Sub-linear Queries Statistical Databases:
Privacy with Power

Cynthia Dwork

Microsoft Research
dwork@microsoft.com

Abstract. We consider a statistical database in which a trusted ad-
ministrator introduces noise to the query responses with the goal of
maintaining privacy of individual database entries. In such a database,
a query consists of a pair (S, f) where S is a set of rows in the database
and f is a function mapping database rows to {0,1}. The true response
is > s f(DB;), a noisy version of which is released. Results in [3, 4]
show that a strong form of privacy can be maintained using a surprisingly
small amount of noise, provided the total number of queries is sublin-
ear in the number n of database rows. We call this a sub-linear queries
(SuLQ) database. The assumption of sublinearity becomes reasonable as
databases grow increasingly large.

The SuLQ primitive — query and noisy reply — gives rise to a calculus of
noisy computation. After reviewing some results of [4] on multi-attribute
SulLQ, we illustrate the power of the SulLQ primitive with three exam-
ples [2]: principal component analysis, k means clustering, and learning
in the statistical queries learning model.

1 Introduction

Consider a statistical database in which a trusted administrator introduces
noise to the query responses with the goal of maintaining privacy of individ-
ual database entries. For concreteness, let the database consist of some number
n of rows DBy,..., DB, where each row is a d-tuple of Boolean values. A
query consists of a pair (S, f) where S C [n] is a set of rows in the database
and f : {0,1}¢ — {0,1} is a function mapping database rows to {0,1}. The
true response to the query is) ¢ f(DB,), a noisy version of which is released.
That is, the administrator algorithm chooses a random quantity in some range
and releases the sum of the true response and the random quantity.

Such databases were studied extensively in the early 1980’s (see [1] for an
excellent survey of results on these and other techniques for statistical disclosure
control), with mixed results. However, results in [3, 4] show that a strong form of
privacy can be maintained using a surprisingly small amount of noise — a random
quantity whose standard deviation is of order o(y/n) — provided the total number
of queries is sublinear in the number n of database rows.

This is significant for the following reason. If we think of each row as a sample
from some underlying probability distribution and we wish to gather statistics

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 1-6, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 Cynthia Dwork

on a properties P that occur with possibly small but still constant probability
in the population, then the sampling error in our population of size n will be of
order 2(y/n). Thus, the noise that is added for the sake of protecting privacy is
significantly smaller than the sampling error. In other words, providing privacy
need not interfere with accuracy, so long as the number of statistical queries is
not too large. The assumption of sublinearity is reasonable as databases grow
increasingly large.

The basic SuL.Q primitive — noisy sums of arbitrary Boolean functions applied
to each row in a set S C [n] of rows — is powerful: statistics for any d-ary predicate
can be very accurately obtained simply by querying the database. It is natural
to ask, “Which more complex computations can be expressed using few (in n)
SuLLQ queries?” We have found this class to be quite rich.

Here, we review the results of [4] on multi-attribute SuLQ databases (Sec-
tion 3) and then give three examples of the power of the SuL.Q primitive (Sec-
tion 4): principal component analysis, k¥ means clustering, and learning in the
statistical queries learning model. The treatment here is informal and without
proofs. Rigorous treatment of these and other, related, results, is given in [4, 2].

2 Definitions

We model a database as an n x d binary matrix DB = {DB; ;}. Intuitively,
the columns in DB correspond to Boolean attributes ag,...,aq, and the rows
in DB correspond to individuals, where DB; ; = 1 iff attribute a; holds for
individual <.

Let D be a distribution on {0, 1}¢. We say that a database DB = {DB; ;}
is chosen according to distribution D if every row in DB is chosen according to
D, independently of the other rows (in other words, DB is chosen according to
D™). To capture partial information that the adversary may have obtained about
individuals prior to interacting with the database, this requirement is relaxed in
the privacy analysis, allowing each row 4 to be chosen from a (possibly) different
distribution D;. In that case we say that the database is chosen according to
D1 x---xD,. ‘

For a Boolean function f : {0,1}% — {0,1} we let p;’ be the a priori
probability that f(DB;1,...,DB;4) =1and piT’f be the a posteriori probability
that f(DB;1,...,DB;q) =1, given the answers to T queries, as well as all the
values in all the rows of DB other than i: DB, for all ¢/ # 3.

We define the monotonically-increasing 1-1 mapping conf : (0,1) — IR as

follows:
p

1—p

Note that a small additive change in conf implies a small additive change in p .

conf(p) = log

! The converse does not hold: conf grows logarithmically in p for p ~ 0 and logarith-
mically in 1/(1 —p) for p = 1.

