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ABSTRACT 
Autonomic Network Management (ANM) has the goal of 
increasing reliability and performance while reducing 
management cost using various automated techniques.  These 
range from agent-based approaches relying on explicit models 
and ontologies to emergent techniques relying on gossip 
protocols, swarming algorithms or other biologically inspired 
work.  In this paper, we review the failures, growing pains and 
successes of earlier techniques for automated and adaptive 
network control and management, from the simple control loops 
in TCP and OSPF to the more complicated emergent behaviors of 
BGP dynamics and overlay routing.  From these examples we 
extract several lessons relevant to ongoing research in autonomic 
network management.   

Categories and Subject Descriptors 
C.2.m [Computer-Communication Networks]: Miscellaneous. 

General Terms 
Management, Measurement, Performance, Design, Reliability. 

Keywords 
Autonomic network management. 

1. INTRODUCTION 
As networks grow ever larger and more complex, they become 
harder to manage efficiently and reliably, affecting the 
dependability of mission critical network applications and 
services.  Autonomic Network Management (ANM), where the 
network itself helps to detect, diagnose and repair failures, as 
well as to adapt its configuration and optimize its performance 
and quality of service, is becoming an increasingly important 
research area. 

ANM encompasses many different approaches, from explicit 
modeling of network semantics to techniques based on the 
emergent behavior of biologically-inspired systems.  However, 
current ANM techniques are not the first to use automated 
responses and adaptation to help simplify the configuration and 
management of networks.  Previous success stories include 
TCP’s simple control loop for adjusting its congestion window, 
automated media negotiation in the Ethernet (802.3) and Ethernet 
(802.11) wireless protocols, and failure detection and adaptation 
techniques in link-state routing protocols such as OSPF.  Each of 
these automated techniques is fundamental to the correct 
operation of today’s networks—without them the large-scale 
networks we use today simply could not exist. 

Though now successful, each of these automated techniques 
experienced “growing pains,” where unanticipated situations and 
emergent (mis-)behaviors caused widespread problems, hindering 
the reliability of the network they were meant to help.  For 
example, TCP has required many adjustments over the years, 
adding basic congestion control to avoid congestion collapse of 
the Internet and updates to improve performance over high speed 
and high-bandwidth delay paths.  Even today, TCP’s adaptation 
algorithms have been observed to behave poorly on wireless and 
satellite links, leading to many proposals for improvements. 

In this paper, we take the position that there is much to be learnt 
from these historical successes and failures.  To support this 
position, we present a few guidelines for the design of ANM 
system that we have drawn from these historical examples.  Note 
that there are several things we are not doing: we do not present 
an exhaustive (or even representative) description of the many 
useful software engineering or control theoretical techniques that 
can be applied to automated system design; we do not present a 
framework by which ANM systems may be evaluated or 
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compared; and we do not present a design for any particular 
ANM system. 

Instead, we review several early experiences with automated 
network behaviors—in some sense, the precursors to the more 
advanced automation that is the goal of current ANM research—
from the simple control loops in TCP and OSPF to the more 
complicated automated behaviors of BGP dynamics and overlay 
routing. We describe both the successes and failures of these 
systems in order to draw lessons and guidelines for current 
research in ANM: 

Make assumptions explicit.  Automated control systems 
necessarily make assumptions about the environment in 
which they operate and the expected results of automated 
actions.  By making these assumptions explicit, it becomes 
easier to dynamically tell when a control system is operating 
under supported conditions. 

Handle common failures.   Once we understand our automated 
system’s assumptions, we should check that they cover the 
common failures encountered in real-world environments. 

Avoid (or understand) interactions between control loops.  
Interacting control loops often behave in unpredictable, 
complex ways which should be understood, and whose 
impact should be controlled.  

Make goals explicit.  If the problem being solved is unstated, it 
is unlikely that the solution will be either coherent or 
comprehensive. 

Help people help the system.  Most problems with previous 
automated systems required extensive and often challenging 
measurement and experimentation to resolve.  To ease the 
understanding of future problems,  extensive support for 
monitoring of system performance, reliability, and other 
behaviors should be designed in from the start. 

Build-in validation.  The system should self-test to ensure it is 
meeting its goals. 

Some of these may appear to be fundamental software 
engineering guidelines—and indeed, they are!  However, as one 
of our reviews commented, “The fact that these guidelines are 
often not followed today says probably more about the state of 
the art in software and systems engineering than about our 
inability to engineer automated systems”.  As the ANM 
community moves forward, it is critical that these guidelines (by 
no means an exhaustive list) be borne in mind.  We hope that this 
paper will stimulate discussion around such matters. 

2. BACKGROUND 
While approaches to autonomic network management are many 
and varied, ranging from model-based agent systems to epidemic 
gossip protocols, all broadly rely on some form of feedback or 
control loop where a network or system adapts its behavior based 
on observations of its current state, performance and reliability.  
In this section, we briefly note some simple control loops which 
might be considered precursors to ANM.  We later use some of 
these to provide examples of pitfalls and successes. 

