
Automatic Request Categorization in Internet Services

Abhishek Sharma∗†, Ranjita Bhagwan†, Monojit Choudhury†, Leana Golubchik∗,
Ramesh Govindan∗ and Geoffrey M. Voelker§

†Microsoft Research, India
∗University of Southern California

§University of California, San Diego

ABSTRACT
Modeling system performance and workload characteristics
has become essential for efficiently provisioning Internet ser-
vices and for accurately predicting future resource require-
ments on anticipated workloads. The accuracy of these
models benefits substantially by differentiating among cate-
gories of requests based on their resource usage characteris-
tics. However, categorizing requests and their resource de-
mands often requires significantly more monitoring infras-
tructure. In this paper, we describe a method to automati-
cally differentiate and categorize requests without requiring
sophisticated monitoring techniques. Using machine learn-
ing, our method requires only aggregate measures such as
total number of requests and the total CPU and network
demands, and does not assume prior knowledge of request
categories or their individual resource demands. We explore
the feasibility of our method on the .Net PetShop 4.0 bench-
mark application, and show that it works well while being
lightweight, generic, and easily deployable.

1. INTRODUCTION
As Internet and enterprise hosting services have evolved

from single-host platforms to large data centers, the tasks
of resource provisioning and capacity planning have simi-
larly grown both in importance and difficulty. Performance
modeling is a natural approach for accomplishing such provi-
sioning and planning tasks in multi-tier cluster-based server
systems. It forms the basis for many commercial tools [1,19],
and contemporary models incorporate sophisticated tech-
niques including detailed resource profiling of tiered ser-
vices [18], long-term forecasting of workloads in enterprise
systems [7], comprehensive queueing models of multiple ser-
vice tiers [20], and the modeling of nonstationarity in work-
load mixes [17].

An important aspect of performance modeling is charac-
terizing application workloads and systems to extract pa-
rameters, such as request rates and CPU service times, that
serve as inputs to the models. Frequently, workloads are
modeled as a single class and aggregate workload and system
parameters are used as inputs. Application workloads, how-
ever, often have a variety of user interactions that affect re-
source demands. For example, user requests in e-commerce
applications typically fall into various categories such as
browsing and shopping. These workload categories can have
∗†Abhishek Sharma was an intern at Microsoft Research, India.
†Geoffrey M. Voelker was a visiting researcher at Microsoft Research, India
from the University of California, San Diego.
.

different resource demands; for example, shopping requires
more CPU than browsing. Moreover, the relative mix of
those categories in the overall workload changes over time [7,
17]. As a result, models that explicitly incorporate a mix
of workload categories and differentiate between them can
more accurately perform resource provisioning and capacity
planning for modern data centers [17].

Modeling workloads with category mixes, however, presents
the challenge of parameterizing the different categories as in-
puts to performance models. Scalar (i.e., single class) mod-
els might require just the overall request rate λ as an input,
a straightforward measure to obtain from host performance
counters or server logs. However, models with multiple re-
quest categories require request rates λi for each category.
Per-category parameters to be either extracted or inferred
from the workload. Obtaining them would then require
monitoring and logging infrastructure that both differenti-
ates among categories as well as correlates requests across
the multiple tiers of service infrastructure. Such instrumen-
tation is certainly feasible to engineer, but often requires
a deeper understanding of both the workload and the ser-
vice architecture, as well as a substantially more complex
monitoring infrastructure [2, 3].

This paper explores the problem of inferring workload cat-
egories without the need for sophisticated monitoring in-
frastructure. We present an automatic and generic request
categorization method that uses only coarse-grained mea-
surements of system resources, such as overall request rate,
total CPU, and network usage as input. Using such mea-
surements over multiple time windows, we apply a machine-
learning based computational technique called independent
component analysis (ICA) to differentiate and categorize re-
quests and their resource demands in an offered workload.
These per-category parameters can then be directly used as
inputs in Internet service performance models.

A learning approach to workload categorization has a num-
ber of advantages. First, it greatly simplifies the profil-
ing task when modeling workloads with multiple categories.
Second, it treats both the workload and system as a black
box, inferring request categories and resource usage without
requiring detailed instrumentation. Finally, it can profile
workloads at different granularities of categories. In addition
to session-level categories such as browsing and shopping,
it applies equally well to categorizing workloads in terms
of content type (e.g., HTML, images, scripts) and request
operation (e.g., GET and POST operations). Using ICA
has constraints, though. It requires that certain statistical
properties hold in the workload, and it limits the number of

categories that can be inferred to the number of measured
aggregate resources. With our benchmark experiments, we
show that workload categorization provides promising re-
sults despite these constraints.

This paper makes two contributions. First, we describe
how the problem of request categorization maps to the frame-
work that ICA uses. We also verify that our problem domain
satisfies assumptions that the use of ICA requires. Second,
we evaluate our model using the PetShop 4.0 [16] benchmark
on a Windows Vista platform and show that, using ICA,
we can efficiently derive the desired request categorization
and resource usages. The percentage error for our request
categorization estimates (relative to the ground truth) and
our resource usage estimates (relative to an alternate, more
heavy-duty technique) are within 4–17%.

