
Autonomic Network Management:
Some Pragmatic Considerations

Richard Mortier
Microsoft Research
7, JJ Thomson Ave,

Cambridge CB3 0FB. UK.
+44 (0) 1223 479000

mort@microsoft.com

Emre Kıcıman
Microsoft Research
1, Microsoft Way,

Redmond, WA. USA.
+1 (425)-705-3659

emrek@microsoft.com

ABSTRACT
Autonomic Network Management (ANM) has the goal of
increasing reliability and performance while reducing
management cost using various automated techniques. These
range from agent-based approaches relying on explicit models
and ontologies to emergent techniques relying on gossip
protocols, swarming algorithms or other biologically inspired
work. In this paper, we review the failures, growing pains and
successes of earlier techniques for automated and adaptive
network control and management, from the simple control loops
in TCP and OSPF to the more complicated emergent behaviors of
BGP dynamics and overlay routing. From these examples we
extract several lessons relevant to ongoing research in autonomic
network management.

Categories and Subject Descriptors
C.2.m [Computer-Communication Networks]: Miscellaneous.

General Terms
Management, Measurement, Performance, Design, Reliability.

Keywords
Autonomic network management.

1. INTRODUCTION
As networks grow ever larger and more complex, they become
harder to manage efficiently and reliably, affecting the
dependability of mission critical network applications and
services. Autonomic Network Management (ANM), where the
network itself helps to detect, diagnose and repair failures, as
well as to adapt its configuration and optimize its performance
and quality of service, is becoming an increasingly important
research area.

ANM encompasses many different approaches, from explicit
modeling of network semantics to techniques based on the
emergent behavior of biologically-inspired systems. However,
current ANM techniques are not the first to use automated
responses and adaptation to help simplify the configuration and
management of networks. Previous success stories include
TCP’s simple control loop for adjusting its congestion window,
automated media negotiation in the Ethernet (802.3) and Ethernet
(802.11) wireless protocols, and failure detection and adaptation
techniques in link-state routing protocols such as OSPF. Each of
these automated techniques is fundamental to the correct
operation of today’s networks—without them the large-scale
networks we use today simply could not exist.

Though now successful, each of these automated techniques
experienced “growing pains,” where unanticipated situations and
emergent (mis-)behaviors caused widespread problems, hindering
the reliability of the network they were meant to help. For
example, TCP has required many adjustments over the years,
adding basic congestion control to avoid congestion collapse of
the Internet and updates to improve performance over high speed
and high-bandwidth delay paths. Even today, TCP’s adaptation
algorithms have been observed to behave poorly on wireless and
satellite links, leading to many proposals for improvements.

In this paper, we take the position that there is much to be learnt
from these historical successes and failures. To support this
position, we present a few guidelines for the design of ANM
system that we have drawn from these historical examples. Note
that there are several things we are not doing: we do not present
an exhaustive (or even representative) description of the many
useful software engineering or control theoretical techniques that
can be applied to automated system design; we do not present a
framework by which ANM systems may be evaluated or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM'06 Workshops, September 11-15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-417-0/06/0009...$5.00.

compared; and we do not present a design for any particular
ANM system.

Instead, we review several early experiences with automated
network behaviors—in some sense, the precursors to the more
advanced automation that is the goal of current ANM research—
from the simple control loops in TCP and OSPF to the more
complicated automated behaviors of BGP dynamics and overlay
routing. We describe both the successes and failures of these
systems in order to draw lessons and guidelines for current
research in ANM:

Make assumptions explicit. Automated control systems
necessarily make assumptions about the environment in
which they operate and the expected results of automated
actions. By making these assumptions explicit, it becomes
easier to dynamically tell when a control system is operating
under supported conditions.

Handle common failures. Once we understand our automated
system’s assumptions, we should check that they cover the
common failures encountered in real-world environments.

Avoid (or understand) interactions between control loops.
Interacting control loops often behave in unpredictable,
complex ways which should be understood, and whose
impact should be controlled.

Make goals explicit. If the problem being solved is unstated, it
is unlikely that the solution will be either coherent or
comprehensive.

Help people help the system. Most problems with previous
automated systems required extensive and often challenging
measurement and experimentation to resolve. To ease the
understanding of future problems, extensive support for
monitoring of system performance, reliability, and other
behaviors should be designed in from the start.

Build-in validation. The system should self-test to ensure it is
meeting its goals.