2.1 TCP Congestion Window 
Perhaps the best known in terms of controlling performance is the 

the Transmission Control Protocol (TCP) [1][5] which uses a 
simple retransmission scheme based on maintaining a window of 
data in flight with acknowledgements to handle lost data.  
Coupled with an additive increase, multiplicative decrease 
control loop to adjust its congestion window, this ensures forward 
progress while trying to share network resources fairly between 
network flows.   

2.2 Routing 
In the world of IP routing, link-state routing protocols such as 
OSPF [5] provide autonomic functionality: after link weights 
have been configured (typically a manual process), the routing 
protocol will detect link failure through a variety of methods, 
such as repeated failures to receive packet acknowledgements.  
Following failure detection it will reroute, eventually converging 
on a new valid path. 

Distance- or path-vector protocols such as BGP provide similar 
functionality between networks by describing costs to possible 
destinations.  Routers then exercise policies (such as “select 
cheapest”) to choose their preferred path.   

2.3 Overlay Networks 
Due to the perceived inflexibility of the IP Internet architecture, 
overlay networks and particularly structured overlays have 
received a great deal of attention and limited successful 
deployment in recent years [1].  These build forwarding 
structures between sets of end-systems, enabling experimentation 
with and deployment of many novel distributed systems without 
requiring wholesale replacement of the underlying IP 
infrastructure.  Typically, nodes in the overlay maintain some 
small set of neighbors scattered through the Internet and use 
these neighbors to forward packets to destinations within the 
overlay.  Neighbor sets and forwarding decisions are often made 
based on observed performance characteristics between nodes in 
the overlay.  For example, in the Pastry overlay system, the 
default behavior is for nodes to use observed round-trip-time to 
their neighbors to select best-hops [16]. 

2.4 Other 
There are a wide variety of other automatic network control 
mechanisms which taken together might be considered as first 
steps toward an autonomic network infrastructure.  For example, 
the Ethernet (802.3) and wireless Ethernet (802.11) protocols use 
a variety of techniques such as media negotiation to achieve 
almost totally automatic configuration and operation. 

3. LESSONS FROM FAILURE 
In this section, we extract lessons from the “growing pains” 
suffered by otherwise successful automated network behaviors.  
These can be summarized as: understand the operating region of 
the algorithm and ensure that it holds during normal operation 
and common failures, and be careful to avoid interacting control 
loops that can cause unanticipated emergent behavior. 

3.1 Know the Operating Region 
Automating network management and behavior (i.e., building a 
system that takes automatic action in response to observed inputs 
with the aim of achieving some system-wide property) necessarily 
involves making assumptions about both the meaning or 
underlying cause of observations, and how a given action will 



mitigate or improve the situation.  When these assumptions hold, 
the actions are appropriate and will have the desired effect.  
However, if the assumptions are violated—for example, if the 
system is operating in a new and untested environment or an 
unanticipated situation arises in an existing environment—then 
the automatic response may in fact further damage the system. 

For example, TCP famously assumes that packet losses are a sign 
of congestion and that reducing a connection’s bandwidth usage 
(i.e., reducing its window of unacknowledged data) is therefore 
always the appropriate response to packet loss.  While this 
assumption generally holds in wired networks, TCP has been 
observed to have poor performance over wireless networks of 
various types [1][2][17].  The usual explanation is that there are 
other common causes of packet loss than congestion (e.g., radio 
interference), breaking TCP’s assumption about the cause of 
packet loss, and making its response (to reduce bandwidth usage) 
inappropriate. 

This is not the only case where changes in TCP’s environment 
have warranted modifications to its behavior over the years.  
Congestion control was only added in 1988 as the Internet grew 
beyond its initial design parameters.  Further updates were 
applied in 1992 [7] to deal with high speed and high bandwidth-
delay product paths enabled by new communications networks. 

The lesson: Automated systems necessarily make assumptions 
about their operating environment, but changes in the 
environment often invalidate these assumptions and require 
tweaks or wholesale modifications to their behavior. 

It is thus clearly important to understand the assumptions made 
by an automated system and ensure that these assumptions hold 
to prevent inappropriate actions from harming the dependability 
of a network.  Control theory formalizes this concept as the valid 
operating region of a feedback loop, often specified as the range 
of control inputs where the feedback loop is known to work well 
[5].  In safety-critical cases, a controller which observes that the 
current system behavior is outside its valid operating region can 
notify an administrator or take other fail-safe actions. 

3.2 Handle Common-Case Failures 
A corollary to understanding the operating region of an automated 
system (and adapting it as the underlying environment evolves) is 
ensuring that the operating region encompasses likely failure 
scenarios, and does not exacerbate the occurring problems. 