The rest of the paper is organized as follows. Section 2
defines the problem and describes the model that we use to
represent the resource usage in the different components of
an Internet service. Section 3 describes how we map our
problem to the ICA framework, and how the assumptions
that ICA requires hold true for our data. We describe our
experimental results in Section 4. In Section 5 we discuss
the applicability of our request categorization technique,
identify several promising directions for improving our tech-
nique, and discuss the ramifications of using our technique
in large-scale Internet services. Section 6 describes related
work. We conclude in Section 7.

2. MODEL
In this section we develop a mathematical model repre-

senting the problem of request categorization. Let there
be m basic request categories (RC1 to RCm) in an appli-
cation workload. A request category represents a class of
requests that have a similar resource consumption pattern.
Let there be n resources (RS1 to RSn) associated with the
Internet service under consideration. Resources could be
quantities such as CPU usage and network usage on web
servers, database servers, and other service components.

We make a linearity assumption that states that there is a
positive constant aij such that the amount of resource RSi

required for processing xj requests of category RCj is given
by aijxj +cij , where the constant cij captures any non-linear
components. In general, we can model the resource usage
pattern for a given time window as a set of linear equations
as shown below.

ai1x1 + ai2x2 + ... + aimxm + ci = ri (1)

For example, say the index i = 2 gives us the equation for
the web server’s CPU usage. The total CPU usage on the
web server is the sum of the individual CPU usages of each
request made to the web server. Since there are m different
request categories, and since each request of category k uses
a2,k amount of CPU on the web server, the total CPU usage
for the web server is a sum of the m product terms shown
on the left hand side of Eq. 1, plus the constant value. The
constant value ci =

Pm

j=1 cij .
Eq. 1 can be written in matrix form as

Ax + c = r (2)

where A = {aij} is the matrix of unit resource consumption
for each request category, x = {xj} is the vector of number
of requests of a particular category, c = {ci} is the vector of
constant terms and r = {ri} is the vector of the aggregate

resource usage. In Section 4.2, we show that the above model
does capture the CPU usage of a benchmark e-commerce
application workload.

We further assume that the total number of requests,
Pm

j=1 xj , is known to us; we address how this number can
be derived in Section 4. We model this as the first equation
of our framework of Eq. 1, or the first row of A. So, for
i = 1, all a1,j coefficients are set to 1 and the constant term
c1 is set to 0, so that r1 is the total number of requests.

Note that when we gather a large number of samples over
a period of time, A and c remain fixed, while x and r vary.
Therefore, for a set of T samples we can define a system of
linear equations as follows.

AX + C = R (3)

with X = [x1 x2 . . .xT] and R = [r1 r2 . . . rT], where xt and
rt represent the request arrivals for each category and the
resource usage for the tth sample. The matrix C consists of
T repetitions of the column vector c.

We model the (measurement) noise in our system as an
additive zero-mean Gaussian. We incorporate the additive
noise term into Eq. 3 as

AX + C̃ = R (4)

where C̃i = Ci + ε, with ε being the additive noise. Geo-
metrically, Eq. 4 says that if we plot each column of R as
a point in an n-dimensional space, then the T points corre-
sponding to the T columns of R should (approximately) lie
on an m-dimensional hyperplane.

3. ANALYSIS
Eq. 4 describes the underlying linear model for resource

usage in an Internet service. From the aggregate analysis of
the resources consumed, we know the entries of R. However,
A, C̃ and X are unknown and neither do we know the num-
ber of categories, m, in the system. Therefore, the system
seems to be extremely underspecified. Nevertheless, we can
estimate m, A and X just from R using a machine learning
technique called independent component analysis (ICA).

ICA is a gradient descent based optimization technique
for solving the generic problem of “blind source separation”
where the sources, X, and the mixing matrix, A, are un-
known, but aggregate observations, R, are known (see Ch.
7 of [11] for an accessible introduction). ICA can be applied
to solve the matrix factorization problem as stated in Eq. 4
only if (a) the columns of X are statistically independent,
and (b) the distribution of the columns of X is non-Gaussian.

Given that we know the entries of the R matrix, we can
directly apply ICA to compute A, eliminate C̃, and thereby
compute X. However, before we do so, we must ensure that
the basic assumptions of ICA hold for our data set and,
secondly, we know the value of m — the number of request
categories.

Non-Gaussianity of Request Arrivals: The aggregate per
second request arrivals to a web service can be modeled as
samples drawn according to a geometric Poisson distribution
(also known as Pòlya-Aeppli distribution) [12]. A geomet-
ric Poisson distribution for aggregate request arrivals results
from modeling the client session arrivals as Poisson and the
number of requests generated by each client session as a geo-
metric random variable [12,22]. Since the distribution of the
aggregate per second request arrivals is non-Gaussian, the

distribution of the aggregate request arrivals for each cate-
gory (i.e., the distribution of the columns of X) will also be
non-Gaussian. For example, if the proportion of requests of
each category in the workload is fixed, then the request rate
for each category is a fixed fraction of the aggregate request
rate.