Some of these may appear to be fundamental software
engineering guidelines—and indeed, they are! However, as one
of our reviews commented, “The fact that these guidelines are
often not followed today says probably more about the state of
the art in software and systems engineering than about our
inability to engineer automated systems”. As the ANM
community moves forward, it is critical that these guidelines (by
no means an exhaustive list) be borne in mind. We hope that this
paper will stimulate discussion around such matters.

2. BACKGROUND
While approaches to autonomic network management are many
and varied, ranging from model-based agent systems to epidemic
gossip protocols, all broadly rely on some form of feedback or
control loop where a network or system adapts its behavior based
on observations of its current state, performance and reliability.
In this section, we briefly note some simple control loops which
might be considered precursors to ANM. We later use some of
these to provide examples of pitfalls and successes.

2.1 TCP Congestion Window
Perhaps the best known in terms of controlling performance is the

the Transmission Control Protocol (TCP) [1][5] which uses a
simple retransmission scheme based on maintaining a window of
data in flight with acknowledgements to handle lost data.
Coupled with an additive increase, multiplicative decrease
control loop to adjust its congestion window, this ensures forward
progress while trying to share network resources fairly between
network flows.

2.2 Routing
In the world of IP routing, link-state routing protocols such as
OSPF [5] provide autonomic functionality: after link weights
have been configured (typically a manual process), the routing
protocol will detect link failure through a variety of methods,
such as repeated failures to receive packet acknowledgements.
Following failure detection it will reroute, eventually converging
on a new valid path.

Distance- or path-vector protocols such as BGP provide similar
functionality between networks by describing costs to possible
destinations. Routers then exercise policies (such as “select
cheapest”) to choose their preferred path.

2.3 Overlay Networks
Due to the perceived inflexibility of the IP Internet architecture,
overlay networks and particularly structured overlays have
received a great deal of attention and limited successful
deployment in recent years [1]. These build forwarding
structures between sets of end-systems, enabling experimentation
with and deployment of many novel distributed systems without
requiring wholesale replacement of the underlying IP
infrastructure. Typically, nodes in the overlay maintain some
small set of neighbors scattered through the Internet and use
these neighbors to forward packets to destinations within the
overlay. Neighbor sets and forwarding decisions are often made
based on observed performance characteristics between nodes in
the overlay. For example, in the Pastry overlay system, the
default behavior is for nodes to use observed round-trip-time to
their neighbors to select best-hops [16].

2.4 Other
There are a wide variety of other automatic network control
mechanisms which taken together might be considered as first
steps toward an autonomic network infrastructure. For example,
the Ethernet (802.3) and wireless Ethernet (802.11) protocols use
a variety of techniques such as media negotiation to achieve
almost totally automatic configuration and operation.

3. LESSONS FROM FAILURE
In this section, we extract lessons from the “growing pains”
suffered by otherwise successful automated network behaviors.
These can be summarized as: understand the operating region of
the algorithm and ensure that it holds during normal operation
and common failures, and be careful to avoid interacting control
loops that can cause unanticipated emergent behavior.

3.1 Know the Operating Region
Automating network management and behavior (i.e., building a
system that takes automatic action in response to observed inputs
with the aim of achieving some system-wide property) necessarily
involves making assumptions about both the meaning or
underlying cause of observations, and how a given action will

mitigate or improve the situation. When these assumptions hold,
the actions are appropriate and will have the desired effect.
However, if the assumptions are violated—for example, if the
system is operating in a new and untested environment or an
unanticipated situation arises in an existing environment—then
the automatic response may in fact further damage the system.

For example, TCP famously assumes that packet losses are a sign
of congestion and that reducing a connection’s bandwidth usage
(i.e., reducing its window of unacknowledged data) is therefore
always the appropriate response to packet loss. While this
assumption generally holds in wired networks, TCP has been
observed to have poor performance over wireless networks of
various types [1][2][17]. The usual explanation is that there are
other common causes of packet loss than congestion (e.g., radio
interference), breaking TCP’s assumption about the cause of
packet loss, and making its response (to reduce bandwidth usage)
inappropriate.

This is not the only case where changes in TCP’s environment
have warranted modifications to its behavior over the years.
Congestion control was only added in 1988 as the Internet grew
beyond its initial design parameters. Further updates were
applied in 1992 [7] to deal with high speed and high bandwidth-
delay product paths enabled by new communications networks.

