Unleash Stranded Power in Data Centers with Rack Packing

Abstract

Data center infrastructures are highly underutilized oreeage. Typically, a data center manager computes
the number of servers his facility can host by dividing ttialtpower capacity of each rack by an assigned “peak
power rating” for each server. However, this scheme suffens the weakness of all static provisioning schemes
— it does not account for the variability of load on the sesreWe propose an algorithm that studies the power
consumption behavior of the servers over time and suggesitea ways to combine them in racks to maximize
rack power utilization. The server placement problem isigiea of vector bin packing [2], and our solution —
RackPacker — approximates a near-optimal solution effttiamsing a number of domain-specific optimizations.
One of the central insights we use is that the different serresting a single application typically show strongly
correlated, but often somewhat time-shifted, power copsiom behavior. Hence, we find servers that show anti-
correlated, or strongly time-shifted behavior and packnthtngether to maximize rack utilization. Our initial

experiments with RackPacker show substantially supeesults than static packing.

1 Introduction

The explosion of on-line services we are witnessing todaésresult of a paradigm shift — a move to the
Internet as a computing platform. Most commonly used appibos — email, document editors, collaboration
and organization tools, media, and games — are now offeredraices. On-line service providers maintain data

centers with tens — or even hundreds — of thousands of sarversler to host these applications. Modern data



center infrastructure, excluding the IT equipment theyt,hosn cost hundreds of millions of dollars. A majority
of this cost can be attributed to the electrical and meclahmérastructure, which distributes power and cooling
to servers, storage, and network devices. Designing datarseio maximally utilize their capacities is therefore
a crucial architectural concern for the growth of the sdeckfCloud Computing” paradigm.

The capacity of a data center is defined in many dimensiongepeooling, space, water, network bandwidth,
etc. Running out of resources in any of these dimensions sniba the service provider needs to build or rent
another data center to facilitate business growth. Amoegghesources, power is usually the first to be exhausted
because of the load limitation on the power grid and the asirey power density of computihg However, recent
studies [9, 6] have found that the average data center'sp@seurces are highly underutilized.

In this paper, we look at ways to optimize the power utiliaatin data centers by addressing the following
guestion:How many servers can a facility with a given power capacitgthén common practice, this number is
arrived at by dividing the provisioned power capacity by plogver rating of each server. This rating might either
be the nameplate rating of the server (which is usually atanbal over-estimate), or — which is slightly better
— the server’s experimentally measured peak power consomptiowever, both these schemes suffer from the
weakness of all static provisioning solutions — they do mabant for the variability of load on the servers and the
resulting dynamics of their power consumption.

We propose an algorithm that studies the power consumptbiavior of the servers over time, and suggests
optimal ways to combine them in racks to maximize poweragtion. At the heart of such a dynamic provisioning
scheme is the following intuition: the actual power constiorpof each server is not always (and often very rarely)
equal to its peak; hence, by intelligemter-subscriptiorof the provisioned power, we can unleash the stranded
power to host more servers. In other words, if we employesigbiheme to populate our facility, we would exceed
its power capacity if all of the servers were running at pexd| however, since the probability of such an event

is vanishingly small, we are (with very high probability) din

defined as the amount of power consumed by a rack of serveupying a unit space (e.g. square foot)



Our solution takes advantage of two technology trends ia dabhter computing: irtualization the use of
virtual machines (VM) to consolidate services and easevsoft migration; and 2power capping the ability
to adjust the power state of a server to prevent it from exoged given power cap. With VMs, it is easy to
move services among physical servers, so that “matchingésecan be placed together to reduce the probability
of exceeding a power budget. With power capping, the rarateva exceeding power limits can be mitigated
by reduction in performance. Although we still aim at mirmniy the power capping probability, reaching or
temporarily exceeding power capacity will not cause catasiic failures.