Even though the aggregate per second request arrival is
non-Gaussian, if we sample over large time intervals, the
aggregate request arrivals can be approximately Gaussian.
We can model the aggregate request arrivals over a sam-
pling interval (larger than 1 second) as the sum of identically
distributed random variables where each random variable
models the aggregate request arrivals per second (i.e., fol-
lows a geometric Poisson distribution). Thus, the aggregate
request arrivals for a large sampling interval can be Gaus-
sian due to the central limit theorem. In our experiments
(Section 4), we choose a small sampling interval equal to 10
minutes. The choice of sampling interval is an important pa-
rameter for our technique and is further discussed in Section
5.1.

Independence assumption: The assumption that the ar-
rivals for different request categories (i.e., the columns of
X) are statistically independent may not always hold. In
practice, ICA methods (e.g., the FastICA package that we
use in Section 4), look for components that are as indepen-
dent as possible. Techniques such as whitening the observed
resource consumption measurements (R) and randomizing
the order of samples in the input to ICA helped reduce the
error in our ICA based estimates for an e-commerce bench-
mark (Section 4.3). Whitening involves applying a linear
transformation to a vector such that the resulting vector
has uncorrelated components with their variances equal to
unity. The FastICA package performs whitening by default.
We further discuss the applicability of ICA based techniques
to real world data in Section 5.4.

The problem of determining the number of request cate-
gories, m, boils down to finding out the rank of the R ma-
trix. This can be understood as follows. If the data has been
generated by m request categories, but there are n (> m)
resources, then as stated earlier the r vectors will lie on an
m-dimensional hyperplane in the n-dimensional space. This
implies that all the samples of r can be expressed as a linear
combination of m basis vectors. Therefore, the rank of R
should be m. Note that since the rank of R can at most
be n, we cannot identify more request categories than the
number of resource types we have.

Although there are several techniques for estimating the
rank of a matrix, in practice we run ICA assuming m =
n to estimate A and X. If m < n, then the entries of
n − m rows of X turns out to be significantly smaller (even
negative) than the rest, which helps us throw away those
request categories leaving only the m valid ones.

The A matrix estimated by ICA is unique up to the scal-
ing of the columns and their permutations. However, recall
that the first row of the matrix models the total number of
requests and, therefore, we require that a1,j = 1 for all j. To
ensure this, we can normalize the output of ICA. Suppose
the matrix returned by ICA is A′. To obtain A, we perform
the normalization step by dividing the entries of the jth col-
umn of A′ by a1,j . Also, since the different permutations of
A correspond to different namings of the request categories,
it is sufficient to know any one of the possible permutations.

4. EXPERIMENTAL VALIDATION
In this section, we validate the linearity assumption (Sec-

tion 2) and demonstrate the feasibility of using our ICA
based method for workload characterization using .NET Pet-
Shop 4.0 [16], a benchmark e-commerce application. We
show that the linear model holds for CPU usage of the web
and database servers. We also show that our method au-
tomatically categorizes requests, and determines good esti-
mates of the number of requests and the resource require-
ments for each category.

4.1 Experimental methodology
We ran the ASP.NET PetShop 4.0 benchmark in two tiers:

a front-end IIS 6.0 web server and a back-end SQL Server
2005 database. Both machines ran Windows Vista as the
host operating system. A third machine running Visual
Studio Team Suite (VSTS) [21] emulates multiple client ses-
sions. Each client session generated either a browsing or a
shopping workload session. Hence, in our experiments with
session level categorization, the actual number of request
categories is 2. A browsing session emulated a client merely
browsing through various items on sale, while in a shop-
ping session the client bought exactly one item after initial
browsing. The average duration of shopping and browsing
sessions was 30 and 45 seconds respectively. The different
HTTP-level transactions within a session were generated us-
ing the VSTS record/replay utility: the recorder recorded a
sample browsing session and a sample shopping session, and
then replayed these sessions while varying user think time
between transactions. The user think time was normally
distributed with a mean of 3 seconds.

We collected 270 data points (matrix R), each one at the
end of a 10 minute-long experiment run. Hence, the value
of T is 270. Each data point consisted of 3 resource mea-
surements: the aggregate CPU usage of the web server, the
aggregate CPU usage of the database server, and the total
number of client sessions serviced. Therefore, n is set to 3.
We measured the CPU usage using the pstat utility, avail-
able with the Microsoft Platform SDK for Windows Server
2003, and obtained the total number of client sessions ser-
viced from the VSTS test run logs. In practice, we expect
to use existing heuristics [9] to determine the total number
of sessions using only the front-end web server logs. Be-
fore collecting the data points, we verified that a 10 minute
experiment window was sufficient to obtain reproducible re-
sults. The number of emulated clients for each experiment
run was randomly chosen between 10 and 200.

The objective of this experiment was twofold. First, we
wanted to ensure that the linearity assumption holds for
CPU usage by our benchmark workload, even though pre-
vious work has shown this to hold in large-scale Internet
services [18, 23]. Second, we wanted to evaluate ICA as a
method of automatic request categorization. That is, given
R as described above, we wanted to validate whether our
method automatically detects that the number of request
categories is indeed 2 (m), that it accurately estimates the
number of requests in each category in the different time
slots (X), and that it determines the per-category CPU us-
age on the web server and the database (A).

