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Abstract

Sequential consistency (SC) is arguably the most intuitive
behavior for a shared-memory multithreaded program. It is
widely accepted that language-level SC could significantly
improve programmability of a multiprocessor system. How-
ever, efficiently supporting end-to-end SC remains a challenge
as it requires that both compiler and hardware optimizations
preserve SC semantics. While a recent study has shown that a
compiler can preserve SC semantics for a small performance
cost, an efficient and complexity-effective SC hardware
remains elusive. Past hardware solutions relied on aggressive
speculation techniques, which has not yet been realized in a
practical implementation.

This paper exploits the observation that hardware need
not enforce any memory model constraints on accesses to
thread-local and shared read-only locations. A processor can
easily determine a large fraction of these safe accesses with
assistance from static compiler analysis and the hardware
memory management unit. We discuss a low-complexity
hardware design that exploits this information to reduce the
overhead in ensuring SC. Our design employs an additional
unordered store buffer for fast-tracking thread-local stores
and allowing later memory accesses to proceed without a
memory ordering related stall.

Our experimental study shows that the cost of guaranteeing
end-to-end SC is only 6.2% on average when compared to a
system with TSO hardware executing a stock compiler’s output.

1. Introduction

A memory consistency model (or simply memory model)
of a concurrent programming language specifies the order
in which memory accesses performed by one thread become
visible to other threads in the program. It is a language-
level contract that programmers can assume and the system
(compiler and hardware) must honor. Designing a memory
model involves a balance between two, often conflicting goals:
improving programmer productivity with a strong memory
model that matches programmer intuition, and maximizing
system performance with a weak memory model that enables
hardware and compiler optimizations.

Sequential consistency (SC) [36] is one of the strongest
memory models discussed in the literature. SC guarantees that
the memory accesses of a program appear to have executed
in a global sequential order consistent with the per-thread
program order. This guarantee matches the natural expectation
of a programmer that a program behaves as an interleaving of
the memory accesses from its constituent threads.

Researchers widely agree that providing SC could sig-
nificantly simplify the concurrency semantics of languages,
but they also believe that it is an unaffordable luxury [28].
Accordingly, modern languages such as C++ and Java provide
SC only for data-race-free programs [4, 10, 41]. For racy
programs, on the other hand, the languages either provide
no semantics or a weak semantics that is difficult for a
programmer to understand.

This paper seeks to provide SC for all programs while
achieving performance close to that of today’s compiler and
hardware implementations. In a recent study [43], we showed
that the cost of preserving SC during compiler optimizations
is quite acceptable — less than 3.8% performance overhead
on average. To provide end-to-end SC, however, the output of
an SC-preserving compiler must be executed on SC hardware.
Thus, the remaining need in realizing end-to-end SC is an
efficient and complexity-effective SC hardware design.

Past work has produced efficient SC hardware de-
signs [6, 9, 13, 22, 23, 30, 49, 54] by introducing novel
techniques for speculatively reordering memory accesses and
recovering when there is a possible SC violation. In-window
speculation [22] is relatively simple as it only reorders memory
instructions before they are are committed from the reorder
buffer (ROB). Commercial processors already implement
this optimization to efficiently support x86’s Total Store
Order (TSO) consistency model [32]. However, in-window
speculation alone is insufficient to attain high performance
in SC hardware, as loads still cannot be committed until
the store buffer is drained. To reap the benefits of a store
buffer in SC hardware, researchers have proposed a more
aggressive out-of-window speculation technique that reorders
even committed memory instructions [9, 13, 23, 49, 54]. But
out-of-window speculation and the accompanying recovery
mechanisms are arguably quite complex and have not yet been
realized in any practical processor implementation.

In this paper, we propose an SC hardware design that is more
complexity-effective than past out-of-window speculation
techniques, but still results in an efficient design. We leverage
the simple observation that memory model constraints need
not be enforced for private locations and shared read-only
locations [3, 44, 51]. Since most memory accesses are to
private or read-only data [15, 27], this observation provides
an opportunity to design an efficient SC hardware by simply
relaxing the ordering constraints on many memory accesses,
obviating the need for complex speculation techniques.

We propose simple extensions to a modern TSO processor
design (which already supports in-window speculation [22])
that exploit the above idea to support SC efficiently. We
divide the store buffer into two structures: one is the regular



FIFO store buffer that orders stores to shared locations, and
the other is a private, unordered store buffer to fast-track
stores to private locations. Our design allows private and
shared, read-only loads to commit from the ROB without a
store buffer drain. It also allows a load to a shared read-write
location to commit from the ROB without waiting for the
private store buffer to drain. Therefore, when compared to
the TSO design implemented in today’s processors, the only
additional memory ordering restriction that our SC design
imposes is that loads to shared read-write locations are stalled
until the FIFO store buffer containing shared stores is drained.

We discuss two complementary techniques to enable a pro-
cessor to identify private and shared read-only accesses. The
first technique is based on static compiler analysis. We imple-
mented an SC-preserving version [43] of the LLVM compiler
that conservatively identifies all memory accesses to function
locals whose references do not escape their functions. These
memory accesses are guaranteed to be private to a thread. The
compiler communicates this information to the processor by
setting a bit in a memory instruction’s machine code.

The compiler analysis necessarily needs to be conservative
in classifying a memory access as private. We employ a
complementary dynamic technique that extends the hardware
memory management unit and operating system’s page tables
to keep track of private and shared, read-only pages. During
address translation, a processor determines the type of a
memory access and decides whether or not to enforce memory
model constraints for that access. Past work employed a
similar dynamic technique to track private pages, but used it
to optimize cache performance [27, 35] and directory-based
coherence [15] rather than to reduce the overhead due to
memory model constraints.

Our experimental study on the PARSEC [8], SPLASH [55]
and Apache benchmarks shows that the overhead of our SC
hardware over TSO is less than 2.0% on average. We also find
that the overhead of providing end-to-end SC (running the
SC-preserving compiler’s output on our SC hardware) when
compared to running the stock LLVM compiler’s output on
a TSO hardware is 6.2% on average. The overhead due to
the SC-preserving compiler could be further reduced using
hardware-assisted interference checks [43] which we did not
use in our design.

Although we focus on designing an efficient SC hardware
in this paper, the observation that memory model constraints
need not be enforced for private and shared, read-only accesses
could be similarly exploited to improve the performance of
any memory model implementation.