With these assumptions, our algorithm — RackPacker — solWed we term theserver placemenproblem:
Given actual power consumption profiles over a period of tiarea set of servers, what is the least number of
racks that they can be packed into without exceeding anysrackver cap?A brute force optimization formulation
can reduce this problem t@ctor bin packing[2], whered time instances of interest alalimensions of an object
and the bin size in each of thédimension is the rack power cap. However, in this formolatid could be
several thousands if the provisioning cycle is a day and p@amples are collected every 30 seconds. Since
this vector bin packing formulation leads to an NP-hard fmwbwith prohibitively large dimensions, we use a
number of domain-specific optimizations to arrive at a rag#imal solution efficiently. One of the central insights
we use is that some, but not all, servers’ power consumptionbe strongly correlated due to their application
dependencies or load balancing designs. Hence, it is ést@find servers that show anti-correlated, or strongly
time-shifted behavior and pack them together to minimizesgyocapping probability. Our experiments with
RackPacker show from 15-30% improved efficiency in packinyexs in racks. Note, however, that RackPacker
provides a probabilistic solution — should server powerscomption diverge significantly from the norm, rack
capacity can be exceeded.

In Section 2, we describe the background and common pragticeack power provisioning and show the
opportunity for unleashing stranded power. We then desailr algorithm — RackPacker — in Section 3. We

discuss the evaluation of RackPacker in Section 4 and preskred work in Section 5. Finally, Section 6



presents some key discussion points and concludes.

2 Stranded Power

To understand the rack packing challenges and opportspitie first describe the power distribution and pro-
visioning architecture in a typical data center. Power oomed by a data center is usually divided ictitical
power, which is UPS backed up and used by IT equipment,reordcritical power which is used by cooling and
other parts of the facility that do not require UPS backupghls paper, we only consider critical power utilization.

Critical power in a data center is delivered to remote povegrets (RPP) in each server room (usually called
server co-locations or colos), split into many circuitsréhend then distributed to server racks in that colo. Every
circuit has a defined capacity, and is regulated by a ciraeiker, which is the physical defense for catastrophic
power failures. For redundancy purposes, a rack usuallyrhai$ple circuits, each in the form of a power strip.
Servers, typically dual corded, spread their power loadsacthe power strips they plug into. Figure 1 shows the
power provisioning chart for a rack with 3 circuits, with pemload evenly distributed over the circuits, (i.e. each
server is plugged into two of the three power strips). Thezawao overheads that limit the amount of power usable
by the serversspike protectiorandfailover protection Assume each circuit is rated at single phased 30Amps
and 208V, then the total available power at each circuit246W2. However,10% to 20% of the total power is
reserved to handle spikes in the power grid or loEi/4 is shown in this plot). Furthermore, in order to support
failover — in the sense that when one of the three power difss all servers can safely use the remaining two
power strips— anothe?0% of the total power has to be set aside. Thus,ub&ble poweto the servers is only up
to 60% of the total power — 3.74 KW per circuit, or 11.2KW for the eatrack. In fact, this rather conservative
power provisioning baseline encourages probabilistia-subscription, since temporarily exceeding the power
cap is likely to be safe.

The common practice of power provisioning, however, dogéewen fully utilize the60% usable power. Server

2Technically, it is 6.34KVA. For ease of discussion, we igntite power factor and treat W and VA interchangeably.
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Figure 1. An illustration of power provisioning at the rack | evel. About 40% of available power is
reserved for handling spikes and failover.
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Figure 2. A real power consumption trace of a production serv er.

vendors usually give an estimatedmeplatepower consumption indicating the maximum possible power co
sumption of the server. For example, the power calculatolr ftom HP [5] rates 395W for a ProLiant DL360
G5 server, with two Xeon E5410 2.33GHz quad-core CPUs, f@B BDIMM, and two 146.8GB SAS HDD. In
other words, a 11.2KW rack can host at most 28 such servers,tbough each server only occupies one unit in a
typical 44 unit rack.

In reality, the nameplate power allocated to a server ismieMy used. Using server profiling, one can arrive
at a discounted power rating, which is lower than the nanteawer rating. For example, if the DL 360 server
has never consumed more than 300W, using the discounted pative, a rack can host 37 such servers.

Static power provisioning, even with discounted powemnggtican still leave a large amount of power stranded.