Sub-linear Queries Statistical Databases: Privacy with Power 3

Let confé’f = log

i . i
Po_ and confé,:f = log *Z—. We write our privacy re-
P

1—pi7 1-pk
quirements in terms of the random variables Aconf® defined as®:

Aconf™f = \conff}f - confé’f

Definition 1 ((d, T)-Privacy). A database access mechanism is (8, T)-private
if for every distribution D on {0,1}%, for every row index i, for every function
f:{0,1}* — {0,1}, and for every adversary A making at most T queries

Pr[Aconf™ > 6] < neg(n),

where neg(n) grows more slowly than the inverse of any polynomial in n. The
probability is taken over the choice of each row in DB according to D, and the
randomness of the adversary as well as the database access mechanism.

The definition of (§, T')-privacy speaks of the probability that any single func-
tion experiences a change in confidence. The next definitions speak about sets
of functions that together experience little change in confidence.

A target set F is a set of d-ary Boolean functions (one can think of the
functions in F' as being selected by an adversary; they represent information
the adversary may wish to learn about someone). A target set F' is J-safe if
Aconf™ < § for all i € [n] and f € F. Let F be a target set of size polynomial
in n. Definition 1 implies that under a (4, T)-private database mechanism, F' is
0-safe with probability 1 — neg(n).

Claim. [4] Consider a (8, T)-private database with d = O(logn) attributes. Let

F be the target set containing all the 22" Boolean functions over the d attributes.
Then, Pr[F is 26-safe] = 1 — neg(n).

3 Multi-attribute SuLLQQ Databases

The multi-attribute SuLQ database of [4] is easy to describe. Let T' = T'(n) =
O(n), ¢ < 1, and define R = (T'(n)/é?) - log" n for some p > 0 (taking p = 6
will work).

SuLQ Database Algorithm A
Input: a query (S, g).

1. Let asy = > ;cq9(DB;).
2. Generate a perturbation value: Let (eq,...,er) €g {0,1} and

E—Y" ei—R)2.
3. Return ag 4 = as,q + €.

2 Our choice of defining privacy in terms of Aconf®? is somewhat arbitrary, one could
rewrite our definitions (and analysis) in terms of the a priori and a posteriori proba-
bilities. Note however that limiting Aconf® in Definition 1 is a stronger requirement
than just limiting |p§Lf — pé’f|.

4 Cynthia Dwork

Note that £ is a binomial random variable with E[] = 0 and standard
deviation v/R. The analysis ignores the case where & largely deviates from zero,
as the probability of such an event is extremely small: Pr[|€] > VRlog®n] =
neg(n). In particular, this implies that the SuLQ database algorithm A is within
O(+/T(n)) perturbation, meaning that for every query (S, f)

Pr{lA(S, f) — as | < €] = 1 — neg(n).
The probability is taken over the randomness of the database algorithm A.
Theorem 1. [§] Let T(n) = O(n¢) and § = 1/O(n<") for 0 < ¢ <1land0 <
¢ < ¢/2. Then the SuLQ algorithm A is (0,T(n))-private within O(y/T(n)/9)
perturbation.

Note that whenever 1/T'(n)/d < \/n, restricting the adversary to T'(n) queries
allows privacy with perturbation magnitude less than /n.

Let i € [n] and f : {0,1}? — {0, 1}. The proof analyzes the a posteriori prob-
ability pe that f(DB;) = 1 given the answers to the first ¢ queries (ai,...,a)
and DB~ (where DB{~" denotes the entire database except for the ith row).
Let confy; = log, pe/ (1 —pe). Note that confr = confff’f7 and (due to the indepen-

dence of rows in DB) confy = conff)’f . Following [3], a random walk on the real
line is defined, with step, = conf; — conf,;_1. The proof argues that (with high
probability) T'(n) steps of the random walk do not suffice to reach distance ¢.

4 Computation with the SuLQ Primitive

The basic SuLLQQ operation — query and noisy reply — can be viewed as a noisy
computational primitive which may be used to compute other functions of the
database than statistical queries. In this section we describe three examples of
the power of the primitive. In this setting, the inputs are reals drawn from the
unit d-dimensional cube, and the noise is distributed according to a normal
variable N (0, R), where R = R(n) is roughly of order T'(n)lognlogT(n). The
privacy analysis in the proof of Theorem 1 must be extended accordingly. A
rigorous treatment of this work appears in [2].

4.1 Principal Component Analysis

Principal component analysis [6] is an extremely valuable tool in the (frequent)
case in which high-dimensional data lies primarily in a low-dimensional subspace.

The input consists of n points in U¢ (the d-dimensional cube of side length 1)
and an integer k < d. The output will be the k largest eigenvalues of the d x d
covariance matrix (defined below), and their corresponding eigenvectors.

For 1 <i < d, welet p; = E,cn)[pr(i)],where p,.(i) denotes the ith coordinate
of the input point described by row r. We let the d x d covariance matrix C be
defined by C = {c¢;;}, where

cij = Erepn) [pr(0)pr (5)] — pinty-
PCA is known to be remarkably stable under random noise — so much so,
that it is often used with the express intention of removing noise.

