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Abstract

The design constraints in ubiquitous computing (ubi-
comp) differ from those traditionally emphasized by the
systems community: evolvability, long-term maintain-
ability, and robustness to transient failures are essential,
while scalability and performance are lesser concerns,
due to the nature of ubicomp itself and the performance
of today’s commodity equipment. We show how these
observations are reflected in the design of iROS, a ubi-
comp software framework in production use. In par-
ticular, we show that a centralized architecture directly
enables the ubicomp programming abstractions needed
while providing the best solution for evolvability and
maintainability/deployability, and that we can achieve
the required robustness through a fast-recovery strategy,
which allows a simple centralized implementation of
the architecture. Throughout, we achieve performance,
scalability, and recovery behavior sufficient for typical
operation.

1 Introduction

Ubicomp is an important emerging field, one of whose
major challenges is system software [17]. We argue
that in ubiquitous computing environments such as the
iRoom (our research testbed), the design goals are dif-
ferent from those the systems community has tradition-
ally considered. In particular:

� Although maintainability, evolvability, and re-
silience to failure and other dynamic conditions are
always desirable, in a ubicomp environment they
are essential because of the nature of the environ-
ment itself; and

� although high performance and scalability are al-
ways desirable, current hardware and software
makes the performance of a centralized ubicomp

architecture adequate for human-scale latencies,
and the naturally-limited scale of ubicomp makes
scalability a lesser concern.

These observations lead us to a simple (and therefore
deployable and low-maintenance) system architecture
with sufficient performance and scalability that nicely
supports important programming abstractions required
for room-scale ubicomp.

This paper describes why ubicomp environments lead
to potentially different design decisions, and how they
were made in iROS (the Interactive Room Operating
System), the software infrastructure for a ubicomp en-
vironment that has been in production use for ��� years.

Since ubicomp is a relatively immature field, com-
parisons of specific mechanisms within ubicomp pro-
gramming frameworks are hard to make. Unlike the
operating systems community, ubicomp practitioners
have not yet settled on a small set of primitives and
the corresponding implementation tradeoffs and micro-
and macro-benchmarks. We propose a set of ubicomp
“primitives” we have found useful as the basis of our
evaluation. We do not claim our set of primitives is
authoritative or exhaustive, but they are based on more
than 2 years’ experience with the iRoom and about 1
years’ experience with its more primitive predecessor,
and they have enabled the development of demonstrably
useful ubicomp applications.

Our goal is to demonstrate that a simple, central-
ized architecture directly enables the evolvability and
ease-of-maintainability goals of ubicomp; that a rapid-
recovery scheme (rather than a distributed implemen-
tation or other use of functional redundancy) suffices
to provide the needed robustness; and that the scalabil-
ity and performance of the resulting implementation are
sufficient for this application domain despite the design
choice of centralization.

In the next section, we describe the unique constraints
of ubicomp, and introduce the design decisions we made



to meet these constraints and satisfy our goals. Section 3
highlights the salient features of iROS that illustrate our
design decisions. (Since each of the three iROS subsys-
tems is the subject of one or more full papers, we are
forced to omit many details of their implementations
here.) Section 4 describes the specific design choices
and quantitatively evaluates their effectiveness in meet-
ing the goals of evolvability, maintainability, and failure
resilience, while providing sufficient performance and
scalability. Section 5 discusses our positive and negative
experience with a wide variety of iROS-based applica-
tions and other deployments of our software, including
open problem areas. We discuss related work in sec-
tion 6, focusing on other complete ubicomp frameworks
and other systems that share our “design for recovery”
philosophy. We summarize our design choices and con-
tributions and conclude in section 7.

2 Ubicomp Has Different Priorities

As an example of a ubicomp environment, we focus on
an interactive workspace (IW): a localized technology-
augmented environment where people come together for
collaborative work. Our testbed, the iRoom (figure 1),
features three rear projected touch-sensitive screens
along one wall, a bottom projected table, and a custom
12-projector tiled display (“the Mural” [11]) driven by
a workstation cluster that does distributed rendering of
OpenGL. The iRoom is the second generation of such an
environment that we have built and experimented with.
We invited several non-CS research groups to prototype
scenarios and applications in this environment, to bet-
ter understand how it would be used and what program-
ming facilities we should provide. Consider the follow-
ing scenario in the iRoom, representative of what we ob-
served and illustrates specific behaviors requiring pro-
gramming support.

A group of construction management engineers and
contractors is holding a meeting to plan a construction
project. Participants enter the room and turn on their
laptops containing 802.11b wireless cards, but do not
perform any particular “login” procedure. The group
leader turns on room lighting and touchscreens using
a Java-applet-based UI on her laptop. A second group
member uses a drag-and-drop display control interface
on her laptop to display an aerial view of the construc-
tion site on the table display. Similarly, a 3D wireframe
model of the construction site is displayed on one of the
large touch screens, and a project schedule spreadsheet

Figure 1: A meeting in the the iRoom

Figure 2: A construction management application en-
semble. The screenshots are stylized for clarity, but the
application is real.

on another. (See figure 2.) One of the members brings
up a view of the model on her PDA, but since the model
is too complicated, a simplified non-interactive image
depicting the view is shown on the PDA.

