations, we devise means
for normalizing the performance across environments and platforms and take
measures towards standardization and repeatability of evaluations.

First, we define a standard environment composed of four areas. Second, we
define a set of challenges that the robot has to face. These challenges include
changes in environment appearance, geometrical configuration, and dynamic ob-
stacles. Third, we introduce the concept of a reference robot and a reference
navigation system that will be identical across evaluation sites. Expressing the
performance of the tested system relative to this reference system ensures com-
parability of results across robots and evaluation sites. Finally, we employ a
vision-based ground-truth system to evaluate the navigation performance of both
the test and the reference robot.

We propose to simulate an entire year of robot operation, defining 12 loops,
each corresponding to a virtual month of operation. The experimenter defines
8 way-points, two for each area, and creates a route that visits all way-points
and always changes areas between way-points. The task of the robot is to travel
along this route in each loop, facing a different set of challenges for each loop.

Tab. 1, 2 show an overview of the experimental protocol. The rows indicate
the challenges, while the columns indicate their category, frequency, and config-
uration/location with respect to each of the twelve loops. In the remainder of
this section, we will explain each element of our protocol in more detail.

3.1 Areas

We devised a standardized test environment consisting of four distinct areas:
atrium, lounge, office and hallway. These areas are shown in the leftmost column
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of Tab. 1, 2, grouping the challenges. The environment should contain at least
one doorway and at least two different surfaces (e.g., carpet, tile, wood, cement).
Ideally, the environment should not be a dedicated testing facility but rather a
real building. Where possible, the test areas should be equipped with artificial
lighting and with blinds or drapes to modify the environmental illumination.

The atrium is supposed to be a predominately open space with 90 percent
or more of its surface area clear of furniture with a recommended size of above
15mx15m. The lounge is a social seating/dining area with an intended size
of at least 12mx12m. The office is densely occupied by desks, office chairs and
shelves and has a recommended minimum size of 10 mx 10 m. The hallway has an
intended length of at least 15 m and should have a low number of geometric and
visual features. The above dimensions are recommendations, the experimenter is
encouraged to respect the relative size of the areas in case of space limitations.
Figures 2 and 4 show the real environments used in our experiments.

3.2 Challenges

We define a set of common environment dynamics, called challenges, to stan-
dardize the comparison with the reference robot and with tests conducted in
different environments. Each challenge is listed as a numbered row in Tab. 1, 2.
The challenges are representative of events and dynamics that are highly likely
to occur at least once over a year-long deployment of a robot in a typical in-
door environment. They are divided into three main categories that are shown
in Tab. 1, 2 next to the challenge description:

Appearance (A): This category comprises visual appearance changes in the
environment such as changing art work, whiteboard contents and lighting
conditions. The challenges in this category are meant to test and assess the
robustness of vision-based approaches.

Geometry (G): Challenges of this category include movable objects like doors,
boxes, chairs, and ladders. These challenges simulate the natural variation of
object configurations in environments and the different states of articulated
objects such as doors. They test the robustness of navigation systems against
geometry changes with respect to the setup and mapping phase. In addition
to vision sensors, challenges in this category also affect proximity sensors.

Moving Obstacles (O): This category includes dynamic objects such as mov-
ing people, people transporting objects or gathering in groups, potentially
(completely) blocking the path of the robot for an extended period of time.
These challenges test the capabilities of a navigation system to deal with
replanning while moving and to negotiate stalling situations.

All dynamic and moving elements have a designated frequency of occurrence
and a designated location. The frequency can be hourly (H), daily (D), monthly
(M) or yearly (Y) and is shown in the column next to the challenge category.
The designated location/configuration of a challenge is shown in the respective
column for each loop of the benchmark. If the navigation system of the robot does
not rely on visual appearance (e.g., laser-based) one can skip the environment
variations in the protocol that only affect visual appearance (category A).
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3.3 Benchmark test grid

To ensure that the robot faces its challenges and the environment variations in
a standardized and reproducible fashion, we devise a benchmark test grid that
regulates the experimental evaluation. While the robot is traveling along its
designated route, the environment is constantly modified according to the test
grid shown in Tab. 1, 2. The test grid contains instructions that describe the
challenges the robot has to face. For each challenge, the table lists the specific
configuration for each of the 12 benchmark loops.