Figure 2 shows a power consumption trace over a day of a ptiodwserver accessed by millions of users. We have
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two observations. First, server power consumptions chdogeto the load fluctuation. Slow and quasi-periodic
load fluctuation has been observed in a lot of web traffic,uiticly web sites [1] and instant messaging [3].
This fluctuation can become even more significant as idle pa@esumption is decreasing for newer servers.
Secondly, in addition to the slow fluctuation, there areasgpilkcaused by short term load variation such as scheduled
processing intensive tasks or flash crowd visitors. Theodisted power rating — being a worst case estimate —
must include both the peak of the fluctuation and the highgkes; thus it can be overly conservative.

Power over-subscription can take advantage of two dynamigapties of actual server power traces:

¢ Not all servers fluctuate to the peak at the same time. Thesysatterns of on-line services can be diverse.
For example, websites for financial news and services mapriseir peak around late morning when both
east and west coast customers are on-line and the stocktrisadfen. However, home entertainment sites
may reach their peak in the evening. If we can bundle sentltasare maximally out of phase, then the

peak of the sum is less than the sum of the peaks.

e Servers that are managed by the same load balancer or haealelpendencies can have strong correlations
among their spikes. Statistically, placing services thabati-correlatedwill lead to smaller probability of

their seeing simultaneous spikes.

These observations motivate us to design RackPacker, gtatistically guarantees that over-subscribed sets

of servers do not exceed rack level power caps.

3 The RackPacker Approach

3.1 A Running Example

Throughout the rest of the paper, we use 831 servers from agropn-line service as a running example for
our discussion. Functionality-wise, these servers lgrigelong to three categories, which we call Types 1, 2, and

3. They are divided into several clusters, where each clist@managed by a load balancer. Server workloads
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Figure 3. The flow of the RackPacker algorithm.

show strong correlations, because of both functionalifyedelencies and load balancing effects. For example,
when there is a flash crowd, servers behind the same loaddealerperience a power spike at the same time,
while servers across load balancers are less correlatesltdthe nature of the application, we also observe that
about 2 hours after servers of type 1 reach their peak wattkleervers of type 3 reach their peak. In addition to
the tight coupling among server tiers, the relatively higPlCutilization, reaching over 75% at peak load, make
this a challenging set of servers for rack packing.

These servers have a nameplate power rating of 350W; baséudsonumber, a 11.2KW rack can host 32

servers. In other words, we need 26 racks to host these sémvitie most conservative situation.

3.2 Rackpacker Overview

RackPacker takes a data-driven approach that uses cdligmieer consumption traces to support server place-
ment decisions. We assume that services are hosted byl viraghines, even though there may be only one VM
per physical server. VMs enable fast re-positioning of sesswithout moving the servers physically. This allows
the server placement decisions to be made frequently — ae&lyer even daily basis— and aggressively. The
RackPacker algorithm, thus, only needs to predict sham teaffic growth. In the rest of the paper, we use the
terms server and service interchangeably. That is, a sefigpe 1 refers to a VM hosting service type 1 running
on a physical server. We only consider homogeneous servewhee.

Figure 3 shows the key components in the RackPacker algurith

By profiling or monitoring a server operation, we model theveepower consumption with a time series (rather



than a single number). The time series is first filtered toinlikee low frequency power consumption baseline, and
the high-frequency noise that captures spikes. The naisaldnas zero mean. Its variance represents how “spiky”
the transient power consumption can be. The goal of obgithia low-frequency components is to identify the
baseline fluctuations reflecting workload trends, spedifidheir phase. Using this phase information, we can
sift through the servers and bundle those that are most quhiage. The bundles are then treated as the unit for
rack packing. The high-frequency noise goes through a @@ analysis that measures the likelihood that two
bundles may have spikes at the same time. This statisticasune, together with the baseline of the bundles is
used in a statistical bin packing algorithm to find a (subtijoal server placement solution.

