
Integration of Data Mining and Relational Databases

Amir Netz, Surajit Chaudhuri, Jeff Bernhardt, Usama Fayyad*

Microsoft, USA

Abstract

In this paper, we review the past work and
discuss the future of integration of data mining
and relational database systems. We also discuss
support for integration in Microsoft SQL Server
2000.

1. Introduction

Data mining techniques, based on statistics and machine
learning can significantly boost the ability to analyze data.
Despite the potential effectiveness of data mining to
significantly enhance data analysis, this technology is
destined be a niche technology unless an effort is made to
integrate this technology with traditional database
systems. This is because data analysis needs to be
consolidated at the warehouse for data integrity and
management concerns. Therefore, one of the key
challenges is to enable integration of data mining
technology seamlessly within the framework of traditional
database systems [7].

2. Related Work in Data Mining Research

In the last decade, significant research progress has been
made towards streamlining data mining algorithms. There
has been an explosion of work (e.g., [1]) in scaling many
major data mining techniques to work with large data sets,
i.e., ensuring that the algorithms are “disk-aware” and
more generally, conscious of memory hierarchy, instead
of making the assumption that all data must reside in
memory. Another direction of work that has been pursued
is to consider if data mining algorithms may be
implemented as traditional database applications. Such
implementations ensure that the data mining

implementations are not only disk-aware but also “SQL-
aware”, i.e., the implementations take advantage of the
functionality provided through the SQL Engine and the
API, e.g., [2]. Efforts to implement mining algorithms on
top of database systems have also led to primitives such
as sampling to ease the task of data mining on relational
systems, e.g., see the proposal in [3].

3. Representing Mining Models in Databases

The progress in data mining research has made it possible
to implement several data mining operations efficiently
on large databases. While this is surely an important
contribution, we should not lose sight of the final goal of
data mining – it is to enable database application writers
to construct data mining models (e.g., a decision tree
classifier, regression model, segmentation) from their
databases, to use these models for a variety of predictive
and analytic tasks, and to share these models with other
applications. Such integration is a precondition to make
data mining succeed in the database world.

Recognizing the above fact, it is obvious that a key aspect
of integration with database systems that needs to be
looked into is how to treat data mining models as first
class objects in databases. Unfortunately, in that respect,
data mining still remains an island of analysis that is
poorly integrated with database systems. Recall that a
data mining model (e.g., classifier) is obtained via
applying a data mining algorithm on a training data set.
Although a mining model may be derived using a SQL
application implementing a training algorithm, the
database management system is completely unaware of
the semantics of mining models since mining models are
not explicitly represented in the database. But, unless
such explicit representation is enabled, the database
management system capabilities cannot be leveraged for
sharing, reusing and managing mining models in a rich
way. In particular, even if several mining models have
been created, there is no way for a user or an application
to search the set of available models based on its
properties, indicate that a certain model should be applied
to predict a column of an unknown data set and then to
query the result of the prediction, e.g. to compare the
results of predictions from two models.

*Author’s current affiliation is with digiMine, Inc.
(Usama@digiMine.com)
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 26th International Conference on Very
Large Databases, Cairo, Egypt, 2000

719



In order to effectively represent data mining models in
relational databases, we need to capture creation of data
mining models using arbitrary mining algorithms,
browsing of such models (examining their structure or
contents), and application of a selected model to an ad-
hoc data set for analysis tasks such as prediction.
Furthermore, for a column that is the result of the
prediction, sufficient meta-data must be available with the
predicted column so that analysis tools can interpret
properties of prediction, e.g., its accuracy.

Relational database systems understand and support only
relations as first class objects and so if we are to represent
a data mining model in databases, it must be viewed as a
“table-like” structure. However, at a first glance, a model
is more like a graph, with a complex interpretation of its
structure, e.g., a decision tree classifier. Thus, trying to
represent a mining model as a table (or a set of rows)
appears unnatural. Fortunately, this need not be the
stumbling block. The key steps in the lifecycle of a
mining model are to create and populate a model via an
algorithm on a training data source, and to be able to use
the mining model to predict values for data sets. If we can
capture these steps using SQL metaphors then it would
ensure that database developers are able to leverage data
mining functionality without a shift in their paradigm for
application development. In the next section, we outline
an approach to accomplish this goal.

3. OLE-DB for Data Mining

OLE-DB is a well-known programming interface that
allows an application to connect to and consume
information from any relational data source (need not be a
SQL database). This generality makes OLE-DB an ideal
candidate API to extend with data mining capabilities
based on the design philosophies outlined in the previous
section. Microsoft has proposed OLE-DB for DM to
enable data mining functionality on OLE-DB providers.
The details of this specification is available online [4] and
we only provide a short overview here.