The experimenter has to devise positions for the way-points 1-8. Then, the
experimenter defines the order in which the robot has to visit the way-points,
taking care to avoid traveling between two way-points in the same area. One
complete visit of all way-points counts as one loop, or a benchmarking month, for
the evaluation. With the knowledge of the robot’s default path the experimenter
is then able to provide meaningful positions for the generic configurations of
challenges like “Two People Blocking Path (no room to avoid)” (line 14), or
“Person in Path” (line 8). It also falls into the responsibility of the experimenter
to concretely define configurations for the qualitative settings of the environment
dynamics, e.g., a configuration change from “Neat” to “Messy” in an experiment
script, see also Sec. 4. Additionally, the experimenter records the lengths of the
default path segments of a loop for the evaluation.

3.4 Reference robot and navigation system

For the baseline, we deploy the Pioneer P3-DX as reference robot in the same
environment, running a reference navigation software. The software builds on the
ARNL navigation stack shipped with the Pioneer, and is available at http://
research.microsoft.com/brin/. We use ARNL 1.7.5.1 and BaseARNL 1.7.5.2
and change from the default values only the parameters SecsToFail to 90, GoalOc-
cupiedFailDistance to 500 and UseSonar to “false”.

The reference robot will visit the same way-points in the same order as the
robot under evaluation. Thanks to the test grid introduced in the previous section
it will also face the same challenges and configuration changes in a comparable
manner. Fig. 1 (left) shows one of the reference robots used in the experiments.

3.5 Ground-truth evaluation

We developed a cheap and affordable ground-truth system [13] to automatically
detect when and if the robot has successful reached a way-point. The system
consists of visual markers placed on the ceiling and an upward-pointing camera
mounted on the robot. A dedicated software component, independent of the nav-
igation system, is responsible for capturing the images from the camera at the
way-points and for determining the positioning accuracy. It is available free of
charge at http://research.microsoft.com/brin/. The system requires an ini-
tial calibration in which the user manually drives to the way-points and registers
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Challenge Cat.” uuwmn_.v Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

w 1 Artificial Lighting A D Off On On Off Off On
§ 2 Lamps On/Off A D On On On On On On
Ar 3 Blinds or Drapes Open/Closed A D All Closed All Open  50/50 All Closed All Open 50/50
4 Wall Art Changes A Y Wall Art 1
M 5 Door Open/Closed G H Constantly Constantly Constantly Constantly Constantly Constantly
6 Wall Color Changes A Y Color 1
& 7 Large Display Monitors Change Content A D Image 1 Image 2 Image 3 Image 1 Image 2 Image 3
2 8 Person in Path (ample room to avoid) O D Position 1 Position2  Position 3  Position 4
5 9 Small Group in Path (ample room to avoid) O D Position 1  Position 2  Position 3 Position 1
< 10 Person Pushing Cart (ample room to avoid) O D Position 1  Position 2 Position 1 Position 2
11 Shipping Boxes on Floor G D 1 Box 2 Boxes 3 Boxes 2 Boxes 1 Box
> 12 Cart Moves G D Position 1 Position 2  Position 3 Position 4 Position 1 Position 2
% 13 Ladders, Tools, Cables G Y Position 1
= 14 Two People Blocking Path (no room to avoid) O D Position 1 Position 2
% 15 Path Completely Blocked (door) for 1 Minute O D Position 1 Position 2
T 16 Path Completely Blocked (people) for 1 Minute (@] D Position 1
17 Person Pushing Cart (no room to avoid) O D Position 1
18 Dining Chairs Shift G H Neat 25% Messy 50% Messy 75% Messy 100% Messy Neat
19 Coats/Jackets on Coat Racks G D 1/2 Full Full 1/2 Full Full
mc 20 Cart Moves G D Position 1 Position 2  Position 3 Position 4 Position 1 Position 2
& 21 Caution Sign (Janitor) G D Position 1  Position 2 Position 2 Position 1
m 22 Garbage/Recycling Bags G D Black White 2 Black
= 23 Reconfigure Furniture G Y Configuration 1
24 Person Vacuuming or Mopping O D Position 1  Position 2 Position 1 Position 2
25 Large Work/Social Gathering (20-30 people) O M Position 1 Position 1
26 Whiteboard Contents Change A D Clean 5% 10% 20% 30% 40%
27 Desk Chairs Shift (less than 1.5 meters) G H Neat 25% Messy 50% Messy 75% Messy 100% Messy Neat
28 Coats/Jackets on Chairs G D 5% 10% 2%
Y 29 Bags on Floor Near Desks G D 20% 40% 60% 20%
£ 30 Loose Paper on Floor G D 0 Pieces 5 Pieces 0 Pieces 5 Pieces 0 Pieces 5 Pieces
O 31 Shelves Contents Change G M 20% Full 40% Full 60% Full
32 Shelves Move G Y Position 1
33 Small Gathering in Work Area (4-8 people) O D Position 1  Position 2 Position 1 Position 2
34 Social Gathering (10-15 people) (@] M Position 1