2. Background

Our goal is to provide language-level SC for all programs.
This section motivates the need for SC and the challenges in
ensuring end-to-end SC using an SC-preserving compiler and
SC hardware.

2.1. Why SC for all programs?

The benefits of an easy-to-understand memory model
are well known [4]. Current languages provide intuitive
behavior only for data-race-free programs. While we certainly
would like programmers to write data-race-free programs, the

unfortunate reality is that most programs contain data-races.
Some of them are even intentional [46]. Without having
clear guarantees for all programs, a programmer must assume
the worst (complicated, unintuitive semantics, or potentially
arbitrary behavior) while reasoning about a program’s execu-
tion. We believe this situation significantly compromises the
programmability of today’s multiprocessor systems.

2.2. Compilers Can Preserve SC

One potential argument for relaxed hardware memory
models (weaker than SC) is that commonly used compiler
optimizations already violate SC, so the hardware makes
the problem no worse for programmers than it already is.
For instance, optimizations such as common subexpression
elimination (CSE), loop-invariant code motion (LICM), and
dead-store elimination can all have the effect of reordering
accesses to shared memory, thereby potentially violating
SC even if the resulting binary is executed on SC hardware.
Indeed, it is precisely to support aggressive compiler (and
hardware) optimizations that today’s mainstream program-
ming languages like Java [41] and C++ [10] employ relaxed
memory models based on the data-race-free (DRF0) model,
which only guarantee SC for data-race-free programs [4].

However, in a recent study [43], we showed that an op-
timizing compiler can be modified to be SC-preserving —
ensuring that every SC behavior of the generated binary is an
SC behavior of the source program — while retaining most
of the performance of the generated code. The empirical
observation was that, a large class of optimizations crucial for
performance are either already SC-preserving or can be modi-
fied to preserve SC while retaining much of their effectiveness
by restricting the optimizations to thread-local variables. The
study demonstrated how to convert LLVM [37], a state of
the art C/C++ compiler, into an SC-preserving compiler by
modifying each of LLVM’s optimization passes to conser-
vatively disallow transformations that might violate SC. The
modified compiler was shown to generate binaries that were
only slightly slower than a traditional, SC-violating compiler.
Executing binaries produced by this SC-preserving compiler
on SC hardware would guarantee end-to-end SC semantics to
programmers for all programs, race-free or otherwise.

2.3. Efficient and Complexity-Effective SC Hardware
Remains a Challenge

Before we discuss the challenges of designing SC hardware,
we clarify a few commonly used terms which we also use in
this paper. In a modern out-of-order processor, instructions can
execute out-of-order but must commit from the reorder buffer
in program order. If allowed by the memory model, a store may
commit from the reorder buffer and be placed in a store buffer
before its value has been written to cache or memory. The
stored value is made visible to other threads only when a store
retires from the store buffer, which is when its value is written
to the appropriate memory location in the cache. Two memory
accesses in different threads are said to conflict if they access
the same memory location and at least one of them is a write.

SC hardware needs to guarantee that the memory accesses
of a program appear to have executed in a global sequential
order that is consistent with the per-thread program order. A



naive SC hardware design would force loads and stores to be
executed and committed in the program order. Also, a store’s
value needs to be made visible to all threads atomically when
it is committed. This naive design disallows most hardware
optimizations such as out-of-order execution and store buffers.

Even x86 processors’ TSO memory model disallows
loads from executing out-of-order. Fortunately, modern x86
processor implementations support a speculative optimization
called in-window speculation [22] to reduce the overhead due
to this load-load memory ordering constraint of TSO [32].
Loads are allowed to be speculatively executed out-of-order.
The processor still commits them in-order and recovers when
a possible memory ordering violation is detected between
the execution and commit of a load. A violation is detected
when a processor core receives a cache coherence invalidation
request for a location accessed by a load that has already
executed but has not yet committed. The logic that supports
recovery from branch misprediction is mostly sufficient to
recover from in-window memory ordering violations as well.

The primary performance overhead in TSO, when com-
pared to weaker relaxed consistency models [4], is the cost
of enforcing store-store ordering. TSO requires a global total
order for all stores, which is guaranteed by committing stores
to a FIFO store buffer and retiring them to memory atomically
in the program order. As a result, a processor core may have
to stall commit of a store from ROB if the store buffer is full.
However, this overhead tends to be small for most programs.

In-window speculation is also useful for optimizing SC
hardware since it allows many loads to execute out of order,
eliminating much of the overhead in ensuring SC. However,
unlike TSO which permits loads to be reordered before stores,
SC can not take full advantage of store-buffer optimization.
While SC hardware can commit a store from the ROB and
place it in the store buffer, any following load cannot be
committed from the ROB until the store buffer is drained.
That is, all preceding stores need to be retired and their values
made visible to other threads before a later load can commit.
In-window speculation does not help reduce this important
overhead in an SC hardware design.

Past research has proposed aggressive speculation tech-
niques to allow store-buffer optimization in SC hard-
ware [9, 13, 23–25, 49, 54]. These designs extend the idea of
in-window speculation to speculatively commit loads from the
ROB even when the store buffer is not empty. This requires
fairly complex hardware that keeps track of the register and
memory state before each committed load, detects potential
SC violations by comparing incoming coherence invalidation
requests with the addresses of committed loads, and performs
a rollback when a potential SC violation is detected. To
avoid speculation, Lin et al. [39] proposed to check if there
is any conflict with pending accesses in remote cores before
committing a memory instruction from the ROB. While this
design eliminates the need for out-of-window checkpoint and
rollback support, it still requires significant changes to the
coherence protocol to efficiently perform conflict detection
before committing a memory instruction from the ROB.

In this paper we propose an alternative mechanism to reap
the benefits store-buffer optimization for a certain class of
memory accesses while preserving SC.

3. Relaxing Memory Model Constraints for Safe Accesses

Processors enforce memory ordering constraints in order to
prevent other processors from being able to observe reordering
not allowed by the memory model. Past SC hardware designs
have uniformly enforced memory model constraints on all
memory accesses, distinguishing only between stores and
loads. This is overly conservative and unnecessary for a
significant fraction of memory accesses.

If either the compiler or the runtime system can guarantee
that there can be no conflicting memory access on another
thread which could observe or alter the result of a particular
memory access, then the processor can safely reorder that
access in any manner that preserves intra-thread data depen-
dencies. We refer to memory accesses with this property as
safe accesses and the rest as unsafe accesses.