We obtain the “ground truth” values for the number of
client sessions serviced for the browsing and shopping ses-
sions during each experiment (say X̃) using the VSTS logs.
We use these values to validate the linearity assumption

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage Error

C
D

F
web server
data base

Figure 1: IIS and SQL server CPU usage

(Section 4.2), and as a baseline for comparing with the re-
sults inferred by ICA (Section 4.3).

4.2 Linearity validation
An F-test (a standard method for estimating data linear-

ity) on the web server and the database server data, using

R and X̃, showed that the hypothesis that the data is linear
can be rejected with a probability of 0. This clearly indi-
cates the linear trend in the aggregate CPU usage on the
web server and the database server.

We now show how much deviation there is from the per-
fect linear representation by comparing the measured values
of resource usage to estimates that we obtain from the lin-
ear model. Figure 1 shows the cumulative distribution of
the percentage error between the measured CPU usage val-
ues for the web server and the database server, and their
estimates obtained using our linear model for resource con-
sumption (Eq. 4).

To obtain the estimates for CPU usage from our linear
model, first, we used the measured values for CPU usage
(R) and the ground truth number of browsing and shopping

sessions (X̃) to estimate the matrix A and the vector C̃ using
linear least-squares regression. Then, we use the estimates
for A and C̃, and the ground truth number of arrivals, X̃, to
obtained the estimates for CPU usage R̃ using Eq. 4. The
percentage error between the CPU usage estimate based on
our linearity assumption, R̃, and the measured values, R,

for a data point i is computed as |R̃(i)−R(i)|
R(i)

× 100.

For the web server and the database server CPU usage,
the average percentage error was 13% and 11%, respectively.
Approximately 85% of the data points for the database server
and 75% of the data points for the web server had a per-
centage error less than 20%. Thus, for the complex work-
load generated by our benchmark e-commerce application,
our linear model can capture the CPU usage fairly accu-
rately. Similar results are reported by Zhang et. al [23] for
the TPC-W benchmark workload in a two-tier setup consist-
ing of a web server and a database server. For least-squares
regression-based estimates, in the best (worst) case, they re-
port a relative error of 15% for 98% (87%) of the samples
for the web server and a 20% relative error for 89% (79%)
of the samples for the database server.

Category Resource Regression ICA Error

Shopping
IIS CPU 66.87 69.69 4.2%
SQL CPU 13.27 14.86 12.0%

Browsing
IIS CPU 44.44 47.58 7.1%
SQL CPU 3.27 2.76 15.6%

Category 3
IIS CPU - -2053.26 -
SQL CPU - -23.81 -

Table 1: Per-request CPU demand estimates for the
PetShop benchmark (in milliseconds).

4.3 Request categorization
As stated in Section 3, with three resources (n = 3) we can

group the requests into at most three different categories.
Lacking any a priori information, we start our ICA compu-
tation assuming that the number of categories is the same
as the number of resources, i.e., m = n = 3. We used the
FastICA [5] implementation of ICA to determine 3 sets of
CPU usage coefficients for the web server and the database
server for these request categories. We discuss how we infer
the correct number of categories using ICA estimates later
in this section.

Resource consumption estimates. Table 1 summarizes the
estimated CPU demands of a single request of each category
(entries of matrix A) using FastICA and linear regression.
The column labeled “Error” shows the relative difference be-
tween FastICA and linear regression estimates.

We make this comparison for the following three reasons.
First, we lack the “ground truth” value for resource usage.
Measuring the “ground truth” value for matrix A would re-
quire tracking the resource usage for each individual request
within a session as it is serviced at the various tiers (web
server and database server in our case) within the system.
While this might be feasible using a monitoring tool like
Magpie [2], it requires a thorough instrumentation of all the
system components and may not scale to large numbers of
simultaneous client sessions (the evaluation in [2] consid-
ered only 10 simultaneous clients). We plan to explore the
feasibility of obtaining ground truth values for resource con-
sumption using instrumentation in the future.

Second, as shown in Section 4.2, our linear model captures
the aggregate CPU usage for the web server and database
with small error. Hence, we expect the linear regression
estimates of A to be fairly accurate and, thus, a natural
yardstick for comparison in the absence of the ground truth
values. Note that linear regression requires a fine-grained
knowledge of the workload: the number of sessions of each
category for each sample. Measuring the number of sessions
of each category (required for linear regression) is not possi-
ble without the knowledge of the request categories present
in a workload and, for an unknown workload, will require
an instrumentation-based tool like Magpie [2]. We could
use linear regression for our workload only because we knew
the request categories and recorded the number of sessions
for each category (X̃) in our client emulator.

Third, comparing our matrix A estimates against linear
regression provides a comparison between our method and
an alternate technique in the literature. Linear regression is
used in [23] to estimate the CPU usage for different (trans-
action level) request categories in the TPC-W benchmark
workload.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000

E
st

im
at

ed
 n

o.
 o

f r
eq

ue
st

s

Actual no. of requests

Browsing
Shopping

Figure 2: PetShop: Request estimate comparison

For the two request categories, i.e., shopping and brows-
ing, the ICA estimates are quite close to the linear regression
estimates. Our PetShop 4.0 workload consisted of two cat-
egories, browsing and shopping; but the ICA based method
estimates 3 different categories. Additionally, the per-request
CPU usage estimates for Category 3 are negative. We con-
jecture that FastICA models the noise in our system using
the third category. This conjecture is further supported by
the fact that 34% of the estimates for the number of sessions
of Category 3 are also negative and that on an average the
number of sessions in Category 3 was found to be only 0.6%
of the total number of sessions.