@ Challenge category. A: Appearance, G: Geometry, O: (moving) Obstacle

b Frequency of occurence. H: Hourly, D: Daily, M: Monthly, Y: Yearly

Table 1. The benchmark test grid proposed in this work. The table lists the configuration of each challenge for every loop of the
benchmark, see Tab. 2 for the second part covering months/loops 7-12.
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P3-DX (reference robot) omniRob MSR-P1

Fig. 1. Robots used in our experiments. All robots have an up-facing camera mounted
for ground truth marker detection. Left: The reference robot, a Pioneer P3-DX with a
SICK LMS 200 laser scanner. Middle: The omniRob used in the environment ALU-FR.
Right: The Microsoft Robotics Prototype 1 (MSR-P1), used in the environment MS.

their position within the reference software. The visual markers are black-and-
white checkerboards printed on foam-boards, and thus cheap and disposable, see
Fig. 5. Whenever the robot reports an arrival at a way-point, the ground-truth
system determines whether the way-point is reached, the accuracy with respect
to the marker and the time elapsed from the last way-point.

We compute the following statistics: total number of failures, time to failure,
distance to failure, average speed, accuracy at goal. The total number of failures
is the number of segments in which the navigation system has been unable
to arrive at a way-point. The time to failure is the operational time between
consecutive failures, counted from the last restart to the last successfully visited
way-point.

4 Experiments

We prepared two environments for the experiments. The first setup (environment
ALU-FR) has been prepared in a large experimental area at the University of
Freiburg, Germany. The second (environment MS) is a large real office environ-
ment in the Microsoft Research building in Redmond, Washington, USA.

In the environment ALU-FR, we have benchmarked the navigation method
proposed in [18,19] installed on the omnidirectional robot omniRob shown in
Fig. 1 (middle). In the environment MS, we evaluated an in-house experimental
Microsoft navigation software, on the Microsoft Research Prototype 1 (MSR-
P1) shown in Fig. 1 (right). The robot performs both SLAM and navigation by
using only the Microsoft Kinect depth stream, gyroscope, and wheel odometry. In
both environments, we have run the reference software on the reference platform
Pioneer P3-DX, see Fig. 1 (left) and Sec. 3.4.
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Fig. 2. Overall views of the ALU-FR environment: office (top-left), atrium (top-right)
and detail views of the lounge (bottom-left) and the atrium (bottom-right).

4.1 Environment ALU-FR

We furnished the environment to make each dedicated area verisimilar. This
includes tables, cupboards, chairs, couches and computers. In particular, we
have used wooden panels to subdivide the environment and fixed the fiducial
markers at the way-points at a height of approximately 2.45m. The complete
environment measures 19 mx12m, the atrium 7.5mx11m, the lounge 6 mx9m,
the office 5.5mx12m, and the hallway is 7m long, see Fig. 2.

We instantiated the test grid from Tab. 1, 2 into a concrete test script for
our experiments. This is important to ensure that the test robot and the refer-
ence robot face the same challenges at the same time of each run. The laser-
based occupancy grid map used for localization and navigation of omniRob
shown in Fig. 3 displays the eight way-points and some of the devised chal-
lenge positions. We specified a route by ordering the way-points as follows:
0—2—4—6—3—5—1—7—0. This order has succeeding way-points in different
areas and the travel distance between way-points is varying from short to long.
We devised positions for people to gather at and move to. Marking these posi-
tions on the floor is helpful for the participants during the experiments and to
ensure repeatability.

Creating an experiment script from the test grid in Tab. 1, 2 requires par-
ticular care on how to design the challenges and which of them can be omitted.
The environment and the challenges have to be designed in a way that a path
exists for the robot. As the omniRob is larger than the reference robot, we had
to increase the size of doors and hallways. The navigation systems of the om-
niRob and the reference robot are not based on vision sensors but make only use
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Fig. 3. The occupancy grid map used for the omniRob experiments in the ALU-FR
environment. The four areas are marked by color and the map also shows the locations
of way-points and some of the test grid challenges.

of laser range finders. Therefore, we omitted challenges which have no or only
minor effects on laser range finders such as changing artificial lighting, open-
ing/closing blinds, wall art changes, wall color changes, and whiteboard content
changes, i.e., lines 1-4,6,7,26 from Tab. 1, 2.