For instance, if a memory access is to a location that is
private to the current thread, then clearly there can be no
conflicting memory accesses, so the access is safe. A compiler
can guarantee this property for all dynamic instances of a
static memory instruction that accesses only thread-local data.
A runtime system can guarantee this property for any access to
a location that it knows has only been accessed by the current
thread so far during execution. Once a memory location is
accessed by a second thread, the runtime system must detect
this situation and require that this and future accesses obey
memory model constraints on the processor. A similar idea
can be used to identify shared read-only memory locations
accessed by multiple threads as safe.

We exploit the above observation to design an efficient and
complexity-effective SC hardware. Our SC hardware design
can be understood in relation to out-of-window speculation
techniques proposed in the past for reducing the overhead of
enforcing memory model constraints [9,13,23,25,49,54]. The
key insight of those past techniques was to speculatively relax
memory ordering restrictions on memory accesses as they are
rarely violated. Unfortunately, the required support for recov-
ery is costly in terms of processor complexity. In contrast, we
propose to relax memory ordering restrictions only for those
memory accesses which are guaranteed to be safe by the com-
piler or runtime system. Since our relaxation is always correct,
we no longer need hardware support for misspeculation
recovery, which results in a low-complexity solution.

Over 81% of memory accesses are found to be safe for
our benchmark programs (Section 7.2). We focus on relaxing
SC memory ordering restrictions for these accesses. But our
approach is generally applicable to any memory model. For
example, TSO requires that stores be retired in program order
from the store buffer, but that restriction need not be enforced
for safe stores.

4. Design: Memory Access Type Driven SC Hardware

This section discusses our low-complexity, efficient, SC
hardware design based on exploiting memory access type
information. Figure 1 shows the extensions we propose to
a baseline TSO processor and operating system used today.
Before we discuss our SC hardware design, we briefly describe
the two techniques we use to determine safe memory accesses
and how that information is communicated to the hardware.

To simplify the discussion, we assume that a memory



instruction accesses only one location in memory. Section 5.3
discusses how memory instructions in a CISC architecture
that can read or write to multiple locations are handled.

4.1. Two Techniques to Determine Memory Access Type

The proposed processor design relies on two complemen-
tary techniques to determine safe accesses: a static compiler
analysis and a dynamic analysis based on the page protection
mechanism.

The static analysis determines safe memory instructions in
a program that are guaranteed to access private or read-only
locations (safe locations). It does this by a conservative
inter-procedural analysis to identify function-local variables
that do not escape the scope of their functions (safe variables).
Dynamically the memory locations of such variables will
be private to the thread that invokes the function, so all
accesses to these variables are considered safe. Care must be
taken to ensure correctness as two function-local variables in
different functions may be allocated to the same stack location
(Section 5). Our analysis also considers accesses to constant
literals as safe. The Instruction Set Architecture (ISA) is
extended to allow a compiler to flag safe memory instructions.
When a processor core decodes a memory instruction and
allocates an ROB entry, it sets a bit (ss) in the ROB (Figure 1)
if that instruction is flagged as safe by the compiler, which
is later used to relax memory model constraints. This static
approach incurs little runtime complexity, but it has to be
conservative and may classify accesses to locations (especially
those on the heap) that are actually private as unsafe.

We also employ a dynamic technique that leverages oper-
ating system (OS) support for classifying accesses at the page
granularity [27]. The OS protects pages at the process-level,
which we extend to support thread-level page protection by
adding a few fields to the page table entry (Figure 1). The
first read and/or the first write from a thread will trigger an
exception to the OS, which allows the OS to keep track of
the state of the page (private, shared read-only, or shared
read-write). The TLB entry for a page is also extended with
an additional safe bit, which is used to determine if it is a safe
page or not. During address translation for a memory access in
the execution stage, a processor core determines if the access
is to a safe page, and sets the ds bit in the ROB, which is later
used to relax memory model constraints. Care must be taken
to preserve memory ordering constraints between memory
accesses when the state of the page changes (Section 6).

Even if a page contains only one shared read-write byte,
accesses to any part of the page will be treated as unsafe by
the dynamic scheme described above. Thus, a static analysis
that classifies locations at finer granularity complements our
dynamic analysis. In the proposed design, we use a hybrid
scheme. Since both static and dynamic classification schemes
are conservative, it is correct for the hybrid scheme to consider
a memory access to be safe if either one of the two methods
classifies that access as safe (i.e. either ss or ds is set in the
ROB entry).

4.2. SC Architecture Design

As we pointed out in Section 2.3, TSO allows loads to be
reordered before stores, which enables store buffer optimiza-
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Figure 1: Memory Access Type Driven SC Processor and OS

tion. SC, however, disallows this optimization, which is the
only performance cost of SC hardware when compared to
TSO hardware (assuming in-window speculation [22] for both
designs).

We propose a simple extension to reduce this cost signifi-
cantly: divide the store buffer into two parts as shown in Fig-
ure 1. One part is the traditional FIFO store buffer for handling
unsafe stores. The second is an unordered store buffer for fast-
tracking safe stores. A processor core can determine whether a
load/store is safe or not by examining the ss and ds bits in its
ROB entry. This design has the following three main perfor-
mance advantages when compared to the baseline SC design.

1. A safe load can commit from the ROB even when there
are pending stores in either or both of the two store buffers
(perhaps waiting for their cache misses to be serviced).
Thus, we provide TSO performance for safe loads.

2. An unsafe load can commit from the ROB even when
there are pending stores in the unordered store buffer
containing safe stores. Thus, if a safe store is waiting
for a cache miss, following unsafe loads need not wait to
commit.

3. Stores in the unordered store buffer can be coalesced if
they access the same cache line. Also, they can be retired
out of order. As a result, a safe store need not wait for
a pending (safe or unsafe) store to retire. This decreases
pressure on store buffer capacity. This property could also
be exploited to improve a TSO hardware’s performance.

4.3. Store-to-Load Forwarding with Two Store Buffers

Having two store buffers could potentially complicate
store-to-load forwarding logic. We avoid this complication
by ensuring that all bytes accessed by a memory instruction
are of the same type (safe or unsafe). We refer to this as the
memory-type guarantee. Furthermore, we ensure that for any
valid read-after-write dependency the two memory accesses
are of the same type. Therefore, to detect store-to-load
forwarding for a safe load, only the unordered store buffer
needs to be searched. Similarly, an unsafe load needs to search
FIFO store buffer only.