Each largescreen viewer can function as a stand-alone
application, but when a user selects or makes changes in
one view, the other views update themselves to show
information relevant to the selected view. For exam-
ple, selecting a cell on the spreadsheet schedule causes
the wireframe view to render the parts of the project
that will be completed by that date; selecting a point
on the aerial view rotates the wireframe model to show
the corresponding vantage point; selecting a structure on
the wireframe model highlights the cells in the schedule
spreadsheet that are milestones in completing that struc-
ture. All such selection can be done either by a user
interacting directly with a touchscreen or by any of the
laptop users “remote controlling” any touchscreen us-



ing a single mouse, in effect giving the illusion that all
the touchscreens and a given user’s laptop are combined
into a single large logical display surface. Further, any
user can “pull” one of the viewers to her own laptop
screen and interact with it locally to get the same effects.
During the meeting, one user must leave unexpectedly;
she hastily shuts down her laptop (without any “logout”
procedure) while data viewers are still running on it.

2.1 The Volatility and Boundary Principles

The above scenario highlights two properties that dis-
tinguish ubicomp as a distinct subarea of distributed
systems. The two properties have been previously de-
scribed [17] as follows:

1. The Volatility Principle (VP): The set of partic-
ipating users, hardware and software components
in a ubicomp environment is highly dynamic and
cannot be predicted in advance. The sudden depar-
ture or arrival of a service, device, or user should
be considered normal operation, not an exceptional
condition or a failure requiring special handling.

2. The Boundary Principle (BP): Ubiquitous com-
puting environments are bounded in extent; the
boundaries may be physical (the walls of a room)
or cultural/administrative (there may be nonlocal
resources that are acceptable to use, and vice-
versa). These boundaries should be visible to appli-
cations running in the environment, to make com-
mands such as “turn on all the lights” or “display
this data on the center screen” meaningful.

These two principles lead to three specific conse-
quences of VP and BP that must be addressed by a ubi-
comp software framework:

VP1: Failure Resilience. Volatility on smaller time
scales requires us to deal with dynamism (e.g. people
or devices entering/leaving spaces without signoff) and
partial failures as common cases. Transient failures in
parts of the system should not cause cascading failures,
and recovery from transient failures should not require
unavailability or recovery of the whole system. In par-
ticular, human users should not perceive an obtrusive
level of unavailability in response to such cases.

VP2: Evolvability/Deployability Volatility on larger
time scales implies that incremental evolution/accretion
and therefore extreme heterogeneity will be the norm
in these environments [5]. Furthermore, due to the ex-
istence of useful large building blocks and technolo-

gies such as the Web, desktop/productivity applications,
etc., ubicomp software must make it easy to create new
applications and behaviors from existing pieces. It is
not hard to see that evolvability and legacy support are
two sides of the same coin; supporting them requires
the ability to integrate and leverage entire systems (OS
plus applications), some of which may not have been
designed for integration. “Java everywhere” and simi-
lar approaches do not suffice, because they attempt to
define heterogeneity out of existence and assume that
non-conforming applications will be rewritten. Tech-
niques for dealing with heterogeneity have been well
explored in the mobile computing and Web communi-
ties, but leveraging them requires that the framework
must minimize the work required to integrate each new
platform. Finally, since heterogeneity implies instabil-
ity, VP2 reinforces VP1.

BP1: Application-level enforcement of bound-
aries. The end-to-end argument [24] suggests that the
boundaries referred to by BP cannot be enforced solely
at network level, especially when the physical or ad-
ministrative boundary does not correspond directly to
any technological boundary (time-to-live of IP multi-
cast, reach of a wireless network). Mechanisms visible
to applications must make the boundaries of the environ-
ment explicit; e.g. if a facility analogous to broadcast is
provided, application-level mechanisms must be used to
correctly limit its scope to the current workspace.

From a deployability standpoint, a system is more
likely to be widely adopted if its architecture is easily
understood, and if its robustness mechanisms are simple
enough to give high confidence in the invariants they
embody. We were therefore motivated to find the sim-
plest architecture we could that satisfied all the above
constraints.

2.2 Design Decisions Resulting from VP and
BP

Software infrastructure for ubicomp must address the
above constraints, in addition to providing support for
programming abstractions common in ubicomp envi-
ronments. The next section describes what those ab-
stractions are and how they are supported in iROS, but
first we note that the above constraints are set against
two opportunities:

� Since BP inherently limits the scale of a ubicomp
environment, a design may be optimized for evolv-
ability or robustness rather than extreme scalabil-



ity.

� Current hardware is so fast that performance
against human-scale latencies should not be diffi-
cult to achieve, so a design may be optimized for
evolvability or robustness rather than very high per-
formance.

Of course, we must provide sufficient scalability and
performance for typical operation. With the above in
mind, we summarize the design decisions described in
the rest of the paper. The common thread running
through them is that a centralized architecture directly
enables the programming abstractions we need, while
providing the best solution for evolvability (VP2) and
enforcement of application-level boundaries (BP1). We
can achieve the required robustness (VP1) through a
fast-recovery strategy, which allows a simple central-
ized implementation of the architecture. Throughout,
we achieve performance, scalability, and recovery be-
havior sufficient for typical operation.

1. Levels of indirection and placing functional-
ity in the infrastructure (VP1 and VP2). By placing
most of the sophistication of iROS into infrastructure
software (i.e. running on fixed servers in the iRoom)
rather than distributing it among clients or components,
we provide levels of indirection in communication, data
transfer, and end-user control of services. The level of
indirection in communication leads to loose coupling
between components and therefore better failure isola-
tion. Levels of indirection in our data movement sub-
system and human-interface generation subsystem en-
able easier evolution to new data formats and UI lan-
guages/modalities. Putting the sophistication of our in-
tegration mechanisms in the infrastructure also makes
new devices and new or legacy software easy to inte-
grate. The increased latencies resulting from indirection
are not significant under typical operation.