Furthermore, we did not put ladders, tools, cables and the cart in the hallway
because of the omniRob footprint and the particular manufacturing of its wheels
(lines 12,13). Due to the omniwheels of the omniRob, we skipped also the loose
paper challenge (line 30). Moreover, we skipped the constant opening and closing
of doors (line 5), the lounge coat racks (line 19), the janitor sign (line 21),
modified the garbage bags to only be black (line 22) and limited the size of the
biggest social gathering to 8 people (lines 25,34).

The test grid only defines the challenges per loop but not at what time in the
loop they occur. It is up to the experimenter to define when the robot faces the
challenges in each loop. An excerpt of our experiment script is shown in Tab. 3.
It shows all the travel segments for month/loop 3 of our test script that we
derived from Tab. 1 and specifies which challenge configurations are applied for
each loop segment. It is a detailed instruction procedure for the experimenter on
how to modify the environment during the evaluation to ensure repeatability and
reproducibility of the experiments: For example, while the robot travels between
2—4, it encounters two parcel boxes in the hallway and two people block the
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Selé(;r(l)snt Area Challenge/Configuration legfvll’nz
0—2 Atrium person with cart at A2 10
Hallway 2 boxes on the floor 11
Hallway 2 people block at H2 for 1 min 16
2—4 Lounge move chairs by 0.2m 18
Lounge cart at L3 20
Lounge 1 garbage bag on the floor 22
Office move chairs by 0.2m 27
Office 1 jacket on chair 28
4—6 Office 2 bags next to desks 29
Office group of 4 people at 02 33
Office shelves 40% filled 31
6—3
345 Lounge group of 8 people at L1 25
Lounge person vacuuming at L2 24
5—1 Atrium  group of 4 people at A2 9
17 Atrium person at A2 8
Office group of 8 people at O1 34
7—0

Table 3. Excerpt of the instantiation of the test grid (see Tab. 1 and 2) to an evaluation
script for loop 3 of environment ALU-FR. The specific challenges and their locations
are shown for each segment of the loop, see also Fig. 3 for challenge locations.

door H2 for 1 min. All chairs in the lounge are moved by 0.2m with respect to
their position while mapping the environment. The cart of the lounge is placed
at L3 and one garbage bag was placed on the ground, see also Fig. 3.

4.2 Environment MS

The second environment consists of several areas of the Microsoft Research build-
ing 99 in Redmond, Washington, see Fig. 4. The atrium measures 25 mx20m,
the lounge 20mx12m, the office 10.5mx7.8m and the hallway 17mx1.75m.
This environment includes an open floor plan in the atrium and lounge areas. It
has substantial daylight coming in through the glass ceilings and the entrance.
The lounge area includes a coffee shop, with multiple round tables and chairs,
as well as tall rectangular tables with high chairs, couches and armchairs. The
areas have carpet, linoleum, rough tile and hardwood as floor surface. Where
practical, we chose the landmark locations close to interesting or meaningful
locations when creating the test script for this environment, such as adjacent to
the coffee stand, in front of the elevators and near the receptionist desk. The
environment included a doorway between the hallway and the office as well as
one additional doorway into an unmapped adjacent space that was alternately
opened or closed for each loop. As we used a Microsoft Kinect depth sensor for
mapping and navigation, we omitted the challenges involving lighting or appear-
ance changes from the script, including lines 1-4,6,7, and 26 from Tab. 1 and 2.
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Fig. 4. The four areas of the environment MS: office (top-left), atrium (top-right),
lounge (bottom-left) and hallway (bottom-right).

No shelf was available for the office, so we omitted challenges 31 and 32. Chal-
lenges 25 and 34 were omitted due to a lack of the required number of people. To
avoid disturbances by direct sunlight or non-scripted interactions with people,
we started the experiments in the evening.

4.3 Results

The performance of the different systems in the two environments is listed in
Tab. 4 and Tab. 5. The last column of each table shows the relative performance
of a navigation system with respect to the reference one. Thanks to the bench-
mark protocol, it is now possible to say how accurate is a system with respect to
a standardized baseline and environmental conditions. In environment ALU-FR,
neither omniRob nor the reference system failed during the ~1.5km navigation
length in circa 70 min. In environment ALU-FR the robots can always observe
sufficient structure to properly localize.