Sub-linear Queries Statistical Databases: Privacy with Power 5

SuL @ Computation of PCA

1. (d queries) For 0 < i < d, let m; = SuLQ(F(z) := z(i))/n. By this we
mean that F'(x) selects the ith coordinate of each row, so the query sums all
the ith coordinates (getting a noisy version of this sum), and the algorithm
divides this noisy sum by n. This gives an approximation to y; in the pure
PCA algorithm described above.

2. (Roughly d?/2 queries) Let ¢;; = SuLQ(F(x) = z(i)z(j))/n—mim;. That is,
we first obtain a noisy average of the product of the ith and jth coordinates,
and then subtract the product of the estimates of 1; and p;.

Given (an approximation to) the covariance matrix C, the k largest eigenval-
ues and corresponding eigenvectors can be computed directly, without further
queries.

We remark that, using the techniques of [4] for vertically partitioned data-
bases, this computation can be carried out even if each column of the database
is stored in a separate, independent, SuLLQ) database.

4.2 k Means

An instance of the k& means computation is a set of n points in 4%, together
with some number & of initial candidate “means” in 2/?. The output will consist
of k points in U¢ (the “means”), together with the fraction of points in the
database associated with each mean. We next describe the basic step of the k
means algorithm.

Basic Step of k Means Algorithm

1. (k queries): For each mean m;, 1 < i < k, count the number of points closer
to this mean than to every other mean. This yields cluster sizes. This is
approximated via the queries, for 1 < ¢ < k,

Size; = SuLQ(F(z) := 1 if m; is the closest mean to x, and 0 otherwise).

2. (kd queries): for each mean m;, 1 < i < k, and coordinate j, 1 < j < d,
compute the sum, over all points in the cluster associated with m;, of the
value of the jth coordinate. Divide by the size of the cluster.

(a) Sum;; = SuLQ(F(z) = =z(j) if m; is the closest center to z, and 0
otherwise).
(b) mi; = Sumij/Sizei

The basic step is iterated until some maximum number of queries have been
issued. (In practice, this usually converges after a small number of basic steps.)
If any cluster size is below a threshhold (say, \/T'(n)), then output an exception.

For clusters that are of size 2(n), one step of the (pure) k£ means computation
differs from one step of the SuLQ-based k means computation by a quantity that
is roughly Gaussian with mean zero and variance O(vR/n).

6 Cynthia Dwork

4.3 Capturing the Statistical Queries Learning Model

The Statistical Queries Learning model was proposed by Kearns [5]. In this model
the goal is to learn a concept ¢ : {0,1}¢ — {0,1}. There is a distribution D on
strings in {0,1}%, and the learning algorithm has access to an oracle, state p,
described next.

On query (f,7), where f = f(z,¢) is any boolean function over inputs € D
and label £ € {0,1}, and 7 = 1/poly(d) is an error tolerance, the oracle replies
with a noisy estimate of the probability that f(x,c(z)) = 1 for a randomly
selected element from D; the answer is guaranteed to be correct within additive
tolerance 7. Many (but not all, see [5]) concept classes that are PAC learnable
can also be learned in the statistical queries learning model.

To fit the statistical queries learning model into our setting, we require that
one of the attributes be the value of ¢ applied to the other data in the row, so that
a typical row looks like DB, = (z,¢(x)). By definition, on input (f,.S) the SuLQ
database responds with a noisy versionof) § ¢ f(DB,). Taking S = [n], we have
that so long as the noise added by the SuLQ database is within the tolerance T,
the response (divided by n) is a “valid” response of the stat. p oracle. In other
words, to simulate the query stat. p(f, 7) we compute SuLQ(F(z) := f(z))/n a
total of O(R/72n?) times and return the average of these values.

With high probability the answer obtained will be within tolerance 7. Also,
recall that 7 = 1/poly(d); if d = n°(!) then repetition is not necessary.

References

1. N.R. Adam and J.C. Wortmann, Security-Control Methods for Statistical
Databases: A Comparative Study, ACM Computing Surveys 21(4), pp. 515-556,
1989.

2. A. Blum, C. Dwork, F. McSherry, and K. Nissim, On the Power of SuLLQ Databases,
manuscript in preparation, 2004.

3. I. Dinur and K. Nissim, Revealing information while preserving privacy, Proceedings
of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pp. 202-210, 2003.

4. C. Dwork and N. Nissim, Privacy-Preserving Datamining on Vertically Partitioned
Databases, Proceedings of CRYPTO 2004

5. M. Kearns, Efficient Noise-Tolerant Learning from Statistical Queries, JACM 45(6),
pp. 983-1006, 1998. See also Proc. 25th ACM STOC, pp. 392-401, 1993

6. M. J. O’Connel, Search Program for Significant Variables, Comp. Phys. Comm. 8,
1974.

	1 Introduction
	2 Definitions
	3 Multi-attribute SuLQ Databases
	4 Computation with the SuLQ Primitive
	4.1 Principal Component Analysis
	4.2 k Means
	4.3 Capturing the Statistical Queries Learning Model

	References