For example, when a network link between Autonomous Systems 
(ASes) fails, the Internet’s Border Gateway Protocol (BGP) 
responds by removing routes that rely on that link, selecting new 
routes as required, and announcing any resulting changes to its 
neighbors.  Although processing these updates can be an 
expensive operation, routers are built to handle the load that 
results from occasional link failures.  However, a common-case 
failure scenario is that a network link will repeatedly fail and 
recover over a relatively short period of time, overloading BGP 
routers with continual route updates.   

To deal with this situation, and prevent collapse of the routing 
infrastructure due to transiently failing links, router vendors 
developed ad hoc heuristics to damp the advertisement of such 

route flaps, leading to the development and deployment of a 
standard approach to BGP route flap damping [17]. 

Common failure modes have caused similar problems in other 
systems as well.  For example, early versions of the OSPF routing 
protocol [5] could not establish adjacency connections over high 
latency links.  Once two routers have formed an adjacency, they 
exchange their link state databases so that each can learn the 
current topology of the network efficiently, without having to 
wait to independently receive link state advertisements from all 
other routers.  However, if the initial database description packet 
was lost or delayed past a timeout, early versions of the 
protocol [13] chose to reset the adjacency connection.   

Link latencies and reliabilities were sufficiently low in initial 
deployments that this did not matter: the initial packet was rarely 
lost, the database synchronization proceeded correctly, and the 
protocol worked reasonably well.  However, in the early nineties 
satellite links became common.  Such links have significantly 
higher latencies than traditional land-based technologies.  In 
particular, they could easily have latencies higher than the 
timeout for detecting lost packets.  This would cause the initial 
database description packet to be delayed to an extent that it was 
perceived as lost, resulting in the OSPF process resetting the 
adjacency and preventing OSPF from ever forming a working 
adjacency across such a link.  Subsequent versions fixed this 
problem by permitting retransmission of the database description 
packets.   

The lesson:  This example illustrates an important corollary of 
the previous lesson.  It is not enough just to understand the 
operating region and steady state of the system being controlled.  
It is also important to understand likely failure scenarios, and 
ensure that the automated behaviors of the control system are 
equally appropriate in these situations. 

3.3 Beware Interacting Control Loops 
Recent studies have shown problems can arise when running 
overlay networks over IP infrastructure networks.   Work by 
Keralapura et al has shown that overlays can interact badly with 
the underlying IP network and, where multiple overlays operate 
side-by-side, with each other [8][9].  Essentially, routing based on 
the mechanism of measured performance couples the routing 
systems, whether overlay with infrastructure, or overlay with 
overlay. 

Although performance based routing is a well studied area and 
protocols have been deployed that worked well [10], this kind of 
accidental coupling can have wide-ranging effects, from the 
merely dangerous, to the malicious and potentially disastrous.  
Here we describe two instances of unanticipated behaviors 
arising from interactions between different components of the 
network and the global BGP routing infrastructure. 

The first case arose with the addition of route flap damping to 
BGP [17].  As already mentioned, this is a mechanism intended 
to protect the routing infrastructure against a frequently changing 
route.  If flap damping is enabled then a route that changes status 
too frequently will be ignored until it remains stable for a period 
of time based on how unstable it has been.  Unfortunately, it has 
subsequently been shown that interaction between flap damping 



and the route convergence process can itself cause persistent 
oscillation in a network that would converge in the absence of 
flap damping [12]. 

The second example concerns transport layer attacks against the 
routing infrastructure.  It has been demonstrated that relatively 
low bandwidth streams having the correct burst pattern can 
interfere with a selected existing TCP flow in the network [8].  If 
applied against infrastructure protocols such as BGP which rely 
on TCP, these techniques may have a significant negative impact 
on the network. 

The lesson: Even if the control loop is made explicit and the 
operating region for a given control loop is well-defined, 
interactions between control loops can result in complex and 
difficult to understand behaviors.  As more components that can 
control the behavior of the system are added, it becomes 
progressively more difficult to understand how they will interact, 
and the affects of moving outside the operating regions of 
different parts. 

While interaction between control loops cannot be avoided in 
general, and can be very desirable in certain situations, there are 
techniques that can help minimize the negative impacts.  For 
example, designers can try to decouple control systems by 
ensuring that they control different independent outputs based on 
independent inputs.  If this is not possible, then tuning them so 
that they impose control at very different timescales can help to 
decouple systems that would otherwise couple.  These are very 
well studied problems in other industries—the key message is to 
avoid these interactions happening by accident!  

4. LEARNING FROM SUCCESS 
In this section, we describe some of the lessons we can learn from 
the eventual successes of current and past automated techniques 
for network management. 