Number of sessions for each category. We compare the
FastICA estimates for the number of browsing and shop-
ping sessions against the ground truth values collected from
VSTS. Figure 2 shows a scatter plot with the ground truth
values plotted on the x-axis and the estimates on the y-axis.
The estimates are close to the actual values: the average
percentage error is 11% and 17% for browsing and shop-
ping categories, respectively. We believe that these errors
can be further reduced using techniques that we discuss in
Section 5.1.

5. DISCUSSION
Our results show that a lightweight, low-overhead and

generic technique such as ICA is very useful in character-
izing and categorizing requests. Using only aggregate met-
rics such as total CPU usage over time, we can estimate
the number of request categories and per-request resource
usages for an e-commerce application.

Much work remains towards increasing the accuracy of
this technique. In this section, we first describe some of
these directions. We also provide a brief overview of another
blind source separation technique called Canonical Correla-
tion Analysis (CCA) that we plan to compare against ICA
as part of our future work. Finally, we discuss several de-
sign issues that we expect will arise in designing a capacity
planning tool that incorporates our request categorization
technique, especially for large Internet-scale systems.

5.1 Accuracy improvement
We plan to explore the following issues to evaluate the

effectiveness of our ICA-based technique for workload char-
acterization more rigorously, and to further improve its ac-
curacy.

1) Sensitivity analysis. In general, a larger data set (larger
value of T) results in more accurate estimates. However, the
minimum number of data points required to achieve accurate
estimates depends on the workload. In general, the noisier
the data, the higher the required value of T. Guidelines for
selecting T for different workloads and applications are a
subject of future work.

The width of the monitoring window after which we col-
lect a data point is another important parameter for our
method. In general, deciding the duration of the monitor-
ing window for a workload is tricky: a smaller time window
will lead to more variability in the measurements, which is
favorable to our categorization technique; but too small a
time window may fail to capture a substantial number or
requests in their entirety. For example, when modeling at
the session granularity, typical shopping and browsing ses-
sions last at least a few minutes. A smaller time window
will then fail to model the system accurately. Hence, the
duration of the monitoring window should be “long enough”
to capture the processing of requests/client sessions in their
entirety, but it should be “short enough” to prevent the ag-
gregate request arrival rates from following a Gaussian dis-
tribution (as discussed in Section 3). We plan to do more
experiments to investigate the impact of sampling duration
on our ICA based technique. In particular, we are inter-
ested in using aperiodic sampling where the duration of the
monitoring time window is chosen uniformly at random, for
example, between 10 minutes to 1 hour.

2) Effect of Noise. The presence of (measurement) noise
makes the problem of estimating the matrix A more difficult
(see Ch. 15 of [11]). In practice, the measurements can be
pre-processed to reduce noise before performing ICA. Even
though FastICA is known to be consistent in the presence of
noise with certain characteristics, an appropriately designed
pre-processing step to reduce noise can further improve the
estimate for matrix A. Another alternative would be to use
techniques specifically designed for noisy ICA [10].

3) Only partially blind. We are also exploring a more in-
formed method of performing automatic request categoriza-
tion by augmenting our ICA-based technique with feature-
based information from server logs. For example, if we as-
sume that, in general, HTTP GET requests are less resource-
intensive than HTTP POST requests, or that static content
is less resource-intensive than dynamic content, then we can
adopt a more informed approach to request categorization.
We believe that such feature-based differentiation can pro-
vide useful hints to our factorization algorithm.

5.2 Workload characterization granularity
One limitation of the current technique is that the number

of request categories that we can identify is limited by the
resources whose usage we can measure. Heterogeneous com-
ponents within the system can help us identify more request
categories. For example, in a system with separate web, ap-
plication logic and database servers, using aggregate CPU
usage measurements we can partition the requests into up
to three different categories. We can also monitor usage of
other resources — for example, it is straightforward to incor-
porate network usage into our model. More generally, with
s different components (servers) and k different resources
in each, we can partition the requests into at most s × k

different groups.

5.3 Alternatives to ICA
Principal Component Analysis (PCA) and Canonical Cor-

relation Analysis (CCA) are two other data-driven tech-
niques for Blind Source Separation (BSS). All the three
techniques (PCA, ICA and CCA) are designed based on
a common principle: they aim to find linear transforma-
tions of the original data such that the resulting components
(source signals) are mutually uncorrelated. The uncorrelated
constraint, follows from the assumption that the original
sources are independent. However, uncorrelatedness is not
enough to distinguish between the possibly infinite num-
ber of linear transformations producing uncorrelated com-
ponents, and hence, additional constraints are required.