In environment MS, the MSR-P1 and the reference system both encountered
failures. The failures for the MSR-P1/reference robot were software problems
(1/1), localization inaccuracies (3/1) and divergence (1/1), faulty obstacle per-
ception (0/3), path oscillation for more than 5 minutes (0/1), not finding a
path around a new obstacle (0/1) and not detecting a low obstacle (0/1). The
benchmark revealed defects in several key areas of navigation including plan-
ning, localization, static and dynamic obstacle avoidance, reactive re-planning,
remapping, and endurance, consistent with the limitations of each software. The
experiments covered ~2.1km and took 6 hours to conduct for each robot.
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Performance Freiburg Reference Ratio
Number of failures 0 0 -
Mean time to failure - - -
Maximum time to failure 4343 s 51255 0.85
Mean distance to failure - - -
Maximum distance to failure 1423 m 1349 m 1.05
Average speed 0.33m/s 0.26 m/s 1.27
Positioning error 0.005m = 0.007m 0.05m £ 0.04m  0.10

Table 4. Benchmark results in the environment ALU-FR.

Performance Microsoft Reference Ratio
Number of failures 5 9 0.56
Mean time to failure 2265 s 726 s 3.12
Maximum time to failure 5023 s 1971s 2.55
Mean distance to failure 367m 183 m 2.01
Maximum distance to failure 860 m 472 m 1.82
Average speed 0.16 m/s 0.25m/s 0.64
Positioning error 0.23m £ 0.2m 0.22m £ 0.1m 1.05

Table 5. Benchmark results in the environment MS.

Three months prior to the experiments in environment MS, we conducted
a stripped down version of the benchmark with older MSR-P1 software. We
found that the MSR-P1 showed dramatic improvements (5 failures vs. 12) with
respect to the pre-test, consistent with the improvements in navigation and map-
ping software done in the meantime. We also found that the reference system
performed worse in the full benchmark (9 failures vs. 5). This before and af-
ter experiment confirms the benchmark’s ability to expose the effects of both
software and environmental changes.

We believe the results accurately reflect the capabilities and performance of
all tested systems. In our observation this is primarily due to the wide coverage
of possible failure modes. Moreover, the amount of challenges in our protocol
seemed appropriate. The relatively small cumulative runtime seems sufficient to
capture a good performance representation. However, as navigation systems get
better, the total runtime might need to be increased.

5 Lessons Learned

Comparing autonomous navigation solutions according to their performance in
real environments is an arduous task. During the process of setting up and
performing the evaluation, we came across two aspects to be considered.

A first aspect is related to the comparison of different systems at different
locations. The reference robot is instrumental in providing a sense of the com-
plexity of each environment. However, one must consider that the shape and
the size of the robot has a certain degree of influence on the results. The cho-
sen benchmark targets navigation in office environments, thus slightly favoring
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Fig. 5. Influence of camera mounting on marker detection tolerance. The pictures show
the marker as seen from the camera for way-point 1 in environment ALU-FR. Left: Ref-
erence robot P3-DX, the camera is mounted at a height of 0.45m, see also Fig. 1 (left).
Right: Freiburg’s omniRob, the camera is mounted 90 degrees rotated with respect to
the camera of the reference robot and at a height of 1.7m, see also Fig. 1 (middle).

small and circular robots. When the system under test differs from the reference
robot in size, shape or even locomotion principles, the environment and the pro-
tocol should be slightly adapted to allow a fair comparison. This happened, for
instance, when we evaluated the omniRob system, as described in Sec. 4.1.

A second aspect lies in the fiducial system. The location of the camera on
the robot is very important as the relative distance between the markers and
the camera defines the success range for the failure detection system. A longer
relative distance between them allows the marker to be detected from further
away, see Fig. 5.

6 Conclusion

With this paper, for the first time, we have presented an experimental protocol
to evaluate a robotic indoor navigation system as a whole. Differently from other
scientific disciplines, robot navigation cannot be evaluated only with datasets. To
ensure repeatability and reproducibility of experiments, our benchmark protocol
provides detailed definitions for the environment dynamics. Additionally, we
proposed the concept of a reference robot to allow comparison between different
navigation systems at different experimentation sites. We applied our protocol
and conducted experiments with different robots in two different research groups,
showing the validity of the benchmark.
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