The OLE DB for DM interface allows client applications
to explore and manipulate the existing mining models and
their properties through an interface similar to that used
for exploring tables, views and other first class relational
objects. All mining models are represented as table-like
objects with columns, data types and extended meta-
information that is needed for data mining algorithms.

Before we discuss how one can view mining models as
tables, we need to recognize the data representation needs
related to mining. Traditional statistical learning
algorithms prefer to view a data set to consist of
(attribute, value) pairs representing “cases” (observations)
on a certain entity, e.g., customer. Effective data mining
often requires that these cases in the training consolidate

all the information relevant to the entity. Since in
relational databases data is often scattered over multiple
normalized tables, this creates a conceptual mismatch. In
particular, cases are far better represented as nested
records than flat records1. Traditional SQL representation
also falls short is in capturing metadata on columns. To
effectively derive and use a mining model, we must be
able to identify properties of an attribute (e.g., discrete vs.
continuous) and relationships among attributes.
Accordingly, we have enabled a column in a rowset
(representing a set of cases) of the four content types:
key, attribute, relationship, and qualifier. The notion of
key and attributes are traditional, i.e., a key uniquely
identifies the case and an attribute is a property of the
case. More interesting are the column types relationship
and qualifier. A relationship column qualifies/classifies an
attribute, e.g., a column “product type” classifies the
attribute “product name”. Thus, the column “product
type” can be recorded as related to “product type”. A
qualifier represents a column that provides additional
information on value of another attribute that can be
interpreted by an OLE-DB provider. For example, a
column may represent the probability associated with a
predicted attribute, distribution information, domain types
(discrete/continuous) etc. Such information can be
invaluable in data analysis. We describe how the key
steps on a mining model are supported in OLE-DB for
DM:

CREATE: A client application can create (define) a new
mining model simply by executing a CREATE MINING
MODEL statement. This statement is very similar in style
and semantics to that of a CREATE TABLE statement
but contains more meta-information about the columns as
indicated above. An example is presented below:

CREATE MINING MODEL [Age Prediction](
[Customer ID]LONG KEY,
[Gender] TEXT DISCRETE,
[Age] DOUBLE DISCRETE PREDICT,
[Product Purchases] TABLE(
[Product Name] TEXT KEY,
[Quantity] DOUBLE NORMAL CONTINUOUS,
[Product Type] TEXT DISCRETE RELATED
TO [Product Name]))
USING [Decision_Trees_A]

Note that each column has an additional meta-data
specification that identifies its column type. For example,
Product Type is marked as related to Product Name. The
training algorithm is indicated using the USING clause.
The columns that are being predicted are indicated by use
of the keyword PREDICT.

INSERT: Once the mining model was created, it
functions as an empty table, i.e., its structure could be

1 Microsoft Data Access Components support hierarchical
rowsets using the Shape Provider. See [4] for details.

720



browsed but queries will always return empty data. In
order to be able to execute prediction using a mining
model, it must be trained with known cases by using the
INSERT statement that will point to the source of the
training data (like source of input rows in SQL). The
behavior of this INSERT statement is somewhat different
than that of the traditional INSERT operation on a table.
The training cases (i.e. rows) being “inserted” into the
mining model are not persisted in the mining model as it
is. Instead, the mining model analyzes the rows and builds
the mining model, which could be a set of decision trees
or clusters, as per the schema specified in the CREATE
statement used to define the model. Once the training
rows are consumed, the mining model is marked “trained”
and could be used for prediction queries. Usually the
physical the size of the model is quite small as it contains
only the data summarization of the model rather than the
original set of cases used the training.

SELECT: The content of the model could be browsed in
various ways. In particular, the schema rowset associated
with the mining model may be obtained via the following
statement (see [4] for description of the mining model
schema rowset):
SELECT * FROM <my model>.CONTENT
It is also possible to retrieve the content in XML
representation consistent with the proposed PMML
specification.

PREDICTION JOIN: Performing prediction is a simple
matter of issuing SQL queries to the data-mining engine,
enabled by extensions, notably the PREDICTION JOIN
and statistics retrieval functions. Thus, the result of a
prediction may be viewed as a “join” between the table
representing the mining model and a data set. The
following example illustrates the syntax:
SELECT <columns to predict> FROM <data mining model>
PREDICTION JOIN <new data> ON <conditions>.
The ON clause ties up correspondences between a column
in a data mining model with a column in the data set2. The
result of a prediction join is always a relational result set
that could be either retrieved by the client application for
navigation and presentation, persisted in a table within the
relational database or could be used for subsequent
relational operations within the same statement.