PCA tries to maximize the variance of the resulting com-
ponents. ICA tries to find statistically independent compo-
nents by minimizing gaussianity (based on measures such as
kurtosis, negentropy, Chapter 8 [11]). The justification for
minimizing gaussianity to search from independent compo-
nents comes from the central limit theorem. According to
the central limit theorem, sums of nongaussian random vari-
ables are closer to being gaussian than the original variables.
Hence, a linear combination of the observed mixture (e.g.,
the aggregate resource usage measurements in our case) will
be maximally nongaussian if it equals one of independent
sources. CCA maximizes the autocorrelation of the result-
ing components. The autocorrelation constraint is based on
the observation that several real world sources (e.g., fMRI
source signals) are autocorrelated [6]. ICA and CCA have
been known to outperform PCA in terms of accuracy and
robustness [6, 11]. In practice, the observed mixture is pre-
processed using PCA to reduce its dimension before using
ICA or CCA. For a detailed comparison of the performance
of the three methods on functional MRI data, refer to [6].

We plan to compare the results from CCA based work-
load characterization with our ICA results as part of our
future work. The advantages of using a CCA based method
over ICA are the following: a) CCA does not require the
original source components to be nongaussian, b) CCA does
not require the original sources components to be indepen-
dent (uncorrelatedness is enough) and c) two different runs
of CCA on the same data identify the same components but
the components identified by ICA in two different runs are
not necessarily the same. This is so because packages such as
FastICA use random starting points and hence, their output
is not deterministic.

5.4 Request Arrivals: Assumptions
The blind source separation techniques discussed in the

previous section look for source signals that are mutually un-
correlated. In addition, ICA tries to find components that
are as independent as possible. If the request arrivals are
correlated, then estimating mutually uncorrelated and/or
independent components might not yield satisfactory re-
sults. The question whether BSS techniques like ICA and
CCA are useful for real world workloads is an empirical
one. We plan to evaluate our BSS techniques using work-
load benchmarks such as TPC-W and RUBiS as well as real
production system traces as part of future work. It is worth
mentioning here that BSS for correlated sources is an active
area of research within the signal processing community [15].

5.5 Linear model applicability
The usefulness of techniques like ICA and CCA for work-

load characterization depends on the validity of our linear
model (equation 4). Our validation results in Section 4.2
and the results in [17,23] show that assuming a linear model
for resource consumption is not an oversimplification, and
that it can estimate the resource consumption in real pro-
duction systems as well as benchmark workloads with low
error.

However, the linear model may not be applicable to all sce-
narios. As pointed out in [17], the linear model ignores inter-
action effects across transaction types. For example, check-
out transactions might require more CPU time during heavy
browsing if the browsing activity reduces the cache hit rates
for the checkout transactions. The likelihood of these non-
linear interaction effects across request/transaction types is
much higher in a heavily loaded or an overloaded system.
Stewart et. al [17] specify that their linear model based
technique is most effective when the system is not heavily
loaded–peak CPU utilization is less than 70%.

Additionally, our linear model does not capture autocor-
relation in the aggregate resource utilization. Mi et. al [14]
show that, in spite of independent generation of requests
of a certain category, the measured resource consumption
can show significant autocorrelation; especially when the re-
quest arrival is bursty. Furthermore, for a closed-loop sys-
tem, this autocorrelation in demand can propagate to all the
tiers in the system. Experimental evaluation in [14] shows
that the observed autocorrelation in resource consumption
is significantly stronger when the resource utilization at the
bottleneck resource is above 80%, i.e. the system is heavily
loaded.

Based on the results in [14,17], we conjecture that the lin-
ear model is applicable to scenarios where the system is not
heavily loaded (e.g., peak resource utilization is less than
70%). Cockcroft et al. recommended that peak resource uti-
lization in Internet services should be below 70% [4]. Thus,
the linear model is applicable to a wide range of scenarios
present in real production systems. We plan to investigate
the applicability of our linear model in more depth as part
of future work. We also plan to characterize the impact of
autocorrelation and interaction across request types on the
errors in our BSS based estimates.

5.6 Data collection issues
Internet services today consist of multiple components,

each of which performs a particular task and can consist of
hundreds, if not thousands, of machines. The existence of
more components helps our request categorization technique
by allowing a more fine-grained differentiation of requests, as
discussed in Section 3. But each component can have multi-
ple machines performing similar functions either to provide
fault-tolerance or load-balancing. Since our method asso-
ciates resource usage with a component, we would need to
aggregate resource usage measurements from all machines
providing the services of the component and calculate an
average. If different groups of machines in the component
perform diverse tasks, our problem formulation considers
each group as a separate resource and therefore will collect
resource usage statistics from each group as an independent
measure.

6. RELATED WORK
Performance modeling of multi-tier Internet services is an

area of active research. In this section, we discuss some

of the work related to performance modeling and workload
characterization.

The proposed techniques in published literature for work-
load characterization and performance modeling can con-
ceptually be classified into two categories–inference based
and instrumentation based. The key challenge for inference-
based techniques is calibrating the parameters of an analyti-
cal model from aggregate statistics such as overall CPU uti-
lization. Instrumentation-based techniques provide a more
detailed characterization of the system as compared to the
inference-based techniques, but require invasive middleware
or kernel level instrumentation and an extensive monitoring
and logging infrastructure.