Our static analysis ensures that all the variables accessed
by a memory instruction are of the same type as follows. If
any memory instruction could access both safe and unsafe
variables, then our analysis conservatively marks that instruc-
tion as unsafe. In addition, any safe variable accessed by that
instruction is reclassified as unsafe, as are all other instructions
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Figure 2: Comparison of a program’s execution in baseline SC (top) and proposed SC hardware (bottom) designs.

that access those reclassified variables. The read-after-write
dependency guarantee is ensured since the compiler uniquely
classifies each variable as either safe or unsafe, so both stores
and loads to the variable will use the same access type. A
discussion of an interesting corner case arising from distinct
logical variables being mapped to the same physical address
can be found in Section 5.2.

Our dynamic analysis could violate the memory-type guar-
antee only when an instruction accesses memory locations
that span multiple pages. Fortunately, current architectures
produce multiple micro-operations to execute such unaligned
load accesses [33]. As a result, we preserve the memory-type
guarantee for each load/store micro-operation, which is
sufficient to ensure correct store-to-load forwarding. The
read-after-write dependency guarantee could only be violated
when a page transitions from private or shared-read-only to
shared-read-write. But such a transition entails flushing the
store buffers (see Section 6), thus the guarantee is maintained.

4.4. Illustration

Figure 2 depicts an example to illustrate the performance
advantages of our SC hardware design. The top half of the
picture illustrates a baseline SC hardware design and the
bottom half illustrates the workings of our design. Figure 2a
represents the initial states of the ROB and the store buffers for
a program, and Figure 2b shows the events that take place in
the store buffer and in the ROB along a timeline. Shaded cells
represent safe accesses. Assume that only St(X) incurred a
cache miss and the rest are cache hits. Finally, for simplicity,
assume that the cache has one read and one write port.

The figure shows that, in the baseline design, St(X) is safe
but is stalled at the head of the store buffer. This unnecessarily
stalls the retirement of the following stores and also prevents
the loads in the ROB from being committed. The loads in
the ROB must wait to commit until after the cache miss is
resolved and the store buffer is drained.

In our proposed SC design (bottom half of the picture), the
long latency St(X) is sent to the unordered store buffer. This
allows all the following safe (St(A)) and unsafe (St(Y))
stores to retire. Also, it allows safe (Ld(Z)) and unsafe
(Ld(B)) loads to commit from the reorder buffer. Finally,
observe that safe load Ld(Z) is allowed to commit even
before the preceding unsafe store St(A) retires. The only

memory ordering enforced is that unsafe load Ld(B) must
wait to commit until the unsafe store St(A) retires, which
results in a one cycle stall for the ROB commit. In contrast, in
the SC baseline, ROB commit is stalled until the FIFO store
buffer becomes empty. This stall can be significant depending
on the number of pending stores that miss in the cache and the
cache miss latency.

4.5. SC Memory Model Guarantees

The SC memory model requires that any program state
that is made “externally” visible is SC-reachable in the sense
that the state is reachable through an SC execution of the
source program. We consider the program state read by
a synchronous system call and the final program state to
be externally visible. By construction, our SC-preserving
hardware and compiler guarantee that the final program state
is SC-reachable. To guarantee that any program state visible
to a system call handler is SC-reachable, we only need to
ensure that the store buffers of the processor core invoking
the system call are drained before the system call handler
is executed. This is already the case even with conventional
processor designs that support precise context switches.

However, at an asynchronous interrupt (e.g., interrupt from
an interactive debugger), we can only guarantee that the
program state is SC-reachable for the shared variables but not
for the private variables. For the private variables, we can only
guarantee SC with respect to the compiled binary, because
accesses to private variables may have been optimized and
reordered by our SC-preserving compiler. But guaranteeing
that the program state at an asynchronous interrupt is precise
with respect to the source program is a more general problem
that is known to be an issue even for sequential programs in
the presence of compiler optimizations [2].

5. Static Classification of Memory Accesses

In this section we describe a static approach to classify
memory instructions as either safe or unsafe. The compiler
communicates this information to the hardware through
dedicated bits in a memory instruction’s machine code.

In the dynamic scheme described in Section 6, implemen-
tation efficiency requires that access patterns are tracked at the
granularity of a memory page. This means that if a single byte
on a page is accessed by multiple threads, then all locations on



void f(){
int x;
x=1;
printf("%d\n",x);

}

void g(){
int y;
y=2;
external_fn(&y);
printf("%d\n",y);

}

void h(){
int z;
printf("%d\n",z);
external_fn(&z);

}

void u(){
union {

int i;
char * p;

};
p = (char *) ’’SC’’;
printf(‘‘%d\n’’,i);
external_fn(&i);

}
(a) (b) (c) (d)

Figure 3: Local variables (x, y and z) in different functions in a program may map to the same physical location, complicating
the unsafe versus safe distinction. A simple processor check can avoid violating program semantics. Union members (i and p in
function u()) must have same memory access type.

that page must be treated as shared and suffer the performance
consequences of strict ordering requirements when accessed.
The static scheme described in this section has no runtime
detection cost, and as such, nothing prevents us from treating
an access to one byte as safe while treating an adjacent byte
on the same page as unsafe.

5.1. Classification of Memory Accesses

Our static analysis runs at compile time and conservatively
determines memory accesses that could potentially access
mutable shared variables and marks them as unsafe. The
remaining accesses to private and read-only shared variables
are marked as safe.

The analysis first classifies program variables:
• Safe variable: A variable is classified as safe only if

the compiler can statically guarantee that it is either a
read-only variable or will be accessed by only a single
thread during its lifetime.

• Unsafe variable: A variable that is not safe is classified
as unsafe. It may be accessed by multiple threads during
its lifetime.

Once program variables have been classified, the analysis
can classify memory accesses:
• Safe access: A memory instruction that accesses one or

more safe variables and does not access any unsafe vari-
ables is classified as safe.

• Unsafe access: A memory instruction that accesses one
or more unsafe variables and does not access any safe
variables is classified as unsafe.