2. Logically-centralized communication model for
evolvability (VP2). Entities in iROS communicative
via a tuplespace-based, shared, event-driven communi-
cation model; that is, all events are potentially visible to
all entities. We illustrate how features of the tuplespace
model such as the shared event notification channel and
the ability to do snooping and intermediation of events
enable easier integration of new devices, and therefore
improve evolvability. A logically-centralized commu-
nication abstraction also provides an application-level
mechanism for scoping applications to the workspace:
the extent of the environment is defined as the set of

entities communicating via a particular instance of a tu-
plespace. The limited scalability implied by centraliza-
tion is not significant under typical operation, due to the
limited scale implied by BP.

3. Centralized implementation of communication
model. This design choice addresses VP2 and BP1. A
centralized (single-server) implementation of commu-
nication is much simpler to build and maintain, allows
clients to be simpler by putting the communication logic
in the server rather than in each client, which makes
integration of diverse (possibly resource constrained)
clients easier.

4. Simple restart based recovery using auto-
reconnect. A centralized implementation is generally
considered undesirable because it is a single point of
failure. Rather than adding failover or standby redun-
dancy to the communication implementation, we aug-
ment the single-server implementation with an auto-
reconnect feature that enables clients to recover auto-
matically when the communication server is restarted
following a transient failure. The result is a measur-
able but tolerable user-perceived additional latency dur-
ing recovery. We argue that the combination of suffi-
ciently good recovery behavior and overall simplicity
makes wide deployment more likely.

5. Use of beaconing and soft state. Components in
iROS use beacons to announce their “upness” and other
runtime information. Unlike approaches based on regis-
tration/deregistration of entities, with soft state beacon-
ing, the right thing happens when a component enters
or leaves the system unannounced. Because beacons
are soft state, components do not run any special re-
covery code, making their implementations simpler and
their recovery faster, and allowing partial recovery (by
restarting only those components that failed) rather than
requiring a recovery of the entire system when any com-
ponent fails. After a failure, a user may perceive tran-
sient inconsistency between which components are ad-
vertised as available and which ones actually respond
when addressed; we show that our system can scale to
sufficiently high beaconing rates to achieve acceptable
consistency levels under typical operation.

The result of the above design decisions is a
simple set of mechanisms that simplifies opera-
tion/administration, evolvability, and deployment/long-
term maintainability.

Table 2.2 summarizes the design choices and trade-
offs in iROS that follow from the consequences of the
Volatility Principle and Boundary Principle.



Table 1: Summary of design decisions, their motivations and implications
Design choice Reason Benefit Realized
Levels of indirection, placing functionality in the
comm server infrastructure

VP1,VP2 Failure isolation; client simplicity

Logically-centralized communication model VP2 Evolvability: intermediation and snooping facil-
itate creating new behaviors and integrating new
devices

Centralized implementation of communication
model

VP2,BP1 Client simplicity; ease of policy management;
higher likelihood of adoption due to architectural
simplicity

Restart-based recovery using auto-reconnect VP1 Ease of recovery, overall architectural simplicity
Use of beaconing and soft state VP1 Simplicity of mechanism in failure resilience

3 iROS Functional Overview

iROS consists of three large subsystems, each of which
is the subject of one or more separate publications.
Since space does not permit us to repeat the details of
their implementations here, we limit our description to
the salient operational features that will be used to illus-
trate and quantify the tradeoffs referred to in the previ-
ous section.

The scenario in section 2 is representative of our ex-
periences in iRoom for the past three years. We have
found that the following functionalities are desired in
interactive workspaces:

1. Dynamic application coordination, to enable each
of the (originally standalone) viewer applications
to reflect view changes and actions in the other
viewers.

2. Moving data among displays or machines, possi-
bly involving datatype transformation, to allow the
viewers to run on any of the displays (group mem-
bers’ laptops or large touch screens) and views to
be adapted to simpler devices such as PDA’s.

3. Control of anything from anywhere, to allow re-
mote control of the room’s physical facilities and
control of touchscreens from any laptop’s mouse
and keyboard.

We do not claim that the above is a complete set, but
our experience confirms that these are necessary func-
tionalities and they have allowed us to build a variety of
useful applications to be easily written (in section 5 we
try to give a sense of this breadth).

The programming model for iROS is one of ensem-
bles of independent entities that communicate via mes-
sage passing (“events”) using a logically-centralized

broadcast-like communication substrate. The entities
are standalone applications or components whose be-
haviors can be linked by the exchange of events, or
centrally controlled by emitting groups of events in re-
sponse to a single user command. The basic message-
passing mechanism that enables this coordination is
called the EventHeap; on top of this we provide the
DataHeap, a facility for moving data among hetero-
geneous devices using automatic datatype transforma-
tion, and ICrafter, a facility for on-the-fly, device-
independent generation of human interfaces for hard-
ware and software services or groups of services. We
describe the salient features of each of these three sub-
systems.

3.1 EventHeap: Dynamic Application Coordi-
nation

The EventHeap [13] implements a coordination model
based on tuplespaces [8] and forms the underlying com-
munication infrastructure in iROS. The EventHeap im-
plementation is client-server based, with the event stor-
age and matching logic entirely implemented by the
server to keep the functionality required on the clients
simple. Applications can communicate with the Event
Heap in one of three ways. First, new applications or
applets written in Java, Python, or C/C � � can use com-
munication libraries that provide primitives for posting
events, querying for events, and subscribing to event
streams. Second, Win32 applications that export COM
API’s can be wrappered for use in EventHeap applica-
tions. Third, a Java servlet that converts well-formed
URL’s and HTML form submissions into events allows
the creation of HTML-based post and query interfaces
to the Event Heap; examples of its use include Multi-
browsing [15], which allows authoring of multi-display-



aware Web content, and our original room-control appli-
cation, which was implemented as a web page (allowing
it to run it on handhelds for free).