6.1 Inference-based techniques
Inference based techniques typically construct an analyt-

ical model for the system and perform workload character-
ization to estimate the parameters of the analytical model.
For example, multi-tier web applications have been modeled
as a network of queues in [13,20,23]. The number of request
categories, the arrival rate for each request category and the
resource requirements (service times) for each request cate-
gory are the key parameters needed to calibrate a queueing
model. To estimate these parameters, inference based meth-
ods use aggregate resource utilization (for example, CPU us-
age) measurements and the information available in server
logs.

Liu et al. assume that the number of request categories
and their arrival rates at each queue/service tier is known
[13]. They use measured server utilization and end-to-end
request delays to estimate the service times (resource re-
quirements) at each tier for each request category. The
estimates for the service times are such that the weighted
least square error between the measured and the estimated
server utilization (using the queueing model) and end-to-
end request delay is minimized. Minimizing the least square
error requires solving a quadratic program and the authors
present an efficient algorithm for it.

Zhang et al. assume a linear relationship between the ag-
gregate CPU utilization at servers and the resource usage by
each category [23]. This linear relationship is the same as
our linear model (equation 4). Assuming knowledge of the
number of request categories and the arrival rate for each
category, the authors estimate the service times for each
category using ordinary least squares regression. Zhang et
al. use the TPC-W benchmark for experimental evaluation
and treat each transaction (for example, add an item to a
cart) as a separate request category.

Urgaonkar et al. develop a product-form queueing model
of multi-tier Web services for estimating request response
times [20]. Using high-level system and workload param-
eters, such as request rates and service times, the model
can predict response times for various system configurations.
Many of their results are in terms of a single overall workload
category, but they also show how to extend their queueing
model to incorporate different known request classes. The
model for scalar workloads requires request rates and resi-
dence times at all tiers in the system. The model, extended
with classes, needs these parameters for all categories.

Stewart et. al use an analytical model to estimate the
request response time (end-to-end delay) based on the ob-
served requests for each transaction types (the transaction
mix) and the aggregate resource utilizations [17]. The au-

thors use a linear model similar to equation 4 to model
the aggregate resource utilization. In order to estimate the
model parameters using benchmark data, the authors per-
form Least Absolute Residuals (LAR) regression. Results
based on benchmark experiments and analysis of real pro-
duction system data show that the approach works well
when none of the resources are saturated.

Our blind source separation based approach to Internet
services workload characterization is an inference based tech-
nique. However, unlike the related work described above, we
do not assume that various request categories and their ar-
rival rates are known. In the published literature, a common
approach when dealing with benchmark experiments with
multiple request categories is to assume that each transac-
tion type represents a separate category [17, 23]. This ap-
proach is based on the assumption that the different trans-
action types have different resource demands (e.g., “check-
out” is more CPU intensive than “browsing”). While this
approach has been shown to yield acceptable performance
(within 10-20% relative prediction error) for benchmarks
such as TPC-W and RUBiS, it does not work for workloads
involving transaction types with similar resource usage (refer
to the evaluation with the StockOnline benchmark in [17]).
In addition, identifying the transaction types for a web ser-
vice workload often requires a deeper understanding of the
workload and the system architecture, as well as significant
experience with managing a real production system.

Using resource utilization measurements and information
from server logs, BSS based techniques (ICA and CCA) can
estimate both the number of request categories and their ar-
rival rates, as well as the resource usage at each service tier
by requests of each category, provided that the assumptions
required for BSS are satisfied. These parameter estimates
can then be used to calibrate the various inference models,
thus eliminating the need to know number of request cate-
gories and their arrival rates a priori. Note that our ICA
based approach requires the same amount of information as
other inference based techniques, namely, aggregate resource
utilization measurements and information from server logs.

An alternate approach to request categorization has been
proposed by Goldszmidt et. al [8]. They define a feature
vector consisting of request statistics (e.g., total number of
instances for each URL, mean number of active instances,
number of sessions), measured resource utilization and the
response time for each request. All this information can eas-
ily be obtained from server logs. The authors use K-means
clustering to categorize URLs according to the average sys-
tem load while processing the URLs and the response time
required to process the URLs. The work in [8] also defines a
metric called the Effective e-Business Capacity (EEC). EEC
is the number of e-Business jobs (e.g., client sessions) that a
web service can service without violating a pre-determined
service-level agreement (e.g., 90% of the requests generated
by the client sessions should have a response time less than
1 second). Given the request categories, several machine-
learning based techniques (e.g., Bayes’ classifier and logis-
tics regression classifier) are used to infer whether the system
has enough EEC to satisfy the service-level agreement for a
given session arrival rate. Like our BSS based technique,
the inference models in [8] are automatically and dynami-
cally built from measured data. However, unlike the queue-
ing based inference models, the EEC based models in [8]
cannot capture the impact of an individual component on

system performance (e.g., the impact of a CPU or memory
upgrade).