Thus, RackPacker has three major steps: filtering, bundling packing. In the rest of this section, we describe

each of these steps in detail.
3.3 Filtering and Classification

The goal of filtering is to separate workload trends from yaiansients. A typical approach is to compute
a moving average with a sliding window on the power tracesclis equivalent to low-pass filtering. Lét
be the set of servers of interegg, be the power profile time series of serverc S with M samples, and”
be the sliding window size to compute the moving average. nThige baselineB, is computed asB,(i) =
% Zj.:(i_ﬂl) Ps(j),1 = {1...M} (with patching zeros wheh< T'), and noiseV, = P; — B,. Figure 4 presents
the results of filtering the time series shown in Figure 2ukégl(a) is the baseline signal obtained by a 30 minutes
moving average. The residual noise signal and its histogranshown in Figure 4(c) and Figure 4(d). We use
to represent the standard deviation of the noise.

To obtain and compare the relative times at which differenters peak, we perform discrete Fourier transform
(FFT) on the baseline signal. In particular, since the migsiificant fluctuation has the period of a day, we expect
that the second FFT coefficient has the largest magnitudeeth for the power profile in Figure 2, the normalized

magnitude of the first 10 FFT coefficients &e4.2790, 0.2240, 0.7166, 0.4953,0.1057, 0.1303, 0.0738, 0.0393, 0.0609].
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Figure 4. Fitering and approximation of the power consumpti on time series.

It is clear that the second component is at least an order ghituale greater than other components, indicating
that it is a good approximation of the overall shape of the grguvofile.

We denote the second FFT coefficient of the baseline powétgby f,. Note thatf, is a complex number that
represents a sine wave that can be writtenfasin(wt + ¢5), where| f,| is the magnitude and; is the phase.
In a slight abuse of terminology, we cal} the primary phaseof the service. For example, Figure 4(b) compares
the signal reconstructed by the second Fourier coefficidhttive original signal. We clearly see that the second
coefficient captures well the overall shape of the origirabver profile.

Based on the relative magnitudes of the noise level and theufition| f;|, the servers can be classifiedfks

or fluctuating Intuitively, a fluctuating server shows substantial loadation above and beyond its noise. In our



example, we consider servers whose power profild Ads< 3o, to be flat. By this definition, 830 out of the 831
servers fluctuate. Fluctuating servers that show signifiphase difference will potentially pack well together,

and deserve special attention. This brings us to the bumndtiep.

3.4 Bundling

The goal of bundling is to find small sets of servers whose @nynphases “match”. Ideally, if the averagefof
across all servers is 0, then the fluctuations cancel eaehn oth . However, in real data centers, this may not be
possible. Therefore, the total power load fluctuates at #ta denter level. Lep be the average phase of ll.
Then the best packing approach should spread the data peatiefoad evenly to all racks. Hence, the target for
the bundling process is to make the average phase of eacletasdose t@ as possible.

Another benefit of a common phase for all bundles is dimenséoluction. As stated earlier, given a set of
power profile time series, we need to verify that at each tinséance the total power consumption at each rack
does not exceed the power cap with high probability. Whevesgrower profiles show distinct phases, we need to
perform this verification at the peak time of every power peofBy bundling servers into common phase groups,
we only need to verify the time instance when the common phiasewave reaches the peak.

The bundling process can be explained using complex vecldrs complex coefficienf, of servers can be
viewed as a vector in the complex coordinates, as can thageeectorf with phasep. Then each vector can be
decomposed by projecting it to the directionfoéind to the direction that is orthogonal foFigure 5(a) illustrates
this projection. Letf; be the2"? FFT coefficient of server 1, anfibe the average vector across all servers. Then
we projectf; on f, to obtain f;, and thenf; = f; — fi. If there existsf,, whose projectiory, on the direction
that is orthogonal tqf, satisfies.f> + f1 = 0, then bundling server 1 and server 2 together achieves thenon
phase. Once common phase bundles are created, furtheirguodh be performed along thfedirection so that
positive and negative magnitudes cancel each other out .