It is possible that a memory instruction accesses both safe
and unsafe variables (e.g., an instruction dereferencing a
pointer that can map to variables of both types). We refer
to such instructions as “mixed accesses”. In order to ensure
correct store-to-load forwarding on our specialized hardware,
all accesses to a variable must be either safe or unsafe. To
accomplish this, our compiler marks a mixed-access as unsafe
and also demotes any mutable safe variable that it accesses
to an unsafe variable. This step may now cause some safe
accesses to become mixed or unsafe accesses. We iterate this
step till all accesses are either classified as safe or unsafe.

Sophisticated sharing and thread escape analysis [16, 50]
could be used to perform the initial classification of program
variables. But rather than use a heavyweight, inter-procedural
analysis, our compiler relies on simple modular information to
conservatively determine if an access is safe. Global variables,
dynamically allocated heap objects, and static variables are all
considered unsafe. This leaves only function parameters and
function locals as potentially safe variables.

Our compiler is built on top of LLVM which already

performs a simple analysis to identify non-escaping, function-
local variables (i.e. those variables whose address is not taken
using the & operator). Our compiler takes advantage of this
existing analysis and marks these non-escaping variables as
safe. Stack locations used by the compiler for register spilling
are also classified as safe. Finally, literals (shared or private)
are classified as safe as well.

5.2. Ensuring Correctness for Hardware with Two Store
Buffers

As mentioned in Section 4.3, store-to-load forwarding is
only performed between loads and stores of the same memory
access type. For instance, an unsafe store to a memory location
L which is queued in the unsafe FIFO store buffer will not be
forwarded to a safe load from L. Thus, maintaining correct
program semantics requires that the compiler mark a load and
a store that access the same memory location with the same
access type.

The algorithm described above maintains this invariant for
accesses to a location within a function: only non-escaping
local variables and compiler temporaries, neither of which can
have aliases, are marked as safe. Furthermore, demoting safe
variables touched by mixed accesses to unsafe and reclassi-
fying the variables’ accesses guarantees that all accesses are
either entirely to safe or unsafe variables.

However, this intra-procedural analysis does not account
for location reuse across different functions. Consider the
example functions shown in Figures 3a and 3b. Both function
f and g contain a single local variable. In f, our compiler
marks x as safe, while in g, it must mark y as unsafe since it
escapes the function and may be accessed by another thread.
Our compiler may store both x and y on the stack.1 Now
consider some code that calls function f and then calls g. Both
x and y will be stored in the same physical location due to the
runtime call stack growing and shrinking on function call and
return. Furthermore, it is essential that the write to y complete
(retire from the store buffer) after the write to x, otherwise we
risk violating even sequential program semantics.

In order to ensure that such code executes correctly, we
extend our hardware design to perform an additional check
for every store. Before committing a safe store from the ROB,
the processor checks the FIFO store buffer with unsafe stores
for any conflicting store (a store with the same address), and
vice versa. If a conflicting store is found in the other buffer,
the commit is delayed until the conflicting store retires. This
scenario is a rare occurrence, because it is unlikely that two

1In function f, the compiler might use a register for x and never assign it
a physical memory location. Nevertheless, it is valid behavior to store x on
the stack.



function-local variables mapped to the same physical location
will be of different type and both have stores in-flight at the
same time.

Note that this additional processor check does not neces-
sarily prevent a safe load from executing while a store to the
same physical location (though different logical variable) is in
the unsafe store buffer, or vice versa. Consider the functions
in Figures 3a and 3c. If the compiler decides to store both safe
variable x and unsafe variable z on the stack, and some code
first calls f and then calls h, then x and z will both use the
same physical location. On current hardware, this means that
both f and h will print the number “1” to the console. In our
design, it is possible that h will print a value that was stored
at that physical location prior to execution of f. However, this
does not violate program semantics, since the result of reading
an uninitialized variable (as h does in the printf statement)
is not well defined. In fact, nothing requires that the compiler
store x on the stack at all, so there can be no expectation that h
will print “1”. If z was indeed initialized by a store, then any
following read to z in the thread would correctly receive that
store’s value as both of those accesses would be guaranteed to
be of the same type.

Additional care must also be taken with local variables of
union type. For instance, notice that the address of p is never
taken in Figure 3d. But, because it is essentially an alias for
i which does have its address taken, our static analysis must
classify both variables as unsafe.

5.3. CISC Architecture

We have so far assumed that a memory instruction in a
program’s binary can access only one variable. However,
in the CISC architecture an instruction may access multiple
variables. For such instructions, we propose to extend the
ISA to provide one extra bit per memory operand in the
instruction’s machine code. This will allow our compiler to
mark each memory access in a memory instruction as safe
or unsafe. A processor can use this information to classify a
micro-operation generated for each memory access in a CISC
instruction as safe or unsafe.

6. Dynamic Classification of Memory Accesses

A static technique does not have the benefit of observing
the actual runtime stream of memory accesses. It must
conservatively classify accesses at compile time. Therefore,
we discuss a complementary dynamic technique for deter-
mining if a memory access is safe or not. As we described in
Section 3, an access to private or shared, read-only locations
is safe. To determine safe accesses, we leverage the hardware
memory management unit (MMU) and the OS page protection
mechanism [15, 17, 27].

6.1. Background: Process-Level Page Protection

Current systems provide page protection at the process level.
Each process has a page table that is shared among all the
threads of the process. Each page table entry contains the read
and write access permissions for a page. In the execute stage of
a memory operation, after its effective address is resolved, this
virtual address is translated by the processor to the correspond-
ing physical address. To assist in fast translation, the proces-
sor uses a Translation Lookaside Buffer (TLB) in each core.

Each TLB entry caches a page table entry for a thread execut-
ing on its processor core. It includes read and write permission
bits, which are checked by the processor when it executes loads
and stores respectively. A page-fault exception is raised to the
OS on detecting a permission violation. On a TLB miss for
an address, a TLB miss handler (hardware assisted page-table
walker) is executed, which fetches the page entry from the
main memory, and allocates and initializes a TLB entry for it.

6.2. Proposed Extension: Thread-Level Page Protection

A page table is shared by all the threads in the process. In
order to detect page sharing among threads and determine safe
accesses at runtime, we extend the page table entries to keep
track of the sharing state for pages. Figure 4 shows the sharing
states that a page can be in. We add the following fields to
keep track of these states: (a) a thread identifier (tID), (b) a
Read-Only bit, and (c) a Shared bit. Any access to a page
in 〈shared, rw〉 state is considered unsafe, and all the others
are considered to be safe.