6.2 Instrumentation-based techniques
It is possible to obtain a detailed workload characteriza-

tion — request categories, arrival rates for each category and
the per-category resource usage at each service tier — us-
ing a monitoring and logging infrastructure. Tools such as
Magpie [2] and PinPoint [3] collect fine-grained information
about each request including the various servers (e.g., web,
application and database servers) visited by a request, and
the resource usage at these servers during each visit. This
fine-grained information can be used to cluster requests into
different categories and to determine the per-category re-
source usage. While these tools have been implemented as
research prototypes, the complexity of the monitoring in-
frastructure and the multi-tier service architecture, and the
expertise required to deploy and use these tools, has hin-
dered their adoption in production systems.

7. CONCLUSION
This paper explores the feasibility of using independent

component analysis for Internet service application workload
characterization. Using measurements of aggregate system
resource usage, such as CPU, our method can infer vari-
ous characteristics of the workload: the number of different
request categories, the resource demands of each category,
and the distribution of request arrivals across different cate-
gories. Inferring these category parameters has direct appli-
cation to the performance modeling of tiered Internet appli-
cation hosting systems. These models can benefit substan-
tially from the increased fidelity of modeling workloads in
separate categories. The advantage of our approach is that
it does not require detailed instrumentation of the system to
obtain category characteristics, just aggregate workload in-
formation that is straightforward to obtain. Our evaluation
results using an e-commerce benchmark are promising and
indicate that our method can potentially characterize fairly
complex workloads with acceptable error.

8. ACKNOWLEDGEMENT
We thank our shepherd Cathy H. Xia, John Douceur and

the anonymous referees for their constructive suggestions
that improved the paper’s presentation.

9. REFERENCES
[1] S. Bagchi, E. Hung, A. Iyengar, N. Vogl, and

N. Wadia. Capacity planning tools for web and grid
environments. In Proceedings of the 1st International

Conference on Performance Evaluation Methodolgies

and Tools, October 1996.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier.
Using Magpie for request extraction and workload
modelling. In Proceedings of the OSDI’04, December
2004.

[3] M. Y. Chen, A. Accardi, E. Kiciman, A. Fox,
D. Patterson, and E. Brewer. Path-Based Failure and
Evolution Management. In Proceedings of the

NSDI’04, March 2004.

[4] A. Cockcroft and B. Walker. Capacity Planning for

Internet Services. Sun Press, 2001.

[5] The FastICA package for Matlab and R.
http://www.cis.hut.fi/projects/ica/fastica/.

[6] O. Friman, M. Borga, P. Lundberg, and H. Knutsson.
Exploratory fMRI Analysis by Autocorrelation
Maximization. NeuroImage, 16(2):454–464, 2002.

[7] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper.
Workload Analysis and Demand Prediction of
Enterprise Data Center Applications. In Proceedings

of the IISWC’07, September 2007.

[8] M. Goldszmidt, D. Palma, and B. Sabata. On the
Quantification of e-Business Capacity. In Proceedings

of the Electronic Commerce, 2001.

[9] X. Huang, F. Peng, A. An, and D. Schuurmans.
Dynamic Web Log Session Identification With
Statistical Language Models. Journal of the American

Society for Information Science and Technology,
55(14):1290–1303, 2004.

[10] A. Hyvarinen. Gaussian moments for noisy
independent component ananlysis. IEEE Signal

Processing Letters, 6(6), June 1999.

[11] A. Hyvarinen, J. Karhunen, and E. Oja. Independent

Component Analysis. Wiley-Interscience, 2001.

[12] J. Judge. A Model for the Marginal Distribution of
Aggregate Per Second HTTP Request Rate. In
Proceedings of the 10th IEEE Workshop on Local and

Metropolitan Area Networks, 1999.

[13] Z. Liu, L. Wynter, C. X. Xia, and F. Zhang.
Performance inference of queueing models for IT
systems using end-to-end measurements. Performance

Evaluation, 63(2006):36–60.

[14] N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel.
Performance Impacts of Autocorrelated Flows in
Multi-tiered Systems. In Proceedings of the

Performance’07, October 2007.

[15] W. Naanaa and J.-M. Nuzillard. Blind source
separation of positive and partially correlated data.
Signal Processing, 85(9):1711–1722, 2005.

[16] Microsoft .NET Pet Shop 4.0.
http://msdn2.microsoft.com/.

[17] C. Stewart, T. Kelly, and A. Zhang. Exploiting
Nonstationarity for Performance Prediction. In
Proceedings of the EuroSys’07, March 2007.

[18] C. Stewart and K. Shen. Performance Modeling and
System Management for Multi-component Online
Services. In Proceedings of the NSDI’05, May 2005.

[19] TeamQuest model: Capacity planning software with
modeling. http://www.teamquest.com/.

[20] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, ,
and A. Tantawi. An Analytical Model for Multi-tier
Internet Services and its Applications. In Proceedings

of the SIGMETRICS’05, June 2005.

[21] Microsoft Visual Studio 2005 Team Suite.
http://msdn2.microsoft.com/.

[22] K. H. Yeung and C. W. Szeto. On the Modeling of
WWW Request Arrivals. In Proceedings of the

International Conference on Parallel Processing

Workshops, 1999.

[23] Q. Zhang, L. Cherkasova, and E. Smirni. A
Regression-Based Analytic Model for Dynamic
Resource Provisioning of Multi-Tier Applications. In
Proceedings of the ICAC’07, June 2007.