Two important differences between the EventHeap
and the traditional tuplespace model are the use of self-
describing data and the garbage collection of events
based on expiration times. An event is an unordered col-
lection of name/value pairs; since fields are referenced
by their (string) names, events are self-describing. In
our system, one field is designated as the event type; en-
tities agreeing on a particular event type are agreeing to
the semantics of at least a subset of the remaining named
fields. Components retrieve/subscribe to events using
event templates, which contain precise values for fields
to be matched and wildcards elsewhere. The EventHeap
provides referential decoupling: the intended recipients
of an event are determined by the contents of the event
itself rather than being directly named (similar to inten-
tional naming [2]), in that one or more fields of the event
specify the desired attributes of the intended receivers.

Events are posted with expiration times, and expired
events are periodically garbage collected by the server;
later we show how this facility supports service ad-
vertisement and sidesteps resource-reclamation issues.
Event expiration times are upper bounds, since events
do not persist across EventHeap server failures. The
EventHeap was used for application coordination in the
scenario in section 2, as follows:

1. The construction site map allows the selection of
various view points in the site and emits an appro-
priate view change event. (Although this viewer
had already been written, it could have also been
implemented as an HTML page with an imagemap
whose click regions link to URL’s directed to
the Event Heap servlet, generating an event when
clicked.)

2. The schedule viewer displays tables of construction
site information and emits “change date” events as
dates are selected. This is easy to implement us-
ing a third-party Visual Basic-to-Java bridge that
allows two-way integration between EventHeap
clients and Microsoft Excel, registering a VB han-
dler that is invoked when a cell is clicked.

3. The 3D wireframe viewer responds to “change
view” and “change date” events emitted by the
other viewers. It also provides its own UI for ma-
nipulating the model; actions on this UI cause the

corresponding events to be emitted and picked up
by the other viewers.

Modifying the original standalone viewers to use the
EventHeap required no more than about 100 lines of
code each. When any of the viewers are run stan-
dalone, the events it emits are simply ignored, and be-
cause of Event Heap garbage collection, they eventually
expire rather than accumulating until consumed. If more
than one viewer is active, they coordinate as expected.
If a particular viewer is launched on multiple displays
(whether laptops or wall screens), because of the ref-
erential indirection provided by the Event Heap, all in-
stances can react to and generate display events. Sim-
ilarly, because of referential indirection, the expected
coordination behavior is observed regardless of which
machine(s) the viewer(s) are launched on.

3.2 DataHeap: Moving Data

The Data Heap provides type-independent and location-
independent storage of large and semi-permanent data
in an interactive workspace. A datatype transforma-
tion system [16] uses a set of dynamically composable
data transformers to convert data among arbitrary for-
mats. Automatic data transformation can often be im-
perfect/lossy, but since the transformed data is usually
meant to be displayed for users (rather than processed
by other programs), transformed data is still useful de-
spite this limitation.

The Data Heap stores the actual data on a Web-
DAV [1] server and the corresponding metadata (includ-
ing the datatype) in a fast in-memory XML database.
Using the Event Heap, data producers indicate their de-
sire to store a document and its associated metadata, and
consumers query for metadata and indicate which for-
mats they can accept. The Data Heap responds to con-
sumer queries by dynamically instantiating a chain of
transformation operators to convert the data to one of the
acceptable types. Hence, the Data Heap frees data pro-
ducers from having to know in advance the capabilities
of consumers, and thus from having to know who the
consumers of their data will be. This property is essen-
tial in a multi-platform ubicomp environment in which
not all clients agree on a canonical set of data formats.

The DataHeap supports the meeting scenario as fol-
lows. A meeting participant uses a DataHeap client ap-
plication on her laptop to give the model data a name
and move the data from her laptop to the DataHeap
server in its native (viewer-specific) format. The PDA



user’s viewer queries the Data Heap for the metadata
using that name, specifying the data formats it can han-
dle; the DataHeap server automatically transforms the
model data to the requested format before returning it.

3.3 ICrafter: Control Anything From Any-
where

ICrafter [20] is the iROS UI-generation framework. We
refer to any controllable hardware or software entity
(room physical plant, software application, etc.) as a
service. ICrafter provides a mechanism for services to
publish short-lived “beacon” events to announce their
presence; service discovery is accomplished by query-
ing the EventHeap for available events whose type field
matches Beacon. The beacon events contain a descrip-
tion of the service’s available method calls in an XML-
based markup language called SDL. (Current efforts in
the Web community such as WSDL are similar, but were
immature or nonexistent when iROS was designed.)

To obtain a UI for a given service, the user makes a
request of the interface manager (IM), which is a stan-
dard service provided by iROS. The IM selects one or
more UI generators to produce a UI from the service
description embedded in the beacons. A UI genera-
tor may be specific to a type of service (e.g. projec-
tor controller), specific to a device’s UI toolkit (e.g.
HTML, Java Swing, VoiceXML), both, or neither; the
IM tries to select the most specific generator possible
from its repository of (hand-written) generators, and as
explained in [21], can also be configured to automati-
cally search a global repository. The level of indirection
represented by the IM reduces the barrier to adding a
new service or device: if a new service for which no
service-specific generator is available for the locally-
supported UI toolkits, the IM can automatically try to
acquire a service-specific generator, and if it is unable to
find any, it can fall back to using a service-generic gen-
erator that automatically generates a functional (if aes-
thetically clumsy) UI directly from the SDL. Similarly,
if a device supporting a new UI toolkit is added, the
IM can automatically acquire service-generic or service-
specific UI generators that target this new UI toolkit.
The sophistication of the IM means that services do not
have to know in advance what kinds of devices will be
requesting their UI’s; analogously to the Data Heap, this
lowers the barrier to integrating a new service or device
into iROS.