We also extend the TLB entry with an additional Safe
bit. A processor consults this bit during address translation to
determine if an access to a page is safe, and if it is, it sets the
ds bit for the access in the ROB. To support the static classi-
fication scheme, before committing a store, a processor needs
to ensure that there is no conflicting store in the store buffer
handling the opposite type (Section 5.2). However, this check
is not needed if the store is classified as safe by the dynamic
scheme (ds bit is set), irrespective of the static scheme’s
classification. This optimization is correct, because when the
dynamic scheme classifies a store as safe, it is guaranteed that
there cannot be any preceding unsafe store to the same address.

In the rest of the section we describe how the above states
are maintained and how we guarantee memory ordering
constraints when a page changes its state.

6.3. State Transitions and Guaranteeing Memory Ordering
Constraints

When a page is allocated by a page fault handler, its state
is set to 〈untouched〉 (Figure 4). Its tID is set to INV to
indicate that no thread has executed a read or write to this page
yet. Also, its Read-Only bit is set and Shared bit is reset.

The first thread to issue a read to a page will trigger a TLB
miss. The TLB miss handler checks if the page has already
been allocated. If so, it checks the tID of the page and
determines that this read is the first access. It then sets the
page state to 〈private, ro〉 by setting its tID field. It allocates
a TLB entry, sets the safe bit, but resets the write permission in
the TLB entry, irrespective of the write permission bit’s value
in the page table entry. This allows our system to detect when
the same thread attempts a write to this page, as that would
cause a page fault. The page fault handler can then check the
write permission for the page in its corresponding page table
entry. If the attempted write is legal, the page fault handler
changes the state of the page to 〈private, rw〉. Also, the write
permission for the page is enabled in the TLB entry to allow
future writes from the same thread. The safe bit in the TLB
entry would remain set.

When another thread issues a read to a page in the
〈private, ro〉 state, it would also incur a TLB miss. The TLB
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Figure 4: State transition of a page. Accesses to the shaded
state are unsafe.

miss handler determines that the page has been read by another
thread, and changes the state of the page to 〈shared, ro〉. An
entry in the local TLB is allocated with the safe bit set, but the
write permission is disabled.

The state of a page can transition to the unsafe
〈shared, rw〉 state from three different safe states as shown
in Figure 4. Care must be taken during these state transitions
to guarantee memory ordering constraints. Let us assume a
thread P owns a page in 〈private, ro〉 state, and a remote
thread R issues a store to that page. The TLB miss handler in
the remote processor core running R determines that the page
needs to be transitioned into the 〈shared, rw〉 state, because
the tID in the page table entry would be different from R.
Before modifying the state of the page table entry, the handler
issues an inter-processor-interrupt (IPI) to the processor core
running P.2 When the processor core running P receives the
IPI, the interrupt handler invalidates the corresponding entry
in its local TLB, and sends an acknowledgment back to the
core running R. Note that before any interrupt handler begins
its execution, the processor flushes both the ROB and the
store buffers in order to support a precise context switch. This
behavior ensures correct memory ordering when a page tran-
sitions to the unsafe state. On receiving the acknowledgment,
the TLB miss handler of R updates the state of the page to
〈shared, rw〉 , and allocates a TLB entry for the page by
initializing it to the permission bits in the page table entry, but
resets the Safe bit. Thereafter, all accesses to the page will
be treated as unsafe and ordered correctly.

The state transition from 〈private, rw〉 to 〈shared, rw〉
is handled similarly. The state transition from 〈shared, ro〉
to 〈shared, rw〉 is also similar, except that an IPI needs to
be broadcast to all processor cores. To prevent races between
page state updates, the TLB miss handler and the page fault
handler always acquire a lock for a page before updating its
page table entry.

TLB invalidations through inter-processor-interrupts could

2The TLB miss handler can determine the processor core running P by
checking P’s Thread-Control-Block (TCB) maintained by the OS.

be expensive. Fortunately, this cost is incurred only once per
page during an execution of a program. This allows us to
provide a low-complexity hardware solution. Notice that other
than the maintenance and use of the Safe bit, the changes
required are restricted to the system software and TLB miss
handler implementation.

6.4. Initialization Phase

Usually in a parallel program, the main thread initializes
several data-structures before spawning threads. We do not
want to classify a page as 〈shared, rw〉 just because it was
modified by the main thread during initialization. Therefore,
we reset the state of all pages to 〈untouched〉 just before the
main thread creates the second thread for the process. This
logic can be extended further to periodically reset the state of
pages, but we leave this for future work.

6.5. Context Switches

We do not store the tID in a TLB entry. Therefore, when a
thread is context switched out, the processor core cannot deter-
mine that the Safe bits in the TLB entries belong to the older
thread. This problem of virtualizing the TLB across context
switches is also a problem for supporting process-level page
protection. Many processor implementations employ a simple
solution that flushes the TLB entries on a context switch, which
is sufficient to ensure correctness for our design as well. How-
ever, some newer implementations maintain additional tags in
each TLB entry to efficiently support virtualization [1, 14, 47].
A similar hardware design could also allow us to support TLB
virtualization while providing thread-level page protection.

6.6. Direct Memory Accesses (DMA)

Modern systems support Direct Memory Access (DMA) to
efficiently transfer data from a slower physical device directly
to main memory without involving the processor core’s
computational resources. However, this raises the question
of what semantics the system should provide in case of a
data race between the DMA transfer and concurrent accesses
within the processor cores [31]. We leverage the observation
made by Dunlap et al. [17] that the DMA transfer occurs
between well-defined boundaries, and none of the processor
cores should access the affected locations during that inter-
val. This property can be explicitly enforced by the OS by
acquiring access privileges to pages on behalf of the device
and releasing them once the transaction is completed [17].
Another alternative is to temporarily change the state of pages
that DMA can access to the unsafe state, and then restore the
original state after the DMA transfer completes. Both of these
alternatives would ensure SC even in the presence of DMA
accesses. Another simpler option would be to assume that the
system is properly synchronized with respect to DMA, and
make no guarantee when races exist between DMA accesses
and regular processor core accesses.