Algorithm 1 shows the pseudocode for this bundling step.r&lage two parameters that affect bundling per-
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Algorithm 1 Pseudocode for Bundling phase of RackPacker

RackPacker: Bundling
1: Compute the meayi of { f,} for all fluctuating servers. Compute the anglef f.
2: For each vectoy, with magnitude fs| and anglep, project f, to the direction oty and¢ + 7 /2:
3 f:s: ’fs‘COS((ZE—(;ﬁs)

4 o fs==|fslsin(é — ¢s)
5. Sort f5 in a descent order.
6: Select the unbundled servewith the largest f,|, and place it in a bundl
7: Compute the size gb| andb, the length ob along thep + /2 direction.
8: if |b| < ep then
9:  Finish with current bundle and repeat 6.
10: else
11:  if There is no unbundled servisren
12: Finish.
13:  else
14; Select unbundled serversuch that f,, + f3| is minimized.
15: if the size o + s/ > BundleCap then
16: Finish current bundle without putting in b
17: else
18: Add s7in b, and repeat 7.
19: end if
20: endif
21: end if

22: Treat each bundle as flat. For every bunblleompute its baselin®, = > __, Bs + maxer |f3|, and its
varianceo; from the variance and covariance of the noise vectors ofgheess in the bundle.

formance: the max bundle siZeéundleCap and the cancellation threshoig. Intuitively, the smaller we make
ep, the closer the bundled vectors get to fhedirection. However, one cannot bundle too many serverghege
since they could then exceed the power cap. As we will dislaieg the packing performance is also affected by
the correlation of the noise factors. Since noise is notidensd in the bundling process, we want to limit the
bundling size to give flexibility to the packing step.

Figure 5 shows the results of bundling the 830 fluctuatingessrin our running example. Figure 5(b) shows
the original vectors with ‘+' markers, and their decompiositto the mean and its orthogonal directions with ‘.
markers. The vectors in the orthogonal directions are dadait by the bundling process, and Figure 5(c) shows
the vectors after bundling. The maximum bundle size is 3,nmwhe set the bundle power cap to be one-tenth of

the rack power cap.
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3.5 Packing

Once bundles are created with the same phase, the packiogsproses a modified bin packing algorithm for
the final placement. A particular challenge that the packiegp addresses is the correlations among the spikes.

The goal of the packing phase is to assign bundles to rackscim 8 manner as to minimize the probability
of exceeding the rack power cap. In order to minimize thidbphility, the packing phase packs together bundles
that show minimal correlation in their spikes (noise). @tated bundles spike in lockstep; this can result in a
heightened likelihood of exceeding the rack cap in the evEhttad spikes such as flash crowds.

In order to compute sets of bundles that show minimal noiselzdion, the packing phase proceeds as follows.
First, the bundles are ordered in descending order of sinadB size for a bundléis computed a$ ___, B, +
C Fxoy, Whereoy, is the standard deviation of the bundle noise, and CF stamdehfidence factor, a configuration
parameter (3, here).

We then iterate through this ordered list of bundles andyagsiem to racks one by one. A bundlés deemed
to fitinto arackr if ), ., By + By + CF x 0., < C,, whereo, , is the standard deviation of the rack noise (
sum of the noise of each bundle in that rack) combined witmtiige of bundlé, andC,. is the rack cap. Given a
non-empty racle, to arrive at the next bundle that we'll attempt to pack inteve order the unassigned bundles in

ascending order of their covariance with the current cdatefr. We then try to find a bundle from this ordered

12



list that will fit into ». If no such bundle is found, we create a new rack and repegbriteess. Algorithm 2

presents the pseudocode for this phase.

Algorithm 2 Pseudocode for Packing phase of RackPacker
RackPacker: Packing

1. Sortthe bundles in descending ordery+C F'xoy,, where CF = confidence factor, a configuration parameter.
Call this list L.

2: Pick a bundlé from the top of the list and assign it to rack R.

3: For all bundles ink, computeBr = >, By, andog = \/ZbeR o + 237, p,er covariance(by, by).

4: while list L non-emptydo

5. Pick a bundlé’ from L that is most uncorrelated with all the bundlesinand add it toR.

6: Forall bundles inR, computeBr andog as above. IiBg + CF x ogp > Cg, remove the last bundle from
R.

7: end while

8: Repeat from 2 with a new rack.