ICrafter supports the lighting control illustrated in the
meeting scenario as follows.

The user launches a simple Java applet client on her
laptop that uses Java Swing widgets to display all avail-
able controllable services. Generating this list involves
discovering the available services by querying the Event
Heap for the available service beacon events. When the
user asks the IM for a UI to the “lights” service, the IM
searches the local generator repository for a lights UI
generator tailored to Java Swing capable clients. Such
a generator consists of XML-like markup describing the
widgets, interspersed with script code; the script code is
used to tailor the UI to the particular installation, e.g.
by replacing low-level device names such as “light0”
with more meaningful names such as “Main Overhead
Lights”. The generator executes the scripts to produce
markup that can be rendered directly by the requesting
client. Thus this level of indirection also enhances porta-
bility across workspaces.

4 Supporting Evolvability and Ro-
bustness

In this section, we describe and evaluate the key design
choices in iROS relative to the functionality of the three
subsystems described. Since iROS is a software in-
frastructure for a human-centered system, definitions of
things like “acceptable” performance must be based on
human interaction times. A study by Miller [18] identi-
fies the following thresholds for

�
, the time it takes for

the system to respond to a user’s command:

� ��������� ms: the illusion of “instantaneous” re-
sponse time is lost; user perceives the system as
sluggish.

� ���	� sec: the user’s thought process is interrupted
and the delay is perceived as obtrusive.

� �
����� sec: the user becomes distracted from the
task at hand and will start to work on other tasks
while she waits.

We will use these values to establish thresholds for
“adequate” performance in various cases.

4.1 Levels of Indirection for Evolvability

iROS makes frequent use of a level of indirection. In
each case, the level of indirection adds latency but
results in better failure resilience or ease of integra-
tion/evolvability.



Two examples illustrate the failure resilience benefits
of communication indirection through the Event Heap:

1. Components communicating over tuplespaces do
not have direct connections between them (refer-
ential decoupling). As a result, applications are
not prone to failures due to disruptions in the con-
nections. Of course, the connection between a
component and the EventHeap server can also fail,
but the EventHeap client library handles this fail-
ure, as will be explained in section 4.4. In gen-
eral, the tuplespaces model encourages developers
to write applications in a loosely coupled manner
(even though it is still possible to create a tightly
coupled application atop tuplespaces).

2. Since events persist until expiration or an Event
Heap failure, communicating components often
need not be up at the same time (temporal decou-
pling). That is, a transient failure in the receiver
may be masked if the receiver restarts before an
event directed to it expires.

With respect to evolvability, we may ask: what is the
minimum amount of work required to integrate a new
service or device into iROS? According to our three ob-
served functionalities, the new device or service must
be able to coordinate with other entities, participate in
moving data, and allow itself to be remote controlled:

1. Since the event matching and buffering is entirely
in the server, adding Event Heap communication
capabilities to a client is simple. The full-featured
Java client library has 740 semicolons, and the
EventHeap-to-Web servlet previously mentioned
allows simple Web pages and forms to both gen-
erate and query for events.

2. To allow the device to exchange data with other
devices, we add a DataHeap transformer between
the device’s native data type(s) and some subset
of those already supported. For example, the Mu-
ral cannot display Microsoft PowerPoint presenta-
tions but can display JPEG images; we built a sim-
ple PowerPoint-to-JPEG transformer using Pow-
erPoint’s ActiveX API, and consequently when a
user asks to display a presentation on the Mural, the
alternative JPEG version is shown. Cross-platform
applications can thereby share data without being
modified. The transformer consists of 83 semi-
colons in Java (231 LOC) plus 46 lines of XML

description; about half of this code is common
code also used in other transformers. A slightly
more complex example is the wrapper for the open
source package ImageMagick, which handles con-
version among a large number of datatypes; that
wrapper is 64 semicolons (268 LOC) plus 180 lines
of XML description.

3. Unlike other systems for network service UI’s such
as UPnP, Jini and Hodes et al. [10], iCrafter isolates
UI selection and generation in a level of indirec-
tion (the IM) separate from clients and services. In
section 3.3, we explained how this level of indirec-
tion reduces the barrier to adding new clients and
services. The Java ICrafter service API was de-
signed with an explicit goal to reduce programmer
effort to create new services. As a baseline exam-
ple, wrappering Microsoft Internet Explorer into a
barebones ICrafter service (that only supports the
“navigate to URL” method) using the ICrafter ser-
vice API in Java requires about 20 semicolons of
Java code; the ICrafter service API then uses Java
reflection to automatically generate the SDL that
will be advertized for this service. Without addi-
tional effort, basic HTML and Java Swing UI’s are
generated by the automatic UI generation facility in
the IM (although custom UI’s can be created with
more effort, if needed).

In each of the above three cases, the presence of a
level of indirection allows a new device or service to be
integrated with a minimum of effort.