4.1 Be Explicit 
To date, successful automated techniques have tackled a well-
defined explicit problem: “provide reliable transport over an 
unreliable network”, “ensure transport sessions make forward 
progress while guaranteeing that the network does not enter a 
regime of congestive collapse”, “provide automatic recovery of 
network routes in the face of link failure”, and so on.  Protocols 
such as TCP and OSPF are observed to be generally successful in 
achieving their goals. 

However, even these protocols have run into difficulty when they 
have been deployed in regimes which do not satisfy assumptions 
made by their designs.  Furthermore, protocols such as BGP 
which do not have an explicit statement of their goals are less 
successful: BGP aims in general to provide automatic policy 
routing including recovery from link failure in the global inter-
provider routing system.  However, it is not clear what its 
detailed goals are: in particular, if presented with a network 
topology and a set of policies, it can be very difficult to compute 
how BGP will behave in the face of a link failure. 

The lesson: Without an explicit goal, any (automated) system is 
likely to wallow in generalities.  Since success cannot be defined, 
the inevitable result for such systems is enormous and ever-
increasing complexity.  Although they may “work,” they rarely 
work in an efficient and understandable manner. 

4.2 Support Human Understanding 
In order to support human intervention when things do go wrong, 
it is necessary to extract data from the network concerning its 
behavior, in terms of performance, reliability, and resilience 
(among other features).  By supporting extensive, preferably 
pervasive, monitoring features, network elements make their 
behavior more transparent to operators and other network 
elements and control software alike.  This allows any network 
management system, autonomic or not, to be better informed 
about system behavior and performance and thus to make better 
decisions when required. 

It is unavoidable that humans will be kept in the loop to some 
extent.  As environments change and unanticipated situations 
arise, systems must allow for human intervention to deal with 
unforeseen problems.  While individual ANM solutions may 
remove humans from that part of the system, human intervention 
will still be required from time-to-time. 

The lesson: Large-scale networking involves many factors other 
than technology, and these factors simply cannot be addressed by 
the application of technology.  As a result, people will be 
involved in running large networks for the foreseeable future, 
and so such networks had best be made comprehensible to the 
people that must run them.  A precursor to this is the provision of 
correct and timely measurements of the network. 

4.3 Monitor and Validate 
The process of discovering the failures described in Section 3 
was both arduous and ad hoc, requiring many people to spend a 
significant amount of time examining documentation, 
constructing measurement harnesses, building and exercising 
simulations and testbeds, etc.  Only once all this data and 
experience had been gathered could the problems be determined 
and solutions constructed. 

It would be preferable if the network could be made self-
validating.  There are at least two precursors to this: explicit 
statement of goals as noted in Section 4.1; and extensive, 
preferably pervasive monitoring capability. A common barrier—
perhaps more psychological than technical—to deployment of 
automated network management systems is fear that they will 
misbehave under as-yet-unforeseen circumstances.  If data 
concerning the state and behavior of the network was made 
available via suitable programming interfaces, it should be 
possible to build self-validating components.   

The lesson: Given the complexity of modern large-scale 
networks, pre-supposing the existence of correct and timely 
measurement data, the burden on the human operator could be 
reduced by making the network self-validating.  If network 
services can test themselves for correct operation, human 
operators’ time can be better spent designing the network and 
planning for the future, rather than continuously monitoring the 
behavior of particular services. 

5. CONCLUSION 
In this paper we have discussed what we believe to be some 
important issues surrounding autonomic network management.  
In particular we have argued that there are some significant 
pitfalls that must be avoided, and have suggested some guidelines 



guidelines that, if followed, we believe will help. 

In essence we believe that the growing pains of previous 
applications of automation to network control and management 
can provide guidance for the success of autonomic network 
management techniques.  Simple automated techniques are at the 
core of today’s large-scale networks, but have achieved such 
success only after resolving problems due to poorly understood 
operating assumptions, unanticipated failures, and unpredictable 
emergent behavior from interactions between different control 
systems.  In general, these problems were only overcome after 
extensive monitoring, analysis and experimentation and human 
intervention. 

To avoid repeating such problems, we advocate that new 
autonomic techniques should be explicit about the assumptions 
they make about their operating environment, and that these 
assumptions should explicitly include common-case failures.  
Furthermore, autonomic techniques should strive to avoid 
outright the unanticipated and unpredictable emergent behaviors 
(and often misbehaviors) caused by interacting control loops. 

Recognizing that operating environments change over time and 
that some unanticipated situations inevitably arise over time, we 
claim that successful autonomic network management techniques 
should incorporate extensive real-time and historical monitoring, 
both for improved understanding by human operators as well as 
for the system to perform self-validation of its assumptions and 
operation.  

By learning the lessons of earlier failures, as well as taking 
advantage of more rigorous monitoring and validation to more 
rapidly uncover and respond to future problems, we hope that 
autonomic network management techniques will help large-scale 
networks become more reliable and manageable. 
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