7. Results

In this section, we evaluate our low-complexity SC hard-
ware’s performance. Our evaluation answers the following
questions:
• What is the performance overhead of our SC hardware

design when compared to TSO? What is the advantage



Table 1: Processor Configuration
Processor 16 cores operating at 4 GHz

Fetch/Exec/Commit
4 instructions (maximum 2 loads or 1 store)
per cycle in each core

FIFO Store Buffer 64 8-byte entries
Unordered Store Buffer 8 64-byte entries; coalescing
L1 Cache 64 KB per-core private, 4-way set associative, 64

byte block size, 2-cycle hit latency, write-back
L2 Cache 512 KB private, 4-way set associative, 64 byte

block size, 10-cycle hit latency.
Coherence MOESI directory protocol
Interconnection Torus-2D topology, 512-bit link width, 8-cycle link

latency.
Memory 160 cycles (40 ns) DRAM lookup latency.

over baseline SC?
• What is the accuracy of our static and dynamic classifi-

cation schemes when compared to a byte-level dynamic
classification scheme?

• What is the performance overhead of guaranteeing end-
to-end SC when compared to executing stock compiler’s
binary on TSO hardware?

7.1. Methodology

We modeled our hardware designs using a cycle-accurate,
execution-driven, Simics-based, full-system simulator called
FeS2 [19]. We modeled a 64-bit 16-core processor with an
on-chip network. Details of the processor configuration are
listed in Table 1. For our baseline SC and TSO processor, we
assumed a 64-entry FIFO store buffer with 8-byte (one word)
entries. For the proposed SC design, in addition to the 64-entry
FIFO store buffer, we modeled another 8-entry unordered
store buffer with 64-byte (one L1 cache block) entries. The
unordered store buffer allows out-of-order retirement of stores
and coalesces multiple stores to the same cache block. In
Section 7.4 we evaluate the sensitivity of our design to various
store buffer sizes.

For all of the SC and TSO designs, we implemented
in-window speculative load execution as described in [22].
We also model exclusive prefetch [22] for stores which can
reduce the latency of a store by obtaining the necessary write
permission before the store is able to retire from the store
buffer and write the cache block. Our TSO and SC simulations
are functionally equivalent, because our front-end Simics
functional simulator is SC. Our back-end timing simulator
enforces the appropriate set of memory ordering constraints
depending on the simulated memory model.

To implement the static classification scheme, we extended
the LLVM [37] compiler to classify private accesses and
communicate this information to the hardware through an ISA
extension. To evaluate the cost of supporting end-to-end SC,
we built an SC-preserving compiler as described in [43]. Cur-
rently, static classification is performed only for application
code, because we were not able to recompile the Linux kernel
and glibc using our compiler. Therefore, our evaluation
underestimates the potential benefits of the static and hybrid
classification schemes.

We evaluated three variants of the proposed SC design
based on the memory access classification scheme: static only
(SC-staticOnly), dynamic only (SC-dynamicOnly),
and hybrid (SC-hybrid). Our schemes are conservative
in classifying a memory access as safe. Therefore, we may
misclassify a safe memory access as unsafe. To understand
the accuracy of our classification schemes, we evaluated a

hypothetical system that dynamically tracked the type of a
memory location at the byte granularity (SC-ideal), which
solves the false sharing problem in our page-level dynamic
scheme. This fourth variant would be too expensive to realize
in an actual hardware, but it is useful as a limit study.

Our benchmarks include the Apache web server and
applications from the PARSEC [8] and SPLASH-2 [55]
benchmark suites. We used the “simlarge” input set for
PARSEC benchmarks. For barnes, we used a 65536 nbody
simulation. For Apache, we used the SURGE [7] benchmark.
For the SPLASH-2 benchmarks, we simulated the complete
parallel section. For Apache, we warmed up the caches and
micro-architectural structures for 20000 transactions, and then
simulated the execution for the next 20000 transactions. It was
not feasible to simulate the entire parallel section for the PAR-
SEC benchmarks due to their long execution times. Therefore,
for these programs, we sampled five checkpoints that span
across the entire parallel section of the program. For each
checkpoint, after the warmup phase (100K stores per core), we
simulated at least 10 million stores for each processor core. We
employed this sampling approach for comparing hardware de-
signs running the same binary. However, measuring progress
in terms of stores may not be accurate while comparing the
performance of binaries produced by two different compilers
(SC-preserving and stock compiler). Therefore, for such
comparisons, we simulated the entire execution of the parallel
section. While simulating the dynamic and hybrid schemes,
we started tracking the state of a page only after the parallel
section starts executing. We evaluated the performance of both
user-level and system execution in our full-system simulation
using instructions-per-cycle (IPC) as the performance metric.

7.2. Performance of Memory Access Type Driven SC
Hardware

Figure 5 compares the performance of the proposed SC
hardware to a baseline SC hardware design. The performance
overhead of all configurations is shown relative to a TSO
hardware design that is similar to modern x86 processor im-
plementations. All the configurations use our SC-preserving
compiler implementation. Therefore, SC hardware provides
end-to-end SC and TSO hardware provides end-to-end TSO.

While our optimizations may not have an effect on programs
that already provide good SC performance, they significantly
reduce the overhead for those programs that do suffer a high
performance penalty due to SC constraints. On average,
SC-baseline has a performance overhead of about 9.1%.
The maximum overhead for SC-baseline, however, is much
higher: 28.8% (facesim). SC-staticOnly reduces the
overhead to 5.1% on average, with a maximum of 13.5%.
SC-dynamicOnly incurs only 2.9% overhead on average.
The proposed SC design, SC-hybrid, which uses both static
and dynamic classification schemes, has an average overhead
of 2.0%. Worst case overhead for SC-hybrid is 5.4%
(facesim) which is a significant reduction from the 28.8%
(facesim) that we observe for SC-baseline. The proposed
design’s performance is close to that of SC-ideal , which
uses a byte-level classification scheme. We conclude that
our optimizations are effective in reducing the SC memory
ordering overhead when it is present.
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Figure 6 compares the accuracy of our classification
schemes, which determines the effectiveness of our SC
hardware optimizations. On average, our page-based dynamic
scheme (SC-dynamicOnly) classifies 68.5% of memory ac-
cesses as safe. Combining this with the static scheme improves
the accuracy further to 71.5%, which is close to the accuracy
that one can achieve with byte-level tracking (81.5%).

Applications with a higher proportion of safe accesses (90%
for facesim) benefit significantly from our optimization as
we discussed earlier. However, proportion of unsafe accesses
is not the only factor that determine the final SC hardware
overhead. Cache miss rate of unsafe accesses have a more
direct influence. For example, SC-hybrid’s overhead
for bodytrack with more than 40% unsafe accesses is
lower than that of swaptions with only about 25% unsafe
accesses. This is because bodytrack’s cache miss rate is
lower than swaptions.