4 Evaluation

Parameter Value Number o Racks m
Rack Cap 11200W] ©
Bundle Cap 1120 W g - ‘Assignment Confidence %
€B 20 g . z
Confidence Factor (CF) 3 - i S
(a) RackPacker Configuration Parameters (b) Choice of Confidence Factor

Figure 6. Simulation parameter choices.

We have implemented RackPacker in MATLAB. Figure 6 showsahwice of parameters for the implementa-
tion. The choice of the parameter “Confidence Factor (CF)lustrated in figure 6. Here assignment confidence
is computed as the percentage of racks that fail to staymilta rack cap over a week’s trace of data. We see that
the choice of the CF value results in a tradeoff between agggt confidence and packing efficiency.

In evaluating RackPacker, we wish to answer the followingsgions:

1. How does RackPacker compare with the prevalent serverms&gt algorithms?3We wish to see if there is

a strong argument for using RackPacker in place of existhgisns.
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2. What kinds of workloads is RackPacker best suited for? Gealye are there workloads for which Rack-

Packer is not suitable®e wish to know what kinds of applications benefit the mostfieackPacker.

We tackle each of these questions in order in this section.

4.1 RackPacker: Comparative Performance

To compare the efficacy of RackPacker against current sokitive use the following metrics:

e Stranded Power: This is the difference between provisioned power and agoalker consumed per rack.
Minimizing stranded resources is the goal of a good prowisip scheme. Hence, the less the stranded

power per rack, the better the server assignment algorithm.

e Packing Efficiency: This is the number of racks needed to host the given set obserwWe wish to

minimize this number in order to improve the utilization bétdata center.

Algorithm 3 Psuedocode for Static Assignment. Note that power(s) cahdoeameplate rating of s, or the peak
measured power for s.
Static Assignment Pseudocode
1. Order the servers randomly. Call this list serverlist.
2: Remove the first server s from serverlist and assign it to therick. Compute this rack’s power consumption
as: rackpower(1) = power(s)
3: while serverlist is not emptgo
4:  Remove server s (of type t, say)from top of serverlist
5. if Fit Criterion: rackpower(currack)+power(sk rack power caphen
6: Assign server s to current rack and update its rackpower
7
8
9

else
Create a new rack, and assign s to it.
. endif
10: end while

We compare RackPacker with two flavors of static assignm@ntNameplate Rating-Based assignment, and
(2) Peak Power-Based assignment. Both these schemes estbayg, where each type of server is distributed
uniformly across all the racks. This results in each rackaaoing approximately the same relative proportion

of each type of server. Theameplate rating-based schemses the power rating on the server as a measure of
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Number of server types 3

Type 1| 329
Type 2| 283
Type 3| 219
Total | 831
Type 1| 1994 W
Average power consumedType 2| 194.7 W
Type 3| 210.1 W
Type 1| 268.8 W
Peak power consumed | Type 2| 262.6 W
Type 3| 270 W
Data timespan 1 week

Number of servers

Table 1. Description of data against which RackPacker and ot her solutions are evaluated

its power consumption. Since this number is usually a sabateover-estimate, we also provide a comparison
point called thepeak power-based schemehich uses the measured peak power consumption of thergarve
place of the nameplate rating. This is the most aggressiie gtower provisioning approach, which assumes that
the peak in the future does not exceed the peak in the pastrithign 3 presents the pseudocode for both these
static assignment schemes. In this section we presentt@ahhesults for the nameplate rating-based scheme, and
simulated results for the peak power-based scheme, andaitidPBcker algorithm. In the graphs that we present,

the algorithm labelled “Static” refers to the peak powesdzhscheme.
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Figure 7. Average Power Consumption Behavior For The Differ ent Server Types
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We evaluate each of these three server assignment algerghmeal power consumption data obtained from a
production data center. The data spans 831 servers for agirol application. These servers belong to one of
three types, corresponding to different tiers of the appibm. Table 1, and figure 7 describe the data. The data
spans a week, but we train the various algorithms on one dayé and validate the computed assignment against

the remaining days.
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(a) Server Assignments Computed by RackPacker and Peak-Rbyv&erver Assignments Computed by RackPacker and PeakPowe
Based Static Assignment Algorithms. Based Static Assignment Algorithms.