The lesson: Automated systems necessarily make assumptions
about their operating environment, but changes in the
environment often invalidate these assumptions and require
tweaks or wholesale modifications to their behavior.

It is thus clearly important to understand the assumptions made
by an automated system and ensure that these assumptions hold
to prevent inappropriate actions from harming the dependability
of a network. Control theory formalizes this concept as the valid
operating region of a feedback loop, often specified as the range
of control inputs where the feedback loop is known to work well
[5]. In safety-critical cases, a controller which observes that the
current system behavior is outside its valid operating region can
notify an administrator or take other fail-safe actions.

3.2 Handle Common-Case Failures
A corollary to understanding the operating region of an automated
system (and adapting it as the underlying environment evolves) is
ensuring that the operating region encompasses likely failure
scenarios, and does not exacerbate the occurring problems.

For example, when a network link between Autonomous Systems
(ASes) fails, the Internet’s Border Gateway Protocol (BGP)
responds by removing routes that rely on that link, selecting new
routes as required, and announcing any resulting changes to its
neighbors. Although processing these updates can be an
expensive operation, routers are built to handle the load that
results from occasional link failures. However, a common-case
failure scenario is that a network link will repeatedly fail and
recover over a relatively short period of time, overloading BGP
routers with continual route updates.

To deal with this situation, and prevent collapse of the routing
infrastructure due to transiently failing links, router vendors
developed ad hoc heuristics to damp the advertisement of such

route flaps, leading to the development and deployment of a
standard approach to BGP route flap damping [17].

Common failure modes have caused similar problems in other
systems as well. For example, early versions of the OSPF routing
protocol [5] could not establish adjacency connections over high
latency links. Once two routers have formed an adjacency, they
exchange their link state databases so that each can learn the
current topology of the network efficiently, without having to
wait to independently receive link state advertisements from all
other routers. However, if the initial database description packet
was lost or delayed past a timeout, early versions of the
protocol [13] chose to reset the adjacency connection.

Link latencies and reliabilities were sufficiently low in initial
deployments that this did not matter: the initial packet was rarely
lost, the database synchronization proceeded correctly, and the
protocol worked reasonably well. However, in the early nineties
satellite links became common. Such links have significantly
higher latencies than traditional land-based technologies. In
particular, they could easily have latencies higher than the
timeout for detecting lost packets. This would cause the initial
database description packet to be delayed to an extent that it was
perceived as lost, resulting in the OSPF process resetting the
adjacency and preventing OSPF from ever forming a working
adjacency across such a link. Subsequent versions fixed this
problem by permitting retransmission of the database description
packets.

The lesson: This example illustrates an important corollary of
the previous lesson. It is not enough just to understand the
operating region and steady state of the system being controlled.
It is also important to understand likely failure scenarios, and
ensure that the automated behaviors of the control system are
equally appropriate in these situations.

3.3 Beware Interacting Control Loops
Recent studies have shown problems can arise when running
overlay networks over IP infrastructure networks. Work by
Keralapura et al has shown that overlays can interact badly with
the underlying IP network and, where multiple overlays operate
side-by-side, with each other [8][9]. Essentially, routing based on
the mechanism of measured performance couples the routing
systems, whether overlay with infrastructure, or overlay with
overlay.

Although performance based routing is a well studied area and
protocols have been deployed that worked well [10], this kind of
accidental coupling can have wide-ranging effects, from the
merely dangerous, to the malicious and potentially disastrous.
Here we describe two instances of unanticipated behaviors
arising from interactions between different components of the
network and the global BGP routing infrastructure.

The first case arose with the addition of route flap damping to
BGP [17]. As already mentioned, this is a mechanism intended
to protect the routing infrastructure against a frequently changing
route. If flap damping is enabled then a route that changes status
too frequently will be ignored until it remains stable for a period
of time based on how unstable it has been. Unfortunately, it has
subsequently been shown that interaction between flap damping

and the route convergence process can itself cause persistent
oscillation in a network that would converge in the absence of
flap damping [12].

The second example concerns transport layer attacks against the
routing infrastructure. It has been demonstrated that relatively
low bandwidth streams having the correct burst pattern can
interfere with a selected existing TCP flow in the network [8]. If
applied against infrastructure protocols such as BGP which rely
on TCP, these techniques may have a significant negative impact
on the network.

