
Tiny Web Services for Sensor Device Interoperability

Bodhi Priyantha, Aman Kansal, Michel Goraczko, and Feng Zhao
Microsoft Research, One Microsoft Way, Redmond, WA.

{bodhip,kansal,michelg,zhao}@microsoft.com

Abstract

There are many scenarios where interoperability is

required for sensor devices. We demonstrate one
approach to achieve interoperability: using web
services. Hosting a web service challenges the battery-
life, bandwidth, and processing power constraints of
low power sensor nodes. We demonstrate a lightweight
implementation on MSP430 based sensor nodes with
802.15.4 radios. The implementation allows standards
compliant web service clients to use the sensors but
minimizes code size and energy at the sensor nodes. It
allows sensor nodes to enter sleep modes. We
prototype an example application for a home sensor
network along with two types of sensor nodes required
for it. We also show how our system enables sensor
nodes to be used easily from applications written in
high level languages using existing development tools.

1. Introduction

Interoperability of sensor nodes is important in
several scenarios and has significant advantages.
Consider a typical home for instance. It may have a
security system with perimeter intrusion sensors on
doors and windows, and motion detection sensors in
some indoor areas. A home typically also has fire
sensors wired directly to the fire-station. It contains a
thermostat for indoor temperature sensing, connected
to a cooling or heating system, and smoke sensors that
may not be connected to a network. It may also have a
hobbyist’s weather station or other sensors. Note that
each sensor is being used by only one application. If all
these sensors were accessible from a common
interface, not only could we continue to run the
existing applications but also use these sensors for
additional applications. For instance, the perimeter
intrusion and motion sensors could be used in an
activity monitoring application for home automation,
these sensors along with the thermostat could be used
in a home energy control application, and the activity

monitoring could also be used for an assisted living
application (Fig 1). Also, adding a few additional
application specific sensors to such an existing

infrastructure is much cheaper than adding an entire
sensor suite for each new application. To enable this
vision, we need interoperability at the network and
application layers.

Network layer interoperability can be achieved
using IP. It works over many PHY layers and is a
commonly used standard. Optimizations to IP energy
and bandwidth usage are feasible using protocols such
as the proposed 6LowPAN [1]. We assume that the IP
overheads are acceptable for the PHY layer used, such
as 802.15.4.

The next key challenge is interoperability at the
application layer. An application developer needs to
understand the control messages expected by a sensor,
the parameter values needed by it, and the type of data
produced. Even when the application developer may
know the sensor semantics, the actual formats for
messages sent and data values communicated are
sensor specific. Developers are required to read
detailed documentation, and develop custom programs
to generate the relevant bit patterns and sequences of
packet exchanges. For instance, the message formats
required by X10, Insteon, Echelon, Zwave and
HomePlug sensors are different for communicating the
same information. One approach to achieve
interoperability is to force each sensor vendor to adopt
a new common specification such as Zigbee or Wibree.
A second approach is to use existing web service
standards in a lightweight manner. Each approach has
its pros and cons. We demonstrate the second

Figure 1. Interoperable sensor devices.

Door Sensors Motion Sensors
Temperature
Sensors

Home
Automation

Energy
Management Assisted

Living

approach, providing a sample point that may facilitate
the debate between the two approaches.

2. Interoperability Using Web Services

In this approach, a sensor node reports its interface
using the web service description language (WSDL)
[2] and applications that wish to use the sensor can
send it the messages specified. This has several
advantages. If the application developer knows the
semantics of the sensor (e.g. that a temperature sensor
in a thermostat provides indoor air temperature) then
automated tools can be used to parse the WSDL
specification and generate method calls in an easy to
use high level language (e.g. Java, C#). The data types
of the parameters passed and data values received are
well understood. For instance, a programmer could use
Visual Studio or NetBeans IDE to automatically parse
the WSDL specification and create a Java object that
provides the device messages as method calls with
typed arguments. The actual format and sequence of
packets sent to the node is automatically generated by
Visual Studio or NetBeans according to the node’s
WSDL specification. Using a device from a new
manufacturer is easy as now the high level language
object providing the device control messages as
method calls is automatically generated. If a vendor’s
sensor has additional features these may simply appear
as additional available method calls.

2.1. Challenges and Design

The web service approach has several challenges for
use on low power sensor nodes. First, if the sensor
node is battery powered and expected to operate for a
long duration, it must enter sleep modes while typical
web service hosts are assumed to be always on.
Second, a battery powered node will use a low
powered radio which has a low data rate. The total
amount of data sent cannot be very large to meet
battery life and latency constraints. Third, low power
nodes must use constrained processors and memory,
supporting only limited complexity message
processing.
 In our prototype we address the above challenges by
judiciously selecting the web service components to be
implemented on low power devices, but ensure that the
device WSDL specification is standards compliant. We
make simplifying assumptions in reducing the code
complexity and data overheads for servicing the
messages by leveraging the fact that all messages
received are in accordance with the device WSDL
specification and need only simple responses specified
by the device itself. This allows a low power radio and

processor to be used. The requirement for sleep is
addressed by using Web Services Eventing [3]. The
sensors expose their key methods as web service
events so that the device can enter a sleep state after
the method has been called. It may then wake up when
the actual event (e.g. based on a sensor value) occurs
and send the response as an event.

2.2. Application Example: Energy Control

As an illustration, we developed two new MSP430
based nodes for homes: (1) a power sensor-actuator
that may be attached to wall sockets for measuring
power drawn and turning the socket on/off, and (2) an
802.15.4 enabled thermostat, both with a web service
interface. These are used in an energy control
application written in a high level language.

A gateway node is also built that can connect the
sensor nodes to Internet-based sensing services such as
MSR SenseWeb [4] or other remote applications such
as security monitoring or assisted living help-lines. The
gateway node, not being power constrained, can
implement sophisticated security and other web service
features not implemented on the device.

3. Demonstration

We demonstrate:
1. Lightweight web services hosted on tiny devices
(sensor device consisting of an MSP430 processor with
48k of ROM and 10k of RAM, an 802.15.4 radio,
powered by AA batteries). The web service messages
are carried over HTTP and TCP/IP.
2. Direct use of sensor WSDL specifications in
existing application development tools, Visual Studio
and NetBeans IDE, using high level languages.
3. Support for sleep mode at sensors that host the web
service, using events.
4. Prototype devices: an 802.15.4 thermostat and
smart-power-sockets (sense power draw, allow remote
turn on/off) that host a web service interface. These are
used in an example application.

References
[1] G. Montenegro et al, “Transmission of IPv6 Packets over
IEEE 802.15.4 Networks”, IETF RFC 4944.
http://www.ietf.org/rfc/rfc4944.txt
[2] E. Chiristensen et al, “Web Services Description
Language, W3C Note,” http://www.w3.org/TR/wsdl.
[3] D. Box et al, “Web Services Eventing (WS-Eventing),”
http://www.w3.org/Submission/WS-Eventing/
[4] A. Kansal et al, "SenseWeb: An Infrastructure for Shared
Sensing," IEEE Multimedia. Vol. 14, No. 4, pp. 8-13, 2007.