Figure 8. Server assignment results from a realistic worklo ad trace.

Figure 8(a) is a pictorial representation of the serveigassents computed by RackPacker, and the peak power-
based scheme. We find that RackPacker results in 14% moremrtffassignment, using only 18 racks against 21
for the peak power-based static assignment. Further, f@imeshows the power consumed per rack, averaged
over all racks for each of these assignments. The rack capsgasned to be 11,200 W. We see that RackPacker
results in much less stranded power. RackPacker does mttehn twhen compared with the nameplate rating-
based scheme. Recall that using nameplate numbers, we Beadk® to host these servers. Thus here we see a

30% improvement in packing efficiency.

4.2 RackPacker: Workload Exploration

In the previous section we showed that RackPacker can ireprtihzation substantially for a real data center

scenario. Now we will explore what kinds of workloads Raakeat is best suited to.
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The workload presented in figure 7 represents a singleagian hosting center. The three types of servers
represent three tiers of the application; we see that theisedperate essentially in lockstep, with load variation
being consistent across the tiers. Here we will explore tikerodata center scenarios. The data for these scenarios

is generated through controlled modification of the reahdiadm table 1.
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Figure 10. Server assignment results from a workload trace w ith shifted phases.

Dedicated Multi-Application Hosting Center: Here we consider data centers that host a small number of
applications (more than one). Figure 9 shows the data wergieaeto represent this scenario. Again, there are
three types of servers, but Types 2 and 3 belong to a diffeqgpitcation than Type 1 — they are thus phase shifted.

Figure 10(a) shows the server assignment computed by Relk#Pand the peak power-based static scheme.
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Again, we find that RackPacker achieves 19% better packiingjegicy, using 17 racks against 21 for the static
scheme. Figure 10(b) shows the corresponding reductiomanded power. The nameplate rating-based scheme
needs 26 racks (as computed above); RackPacker is now 34&afiimient. In general, we expect that phase

shifted servers will benefit more from RackPacker.
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Figure 12. Server assignment results from a workload trace w ith randomized phases.

Mixed Hosting Center: Here we consider data centers that host a very large numbappdications; this
represents the cloud computing scenario, where the sesverdgased out to various companies that host differ-
ent applications on them. Figure 11 shows the data we geketatrepresent this scenario. Here we see that

there are numerous types of servers, and their correlationgess obvious. Figure 12(a) shows the server as-
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signment computed by RackPacker and the peak power-badedsstheme. Figure 12(b) shows the average rack
power utilization for each of these assignments. Again, we finat RackPacker outperforms the static schemes

substantially.

5 Related Work

In this paper, we present a scheme for intelligent oversudigm of data center power. The idea of power
oversubscription is not new, and has been explored in tegtiire in numerous ways. The common theme in
prior work, however, is that power tracking/capping arern@ans used to achieve this oversubscription. To the
best of our knowledge, server placement — which sets of seare placed in which racks — has not been studied as
a means of improving data center utilization. Thus, Rack®ais intended to supplement prior work by intelligent
server placement that reduces the need for rack-level pcaygring.

Fan et al [6] study the aggregate power usage characteritlarge collections of servers for different classes
of applications over a period of six months and concludechster-level power capping is a feasible and practical
means of improving data center utilization. Their conauss based on the intuition that even if power utilization
is high at server and rack levels, it is unlikely to be too halcluster level (since a large number of servers
would need to be simultaneously heavily loaded, for thisapgen). However, they offer no other insights to
implementing power capping.

Muse [1] is a game-theoretic, distributed power manageramsftitecture. The goal is to reduce the power
consumption of hosted applications by allocating only asynsrvers as are needed to serve the arriving requests.
Muse uses a load prediction model called “flop-flip” which dones two exponentially weighted moving averages
of observed load to achieve stable and reasonably agileds@mations. Game theory is used to translate these
load estimates to the number of active servers needed plicatfum. Idle servers are shut down to save power.