The lesson: Even if the control loop is made explicit and the
operating region for a given control loop is well-defined,
interactions between control loops can result in complex and
difficult to understand behaviors. As more components that can
control the behavior of the system are added, it becomes
progressively more difficult to understand how they will interact,
and the affects of moving outside the operating regions of
different parts.

While interaction between control loops cannot be avoided in
general, and can be very desirable in certain situations, there are
techniques that can help minimize the negative impacts. For
example, designers can try to decouple control systems by
ensuring that they control different independent outputs based on
independent inputs. If this is not possible, then tuning them so
that they impose control at very different timescales can help to
decouple systems that would otherwise couple. These are very
well studied problems in other industries—the key message is to
avoid these interactions happening by accident!

4. LEARNING FROM SUCCESS
In this section, we describe some of the lessons we can learn from
the eventual successes of current and past automated techniques
for network management.

4.1 Be Explicit
To date, successful automated techniques have tackled a well-
defined explicit problem: “provide reliable transport over an
unreliable network”, “ensure transport sessions make forward
progress while guaranteeing that the network does not enter a
regime of congestive collapse”, “provide automatic recovery of
network routes in the face of link failure”, and so on. Protocols
such as TCP and OSPF are observed to be generally successful in
achieving their goals.

However, even these protocols have run into difficulty when they
have been deployed in regimes which do not satisfy assumptions
made by their designs. Furthermore, protocols such as BGP
which do not have an explicit statement of their goals are less
successful: BGP aims in general to provide automatic policy
routing including recovery from link failure in the global inter-
provider routing system. However, it is not clear what its
detailed goals are: in particular, if presented with a network
topology and a set of policies, it can be very difficult to compute
how BGP will behave in the face of a link failure.

The lesson: Without an explicit goal, any (automated) system is
likely to wallow in generalities. Since success cannot be defined,
the inevitable result for such systems is enormous and ever-
increasing complexity. Although they may “work,” they rarely
work in an efficient and understandable manner.

4.2 Support Human Understanding
In order to support human intervention when things do go wrong,
it is necessary to extract data from the network concerning its
behavior, in terms of performance, reliability, and resilience
(among other features). By supporting extensive, preferably
pervasive, monitoring features, network elements make their
behavior more transparent to operators and other network
elements and control software alike. This allows any network
management system, autonomic or not, to be better informed
about system behavior and performance and thus to make better
decisions when required.

It is unavoidable that humans will be kept in the loop to some
extent. As environments change and unanticipated situations
arise, systems must allow for human intervention to deal with
unforeseen problems. While individual ANM solutions may
remove humans from that part of the system, human intervention
will still be required from time-to-time.

The lesson: Large-scale networking involves many factors other
than technology, and these factors simply cannot be addressed by
the application of technology. As a result, people will be
involved in running large networks for the foreseeable future,
and so such networks had best be made comprehensible to the
people that must run them. A precursor to this is the provision of
correct and timely measurements of the network.

4.3 Monitor and Validate
The process of discovering the failures described in Section 3
was both arduous and ad hoc, requiring many people to spend a
significant amount of time examining documentation,
constructing measurement harnesses, building and exercising
simulations and testbeds, etc. Only once all this data and
experience had been gathered could the problems be determined
and solutions constructed.

It would be preferable if the network could be made self-
validating. There are at least two precursors to this: explicit
statement of goals as noted in Section 4.1; and extensive,
preferably pervasive monitoring capability. A common barrier—
perhaps more psychological than technical—to deployment of
automated network management systems is fear that they will
misbehave under as-yet-unforeseen circumstances. If data
concerning the state and behavior of the network was made
available via suitable programming interfaces, it should be
possible to build self-validating components.

The lesson: Given the complexity of modern large-scale
networks, pre-supposing the existence of correct and timely
measurement data, the burden on the human operator could be
reduced by making the network self-validating. If network
services can test themselves for correct operation, human
operators’ time can be better spent designing the network and
planning for the future, rather than continuously monitoring the
behavior of particular services.

5. CONCLUSION
In this paper we have discussed what we believe to be some
important issues surrounding autonomic network management.
In particular we have argued that there are some significant
pitfalls that must be avoided, and have suggested some guidelines

guidelines that, if followed, we believe will help.

In essence we believe that the growing pains of previous
applications of automation to network control and management
can provide guidance for the success of autonomic network
management techniques. Simple automated techniques are at the
core of today’s large-scale networks, but have achieved such
success only after resolving problems due to poorly understood
operating assumptions, unanticipated failures, and unpredictable
emergent behavior from interactions between different control
systems. In general, these problems were only overcome after
extensive monitoring, analysis and experimentation and human
intervention.