4.2 Logically Centralized Communication

The logically centralized, event-driven model of the
EventHeap is well suited for our domain because sev-
eral application coordination scenarios in interactive
workspaces are “naturally” event-driven as illustrated by
the scenario of section 2. In addition, the EventHeap
offers non-obvious benefits for even request-response
style interactions, because a centralized communication
model facilitates snooping and intermediation. That
is, since events are indirectly sent between applications
(through the EventHeap), an intermediary can observe
an event from a source and generate one or more events
of different types in order to cause a desired action in
a different receiver or receivers. For example, consider
Multibrowsing [15], an iROS application that allows one
to “send” Web pages or other documents from any dis-
play in the room to any other display (including laptops,



Table 2: Effort needed for various integration tasks
Integration task Libraries used Number of semicolons
Creating a barebones IE ICrafter
service

Java ICrafter service API, Third-
party Java-COM bridge

20

Allowing Mural to display PPT
slides

DataHeap transformer API,
Third-party Java-COM bridge

84 semicolons + 46 lines XML

Integrating 3d viewer into CIFE
application

EventHeap Java API 100

Multibrowse-based custom room
control web page

HTML, EventHeap servlet
helper web site

One web form to fill on the helper
site per multibrowse link

wall displays, and the Mural). Early prototype appli-
cation developers had hardcoded the names of target
displays in the iRoom, making their applications non-
portable to other iROS installations. We exploited the
ability to snoop and intermediate in mbforward, a sim-
ple intermediary that picks up multibrowse events with
specified values in their ‘Target’ fields and automati-
cally re-routes them to different machines by generat-
ing new events. Using this mechanism, we were able to
use Multibrowsing demos originally hardcoded to the
iRoom for demonstrations in other locations, without
changing any of the original source code. This illus-
trates the benefit of intermediation for evolvability and
portability. [12] compares the Event Heap in detail to
other communication models, and concludes that al-
though intermediation may also be possible in systems
based on RMI/RPC or message passing if applications
are carefully constructed, the shared tuplespace model
makes the process much more elegant, low effort and
straightforward.

The level of indirection from logical centralization
also provides other benefits, some of which we return to
in section 5, including ease of integrating new devices
and connecting them to existing behaviors.

The centralized communication model also has the
benefit of ease of ensuring application-level scope: since
broadcast and discovery are implemented using the
EventHeap, so their scope is the set of entities com-
municating with that same EventHeap. This is why we
have not implemented subnet multicast based schemes
for discovery in ICrafter (as is done in other service dis-
covery systems such as UPnP, Jini and SLP). We could
use such schemes as heuristic aids to discover the lo-
cally available EventHeap servers (currently, users man-
ually decide which EventHeap their applications should
connect to), although ultimately the decision must often
involve user input, e.g. when an itinerant remote user

wishes to participate in a meeting at her usual work-
place.

A disadvantage of the logically centralized communi-
cation model is limited scalability. But we show in the
next subsection that at scales consistent with BP, we get
sufficient performance.

4.3 Centralized Implementation For Client
Simplicity

A centralized communication model could still be im-
plemented in a distributed manner. We chose a central-
ized implementation because it is simple to build, debug
and reason about (less than 1200 semicolons in Java), re-
quires minimal functionality on each client, and avoids
the need to redistribute client code when the implemen-
tation changes. In contrast, a distributed implementa-
tion is likely to be challenging since there is no obvious
way to partition the write-intensive workload while pre-
serving the ability to intermediate (all clients must po-
tentially be able to see all events). Every client would
have to implement event buffering, event matching, and
expiration.

The downside of a centralized implementation is lim-
ited scalability. However, BP limits the desired scope
of the shared communication mechanism to a single
workspace; a reasonable estimate is therefore that the
system only needs to scale to the order of a hundred
simultaneously active clients, and as previously men-
tioned, a reasonable threshold for adequate performance
is an event delivery latency of around 100ms. Usually,
the iRoom has no more than 30 simultaneously active
clients and the peak aggregate request rate on the server
is no more than 30 requests/second. Under these condi-
tions, the latency is only 10ms.

We also conducted experiments to test the limits of
our server implementation with respect to the number
of clients (figure 3) and the aggregate request rate (fig-
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Figure 4: 100 clients simultaneously generating Beacon
events; in the solid curve, probes of the same type (Bea-
con) were used to measure latency, while in the dashed
curve, latency probes were of a type other than Beacon.
Background traffic dominated by Beacon events is typi-
cal of an interactive workspace.

ure 4). Figure 3 shows that the latency is well below
the 100ms limit for upto 350 clients even for our (non-
tuned, straightforward) implementation of the shared
communication model. Similarly, figure 4 shows that
we achieve a latency well below 100ms for upto 350 re-
quests/second. Consequently, we believe that the scala-
bility of our server implementation is adequate for our
setting.

Of course, centralized implementations are liable to
be single points of failure. We address the potential sin-
gle point of failure in the following subsection.

4.4 Restart-based Fast Recovery Using Auto-
reconnect

A crash of the centralized EventHeap server is a single
point of failure, which can in turn cause cascading fail-
ures as other components lose their connections to the
server. We prevent this behavior as follows:

� As mentioned in section 3.1, events do not persist
across EventHeap failures. As a result, we may
lose some events during a crash, but the EventHeap
can be recovered by restarting without any special
recovery actions, and the restart time for the server
itself is only 200 milliseconds.1 The lost events
can cause temporary disruption (e.g., a light con-
trol command will have no effect) but retrying the
command after the EventHeap has recovered fixes
the problem. (We decided against the significant
additional complexity of supporting event recovery
in the server, given that the server failure is a rare
occurence.)

� Further, the EventHeap client library provides an
auto-reconnect feature: connected applications de-
tect EventHeap failure and they auto-reconnect
when it is restarted.

� Some inconsistency is expected for a brief period
following the restart of the EventHeap because all
the built up soft state is lost in the crash. However,
this state is automatically replenished in at most
one beacon period after the clients reconnect.