Chen et al [4] use two control knobs to restrict applicatiower usage: the number of active servers, as well

as their performance states. They use queueing theory tputenequest arrival rate over some epoch, and a
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feedback control loop to correct the predictions over aepheh. Their controller then solves the following
optimization problem: given the predicted throughput, iwkdhe optimal number of servers to allocate for each
epoch, and what is the frequency they should each be rurraaéh sub-epoch.

Lefurgy et al [8] use CPU throttle states to implement povagping. CPU throttling reduces the clock speed,
with power consumption dropping proportionally. The smintemploys a control feedback loop running at each
server. The server’s power consumption is monitored pirddigl, and its CPU speed is set to target this load for
the next epoch. The authors show how to make this model stattlebounded settling time.

Heath et al [7] add a degree of sophistication to their cdietroy taking into account the heterogeity of the
servers in the data center. Given the bandwidths of all tifierdint resources, the controller’s optimization problem
is to find the request distribution from clients to serverg] among servers, in such a way that the demand for
each resource is not higher than its bandwidth, and we neihie ratio of cluster-wide power consumption over
throughput.

Finally, our idea of translating the server placement m@wbinto a form of multi-dimensional bin packing is
inspired by Chekuri et al [2]. They present an approximagerhm to pack d-dimensional vectors (servers) into
d-dimensional bins (racks) to minimize the maximum load oy dimension. This algorithm, which represents
the theoretical best solution for this problem, does notesaell in practice since it requires to be much less

than the average number of servers per rack.

6 Discussion and Conclusion

Efficient use of data center infrastructure is a pressinggi$er the scalability of the IT industry. Due to con-
servative and static estimation of server power consumptiaditional approaches for power provisioning leave
large amounts of provisioned power stranded. RackPacked#ta driven approach for power provisioning. By
analyzing real power traces from servers, we obtain thdibhaséuctuation phase, and noise levels for each server.

Leveraging this information, we can find sets of anti-cat®il servers, in term of both fluctuation phase and noise
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covariance, that are best candidates for sharing the sarke @ur simulation results from real workload traces
show that even with tightly coupled and high utilizationsees, we can achieve over 30% better packing perfor-
mance compared to the nameplate rating-based provisiomgwpanism. We can save 14% space in comparison
to even the most aggressive static assignment approach.

RackPacker works the best when there are significant fluohigabn workload and power consumption. There
are two reasons that strong fluctuations are increasinghnuon in server workloads. On-line services are getting
more and more geo-focused. That is, many services are @esign users from particular countries or geo-
locations. As a result, the workload on these servers reflesdge patterns and the peak load is concentrated in a
small time span. Another trend is that the server hardwadesaftware are becoming increasingly power aware.
Server idle power is decreasing, while the peak power copamstays relatively flat. This implies that the
power consumption of servers, under variable workload stitiw fluctuating patterns.

There are several practical concerns when applying Ra&kP&o real data center operations. We did not
consider the rack height constraints when evaluating Raake?. It is easy to apply rack packing to reduce the
power capping if rack height is a constraint. In this casegta denter can add more racks with smaller total power
per rack. Sometimes, administrative advantages and seregulations can limit the flexibility of moving services
within or across data centers. In addition, current datdeceretworking architecture is hierarchical. Servers are
divided into subnets and those in the same rack can only Heeisame subnet (VLAN). However, many data
centers are dominated by a relatively small number of sesveach employing a huge number of servers on the
same VLAN. Solving the power provisioning problem for thesevices brings immediate benefits. We did not
explicitly address in this paper how to proportionally geien cooling with server assignment. Cooling should
not be a big concern in this context, since data centersirmpchpacities are designed to match their peak power
consumptions.

As a data driven approach for resource management, RaaPagorithm can be applied to other scenarios,

in particular service consolidation via virtualizationinfiar to the problem of finding “matching” servers for a
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rack, one would like to find matching services that can sheesame physical server. The difference is that power
is an additive resource, ignoring the power factor, butiotegources in a physical server may not be additive. For
example, depending on cache misses, the time delays @&veatyidata from storage can differ significantly when
multiple services share the same hardware. Modeling mdtitality resources and optimizing their utilization is

challenging future work.
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