To avoid repeating such problems, we advocate that new
autonomic techniques should be explicit about the assumptions
they make about their operating environment, and that these
assumptions should explicitly include common-case failures.
Furthermore, autonomic techniques should strive to avoid
outright the unanticipated and unpredictable emergent behaviors
(and often misbehaviors) caused by interacting control loops.

Recognizing that operating environments change over time and
that some unanticipated situations inevitably arise over time, we
claim that successful autonomic network management techniques
should incorporate extensive real-time and historical monitoring,
both for improved understanding by human operators as well as
for the system to perform self-validation of its assumptions and
operation.

By learning the lessons of earlier failures, as well as taking
advantage of more rigorous monitoring and validation to more
rapidly uncover and respond to future problems, we hope that
autonomic network management techniques will help large-scale
networks become more reliable and manageable.

6. REFERENCES
[1] M. Allman, D. Glover, L. Sanchez, “Enhancing TCP Over

Satellite Channels using Standard Mechanisms”, RFC 2488,
IETF. January 1999.

[2] H. Balakrishnan, V.N. Padmanabhan, S. Seshan, R. Katz,
“A Comparison of Mechanisms for Improving TCP
Performance Over Wireless Links”, Proceedings of ACM
SIGCOMM. Stanford, CA, USA. August 1996.

[3] M. Castro, M. Costa, A. Rowstron, “Debunking some myths
about structure and unstructured overlays”, Proceedings of
ACM/Usenix NSDI. Boston, MA, USA. May 2005.

[4] R. Chakravorty, S. Banerjee, P. Rodriguez, J. Chesterfield, I.
Pratt, “Performance Optimizations for Wireless Wide-Area
Networks: Comparative Study and Experimental

Evaluation”, Proceedings of ACM MOBICOM.
Philadelphia, PA, USA. Sept 2004.

[5] J. L. Hellerstein, Y. Diao, S.Parekh, D. Tilbury, “Feedback
Control of Computing Systems”, Wiley Interscience, 2004.

[6] V. Jacobson, “Congestion Avoidance and Control”,
Proceedings of ACM SIGCOMM. pp. 314—329. Stanford,
CA, USA. August 1988.

[7] V. Jacobson, R. Braden, D. Borman, “TCP Extensions for
High Performance”, RFC 1323, IETF. May 1992

[8] R. Keralapura et al, “Can ISPs take the heat from Overlay
Networks?”, Proceedings of ACM HOTNETS. San Diego,
CA, USA. November 2004.

[9] R. Keralapura, C.-N. Chuah, N. Taft and G. Iannaccone,
“Can coexisting overlays inadvertently step on each
other?”, Proceedings of IEEE ICNP. Boston, MA, USA.
November 2005.

[10] A. Khanna, J. Zinky, “A Revised ARPANET Routing
Metric”, Proceedings of ACM SIGCOMM. Austin, TX,
USA. September 1989.

[11] A. Kuzmanovic, E.W. Knightly, “Low Rate TCP Targeted
Denial of Service Attacks (The Shrew vs. the Mice and
Elephants)”, Proceedings of ACM SIGCOMM. Karlsruhe,
Germany. August 2003.

[12] Z. M. Mao, R. Govindan, G. Varghese, and R. Katz, “Route
Flap Damping Exacerbates Internet Routing Convergence”,
Proceedings of ACM SIGCOMM. Pittsburgh, PA, USA.
August 2002

[13] J. Moy, “OSPF Version 2”, RFC 1583, IETF. March 1994.

[14] J. Moy, “OSPF Version 2”, RFC 2328, IETF. April 1998.

[15] J. Postel (ed.), “Transmission Control Protocol”, RFC 793,
IETF. September 1981.

[16] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems”, IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware). pp 329—350. Heidelberg,
Germany. November, 2001

[17] C. Villamizar, R. Chandra, R. Govindan, “BGP Route Flap
Damping”, RFC 2439, IETF. November 1998.

[18] Y. Zhang, Z.M. Mao, J. Wang, “Impact of low rate TCP-
targeted DoS attacks on BGP”, AT&T Labs Research
Technical Memorandum, TD-6LLPQY (version 2). May
2006.