Thus, the total time for recovery as perceived by the
user is ��� ��� ������� �	��
�� �
����� �	��� , where
������� is the time to start the JVM, ��
�� is the time
for EventHeap initialization, ����� is the time for all
the clients to reconnect, and ��� is a beacon period.
Typically � ����� is between 1.5 and 2.5 seconds and
��
�� � � ��� ms.

Consistent with Miller [18], we define “fast enough”
recovery as 10 seconds, which is noticeable but unlikely
to distract the user from the task at hand. Figure 5 shows
the reconnect times for clients ( ����� ) under varying val-
ues of the number of active clients � at the time the
EventHeap fails. We suspect (but have not directly veri-
fied) that the differences in shapes among the curves are

1Placing the Event Heap startup command inside a while(1)
loop recovers from JVM crashes; we are working on external mon-
itoring to restart the Event Heap when livelock or thrashing is de-
tected.
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Figure 5: Speed of Event Heap recovery with differ-
ent numbers of clients. The figure plots the fraction of
clients successfully reconnected as a function of time.

due to TCP backoff, since all clients are simultaneously
attempting to reopen TCP connections to the server.

From the figure, it may be inferred that for our typical
operating parameters (less than 50 clients and a beacon
period of 5 seconds), ��� ��� ����� � � � � � � � � ��� , i.e.,
less than 9 seconds. (We discuss the choice of beaconing
rates in the next section.) While the recovery time is
currently adequate for our purposes, we are exploring
techniques for further improvement.

The auto-reconnect feature plays a key role in en-
abling dependency-free restarts of failed components.
Without this, we would need to restart all iROS com-
ponents, as well as all iRoom services and applications,
after an EventHeap crash. (In fact, we had this problem
in an earlier version of the EventHeap based on IBM
TSpaces [28].) Finally, our failure handling strategy is
simpler (and therefore, arguably more reliable) because
it exploits the simplicity of the centralized implementa-
tion.

We do not argue that this is the only recovery method
needed in an interactive workspace—it does not han-
dle deterministic failures, such as a pathological event
that always crashes the Event Heap, or hard failures,
such as a persistent hardware failure on one of the ma-
chines. But it does handle a wide variety of transient
failures, and we have verified from experience that most
observed failures of iRoom software are in fact transient
and curable through restarts.

4.5 Beaconing and Soft State for Dynamism

As explained earlier, services in iROS advertise their
presence and other runtime information with periodic
beacon events. The expiration time of a beacon event is

set to twice the beacon period. Beacons help in better
handling of partial failures (of the EventHeap and the
other components) and dynamism:

1. “Stale” beacon events associated with components
that failed or left the workspace will eventually ex-
pire and other components will detect their absence
(after at most 2 beacon periods).

2. If the EventHeap server itself is restarted follow-
ing a transient failure, all pending events, including
service beacons, are lost. Use of beacons ensures
that the service availability state can be built up
again within 1 beacon period. Without beaconing,
a transient failure in the EventHeap would have a
cascading effect, since other services would also be
perceived as having failed after the EventHeap is
restarted. Thus, beaconing and auto-reconnect to-
gether prevent a transient Event Heap server failure
from causing cascading failures.

While beacon-based soft state helps with failure re-
silience as shown above, it hampers scalability due
to the increased load on the server. The scalability-
robustness tradeoff associated with soft state is well
known in the Internet systems community [22]. In our
case the tradeoff can be captured smoothly with the bea-
con rate parameter. As the beacon rate increases, per-
ceived consistency in the face of failures improves, but
the overall performance of the system degrades due to
the increased traffic. The following graph shows how
the performance of the EventHeap degrades as the bea-
coning rate increases.

The results in figure 4 show that we can easily sus-
tain a beacon period of 1 beacon/second for a hundred
services. We conservatively set the beacon period to 5
seconds in iRoom, implying that inconsistencies can last
for up to a maximum of 10 seconds.

5 Experience

iROS is a real system in daily use by multiple groups of
non-systems researchers. Neither iROS nor the new ap-
plications being developed are bug-free, but the simple
failure resilience mechanisms provided make recovery
straightforward even for non-CS experts, and therefore
encourage prototyping. Here we try to give a sense of
what has and has not worked well in our experience.



5.1 Evolvability and Ease of Integration

Our experience in this area has been extremely positive
due to the mechanisms described in section 4. The level
of indirection provided by the DataHeap has made data
sharing across platforms much easier: an enhanced ver-
sion of the lights-and-projector control application al-
lows drag-and-drop of URL’s, images and documents
for display on the touchscreens and Mural, using the
DataHeap for transformation when necessary and allow-
ing a natural extension of the multiscreen display mech-
anism across platforms.

The ability to “glue” applications together using the
EventHeap is exploited in SmartPresenter, an applica-
tion that choreographs the behavior of several indepen-
dent copies of Microsoft PowerPoint to allow all the
touchscreens to be used simultaneously in a presenta-
tion. The EventHeap’s support for intermediation even
allows a user in the audience to passively observe the
presentation on her own laptop, simply by running a
SmartPresenter client that snoops on events to any de-
sired touchscreen.

Intermediation has also made it easy for us to in-
tegrate new devices and connect them to existing be-
haviors. For example, we have built about a dozen
EventHeap-enabled wireless buttons [4] that can gen-
erate “button pressed” events containing the button’s id.
We created a simple GUI-based application that allows
end users to map an iButton event to actions available
from iRoom services. A generic intermediary uses these
mappings to translate iButton events into service con-
trol events, the result being easy creation of physically-
activated “macros” without any user programming. Al-
though we do not support “destructive” intermediation
in which intermediaries consume events before anyone
else can see them, we have found that supporting only
“additive” intermediation is useful in many situations.