4. Data Mining in SQL Server 2000

Microsoft SQL Server 2000 integrates for the first time
Data Mining capabilities together with relational and
OLAP database engines. The Analysis Services
component of SQL Server 2000 contains a data-mining
engine that is exposed through an OLE DB for DM

2 The heterogeneous query processor of SQL Server allows
queries to span both relational table and data mining models
using the OPENROWSET function.

interface. The data-mining engine is integrated in both the
server component of analysis services, which includes
also the OLAP engine, as well as on the client component.
The data-mining engine provides two classes of scalable
algorithms based on work done in Microsoft Research
[5,6]: classification and segmentation (clustering). Future
releases of the product will extend the repertoire of
algorithms. The product provides a full GUI based
console for the administration of the data-mining model
including the creation, training, browsing of content and
access security management. While the detailed aspects of
the UI are not the central focus of this paper, the UI
serves as a natural way to introduce a user to how data
mining can be done naturally within the SQL Server
framework. However, it should be noted that the primary
contribution of our proposal is the backend components
that support this UI and understand the semantics of data
mining.

Creation of data mining model is done through the
“Mining Model Wizard” that guides the user through four
easy steps for building the basic data mining model: the
selection of the table containing the cases, the selection of
the algorithm (classification/clustering), the identification
of the case-key column and the selection of the
predictable columns and the input columns (Figure 1).

Fig 1: Mining Model Wizard

After the mining model has been defined and named, it is
trained by simply executing the appropriate SQL
statements as defined by the OLE DB for DM
specification through a simple UI. Once the training is
done, the user is led to a full-blown mining model editor
(see Figure 2) that allows the user to enhance the basic
model defined in the wizard and manipulate the properties
of the model.

At this point the user can elect to browse the content of
the trained model including rules and statistics by
selecting the content tab where the various rules and

721



statistics could be browsed and manipulated. Figure 3
displays a view of a classifier.

Fig 2: Model Editor

Fig 3: Model Browsing

The object on the upper right corner indicates the
distribution of population among classes via the degree of
shade in color. Since the mining model can support
multiple predicted attributes, each mining model can
result in multiple decision trees. A special Bayesian
Dependency Network browser can be used to view the
relationships among the attributes across all of the
decision trees. The browser allows identification of
prediction relationships and enables the user to
manipulate the relationship strength slider to better
identify the most important relationships.

In summary, SQL Server 2000 provides a comprehensive
and open platform for the development of embedded data
mining applications. The OLE DB for DM interface fits
well into the relational framework and allows developers
to leverage their familiarity with the SQL language and
the OLE DB interfaces to facilitate application
development using the data-mining technology. The easy
to use administration tools ease the burden of managing
the repository of data mining models and the scalable
data-mining algorithms supported in the product enable
the applicability of the technology to potentially a wide
range of scenarios and applications.

5. Outstanding Challenges
OLE-DB for DM takes a significant step forward in
proposing an approach that can make it easy to support
the data mining process. Our proposal emphasizes the
importance of being able to generate and reuse mining
models effectively. While this must indeed be the first
priority, it is also important to support interfaces that
enable providers of data mining technologies to be able to
register and integrate effectively a variety of data mining
algorithms to create mining models.

Finally, there is still the issue of efficient implementation
of data mining algorithms on the relational engine to
optimize execution of integrated querying and mining [7].
Complexity of modern relational engines require us to
determine judiciously the functionality that needs to be
pushed down into the engine vs. the functionality that can
be layered on top of the relational engine.

6. References
[1] Rakesh Agrawal et al.: Fast Discovery of Association

Rules. Advances in Knowledge Discovery and Data
Mining 1996: 307-328

[2] Sunita Sarawagi, Shiby Thomas, Rakesh Agrawal:
Integrating Association Rule Mining with Relational
Database Systems: Alternatives and Implications. Data
Mining and Knowledge Discovery 4 (2/3).

[3] John Clear et al.: NonStop SQL/MX Primitives for
Knowledge Discovery. KDD 1999: 425-429.

[4] Introduction to OLE-DB for Data Mining:
http://www.microsoft.com/data/oledb/dm.

[5] Surajit Chaudhuri, Usama M. Fayyad, Jeff Bernhardt:
Scalable Classification over SQL Databases. ICDE 1999:
470-479

[6] Paul Bradley, Usama Fayyad, Cory Reina: Scaling
Clustering Algorithms to Large Databases.
KDD-98, pages 9-15.

[7] Surajit Chaudhuri: Data Mining and Database
Systems: Where is the Intersection? Data Engineering
Bulletin 21(1) 1998.

722