Figure 6 shows that for some applications
(blackscholes, ferret), SC-hybrid classifies
more accesses as private than SC-ideal. This is because
we classified all compiler specified safe accesses as private.
However, some of these safe accesses could be to shared
read-only locations (e.g, literals), which SC-ideal would

more accurately classify as shared read-only accesses. While
distinguishing between private and shared read-only accesses
is useful to understand our classification schemes, it has no
bearing on our performance studies, because they both are
treated the same way in our SC hardware designs.

7.3. Cost of End-to-End SC

The cost of end-to-end SC is shown in Figure 7. We
consider a TSO processor running the binary produced by the
stock LLVM compiler as our baseline as it represents the most
commonly used systems today. End-to-end SC has two sources
of overhead: 1) the cost of preserving SC in the compiler, and
2) the cost of enforcing SC in the hardware. In Figure 7, we
observe that the cost of preserving SC in the compiler is on av-
erage about 4.3% (TSO HW + SC compiler). This over-
head could be further reduced using the interference checks
described in [43]. If we use baseline SC hardware, the total
end-to-end SC cost is about 12.7% on average. However, by
using the hybrid classification scheme, our SC design reduces
the cost to 6.2% on average. This overhead is only slightly
higher (7.4%) when we compare to a relaxed memory model
(RMO) hardware (which is sufficient to support C++ or Java
memory model) executing the stock LLVM compiler’s output.



7.4. Sensitivity to Store Buffer Sizes

Our SC-hybrid design assumed an additional unordered
store buffer when compared to the SC-baseline. When
we halved the size of the two store buffers in SC-hybrid,
which made them area neutral with the store buffer in
SC-baseline, the increase in performance overhead was
negligible (less than 1%).

It is important to note that for a store buffer, the dominant
cost is not area, but rather the latency and power cost of
associative lookups. An associative lookup of the store buffer
is necessary for each load to support store-to-load forwarding.
In our design, a load has to search only one of the two store
buffers. Thus, the additional unordered store buffer in our SC
design does not aggravate this dominant overhead.

8. Related Work

To our knowledge, no past work has exploited memory
access type to relax memory model constraints in hardware
while still supporting SC. We have already discussed work on
optimizing SC hardware in Section 2. Here we discuss a few
other related works that provided end-to-end SC, and designs
that exploited memory access type for improving system
performance.

8.1. End-to-end Sequential Consistency

Hammond et al. [26] proposed transactional coherence
and consistency (TCC). In TCC, a programmer ensures that
every instruction is part of a transaction and a hardware
transactional memory [29] ensures that execution of all
transactions is serializable, which in turn guarantees SC at
the language-level. BulkCompiler [6] and BulkSC [13] also
provide end-to-end SC, but unlike programmer specified
transactions, the BulkCompiler automatically partitions a
program into regions called “chunks”. These region-based
solutions provide SC, but rely on fairly expensive speculation
hardware (checkpointing, versioning, conflict detection, and
recovery) to guarantee serializability of regions.

Researchers have also proposed to use static analysis for
guaranteeing SC on hardware supporting weaker memory
models. Shasha and Snir [51] proposed “delay set analysis”,
which finds the minimum number of fences required for an
SC execution. A fence incurs significant performance penalty
on current processors. To optimize this cost, Sura et al. [53]
and Kamil et al. [34] used static analyses to identify shared
accesses and insert fences only for these accesses. More
recently, Lin et al. [38] proposed conditional fence.
They employ hardware support to enforce a fence ordering
only when there is a possibility that SC may be violated.
However, all of these static approaches use whole program
analyses, which are not scalable to real-world programs.

8.2. Enforcing Data-Race-Free Discipline

Current DRF0 [4] based memory models provide SC for
data-race-free programs. Therefore, one option would be to
use a sound static [11, 12, 21] data-race detector to reject racy
programs at compile-time and enforce the data-race-free disci-
pline assumed by the DRF0 memory model. However, static
solutions need to be conservative in their analysis and report a
number of false data-races. It would be unacceptable if a com-

piler rejects a valid race-free program. Instead of static analy-
sis, researchers proposed to use a runtime mechanism [18, 40,
42] to dynamically detect SC violations due to a data-race and
raise a memory model exception. However, runtime data-race
detection in software incurs prohibitively high overhead [20],
and custom hardwares [5,40,42,45,48,52] are fairly complex.
Furthermore, legacy software contains a number of data races
that are deliberately used by programmers to achieve high per-
formance [46]. A solution that raises an exception for these
data races will face backwards compatibility issues.

8.3. Private and Shared Data Driven Architectures

Past work has leveraged the page-protection mechanism for
improving data placement in a processor cache [27], reducing
snoops in a token-based coherence protocol [35], detecting
thread dependencies to support replay [17], and more recently
to improve the efficiency of directory caches [15]. Unlike
these solutions, our design goal is to relax memory model
constraints, which requires us to carefully orchestrate the
state transitions of a page to ensure that memory ordering
constraints are not violated. We also employ a complementary
static analysis technique to classify memory accesses.

9. Conclusions

The memory model of a concurrent language defines what
values a load instruction can return. Semantics as fundamental
as this should have a clean definition that matches the intuition
of programmers. While the benefits of language-level sequen-
tial consistency are well known, an efficient and practically
feasible solution for SC hardware has remained elusive.

We exploited an important opportunity that has been over-
looked in the past while designing SC hardware: no memory
model constraints need to be enforced on accesses to private
locations and shared, read-only locations. By exploiting this
observation, we derived a low-complexity SC hardware design
that obviates the need for aggressive speculation to obtain high
performance. It uses a combination of static analysis and the
page protection mechanism to identify safe accesses and relax
SC constraints on them. Apart from an additional unordered
store buffer, there is very little hardware modification needed
to support our design. Our end result is promising: SC
hardware is only 2.0% slower than TSO, and end-to-end SC
costs only about 6.2% when compared to the performance of
a state-of-the-art compiler and TSO hardware.

For the SC memory model to be adopted at the language
level, all the compilers and processors that support the
language should be made SC-preserving. While our study
considered one of the most widely used processor designs
as baseline (an out-of-order TSO processor), further study
is needed to understand the overhead due to end-to-end
SC in other classes of systems (e.g., a low power in-order
architecture may be important for embedded systems).
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