The use of beacons facilitates the construction of ap-
plications that must respond to dynamism as they are
running. For example, PointRight [14] allows any user
to remotely-control a single mouse pointer across all
iRoom screens, including laptops in the room; it uses
the EventHeap to detect when displays join or leave the
room infrastructure, and modifies the display topology
on the fly. A similar technique is exploied in iPong [4],
a simple Pong-like game in which the playing field is a
dynamically-varying set of displays.

5.2 Other iROS Applications and Deploy-
ments

Regular group meetings in the iRoom routinely use
most of the applications above. iROS has also been
deployed in several other non-CS environments. The
Center for Integrated Facilities Engineering (http://
cife.stanford.edu), whose work is the basis of
the scenario at the beginning of this paper, uses iROS to
prototype large-site construction management applica-
tions in their lab. The Program in Writing and Rhetoric
has deployed iROS on an experimental basis to proto-
type teaching strategies for collaborative writing. iROS
is expected to be the base technology for new distance-
learning classrooms to be completed in 2003; one of
our developers has deployed a desktop-scale version of
iROS to assist in development of applications for that
environment. Although the deployments have been far
from perfect (we describe some problems below), iROS
has been sturdy under a variety of conditions of use by
people other than its creators.

5.3 Ongoing Work

The downside of handling failure as a common case is
that sometimes a true failure can be difficult to track
down. A drawback of the referential decoupling we ex-
ploit for application coordination is that it is not mean-
ingful to talk about end-to-end delivery semantics of
messages, since the sender does not know in advance
who the receiver(s) will be or whether there will be any
at all. The most common symptom is the user issuing a
command (e.g. turn on the lights) and seeing no effect.
Our graphical Event Heap debugger (coincidentally also
based on snooping and intermediation) is suitable only
for sophisticated users, and some problems are actually
due to hardware (e.g. malfunctioning X10 controller)
rather than software.

We do not know of any comprehensive security model
for collaborative workspaces. Inside the iRoom we rely
on social conventions (e.g. it’s rude to turn off the lights
during a meeting); outside we rely on a firewall, al-
though in keeping with the Boundary Principle we are
moving toward controlling access to the EventHeap in-
stead.



6 Related Work

6.1 Similar Approaches to Robustness

The intentional naming system (INS) [2] uses soft state
protocols to maintain weakly consistent names across
the name resolvers. This entails periodic name up-
dates that cause scalability concerns, but in exchange
provides robustness to dynamic environments. Simi-
lar to our use of application-level boundaries with the
EventHeap rather than network-level boundaries, INS
uses application-level resolution of query criteria (e.g.,
“anycast to the best printer” might name the least loaded
printer rather than a printer on the same network).

The SNS/TACC scalable network server prototype [6]
uses automatic start and restart for worker processes,
making recovery from a worker crash the same as nor-
mal operation. Further, by using soft state for its load
balancing, its load balancer’s recovery procedure is also
part of normal startup.

The Recovery-Oriented Computing project [19]
presents evidence that as a result of Moore’s Law and
increasing system complexity, systems costs today are
dominated by costs of downtime and ongoing mainte-
nance. They argue that the former can be addressed
by a renewed emphasis on design for graceful recovery
(rather than strictly on failure avoidance) and that the
latter can be addressed by designing systems for ease of
administration and maintainability. We agree with these
goals and have optimized our architecture to achieve
them.

6.2 Other Ubicomp Frameworks

Surprisingly, not all ubicomp frameworks explicitly ad-
dress the issue of evolvability and the resulting in-
evitable heterogeneity. One.world [9], GaiaOS [23],
iLAND [26], and Jini [3] all require applications to be
(re)written using specific languages and API’s, and none
provides for the integration of heterogeneous, whole-
system building blocks.

Similarly, few ubicomp frameworks explicitly ad-
dress the robustness problem. A noteworthy exception is
one.world: their “programming for change” philosophy
requires that applications be prepared to re-acquire lost
resources at any time, and their API’s decouple applica-
tions from resources to make this possible. Applications
must include special code to recover from operations
that fail due to having lost a resource, but their frame-
work clearly separates those operations from ones that

cannot fail, and they provide support for handling sev-
eral common cases. Further, their state-encapsulation
boundaries in general isolates the failures of compo-
nents or applications.

7 Summary and Conclusions

iROS addresses three challenges: it provides support for
abstractions needed by a large class of demonstrably-
useful ubicomp applications; through appropriate de-
sign choices, it provides the failure resilience and ease
of evolvability and maintainability required of ubicomp;
and it accomplishes these goals with an architecture that
is simple to understand and develop on. The ease of de-
velopment and administration make iROS a useful off-
the-shelf building block for ubicomp (non-systems) re-
searchers. Although other ubicomp projects have ad-
dressed subsets of these challenges, none that we know
of has successfully addressed all of them.

We do not claim that any single aspect of
our solution—recovery behavior, scalability, or
performance—represents a revolutionary improvement
in and of itself. But we believe the combination of these
in iROS represents the simplest solution that satisfies all
the constraints, and we tend to agree with Gabriel [7]
that simpler systems that are “good enough” are more
likely to be adopted by future researchers and thereby
improved over time. Indeed, we hope that others will
improve on our efforts.

Ubicomp deserves the attention of systems re-
searchers if we want to avoid creating brittle and hard-
to-use systems. Systems building is about making de-
sign choices in the face of design constraints; we hope
that our experience with iROS will help other systems
researchers addressing comparable design constraints in
making informed design choices.

For more information, to download iROS, or
to see videos of iROS in action, please visit
http://iwork.stanford.edu.
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