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Abstract—This research studies robust uncoded video trans-
mission over wireless fast fading channel, where only statistical
channel state information (CSI) is available at the sender. We
observe that increasing channel diversity for high priority (HP)
data is essential to improving the robustness of video transmission
in fading channels. By utilizing the noise and loss resilient nature
of video, we find it possible to design a more robust system by
re-allocating the power and channel uses among HP and LP (low
priority) data. With total power and channel use constraints, we
derive an optimal resource allocation scheme under the squared
error distortion criterion. In particular, we first propose a new
power allocation algorithm at given channel allocation. Second,
based on the proposed power allocation algorithm, we design a
channel allocation algorithm to strike the tradeoff between the
diversity increase of HP data and the information loss of LP
data. Third, under known noise power distribution, we derive
the optimal resource allocation for uncoded video multicast.
Simulations show that the proposed system achieves 2dB and
5dB gain in average and outage PSNR over Softcast in video
Unicast, and around 1.4dB and 4dB gain in multicast.

I. INTRODUCTION

By the end of 2012, video constitutes 51% of mobile traffic,
and this percentage is estimated to increase to 67% by 2017,
according to Cisco Visual Networking Index (VNI) [1]. The
statistics reflect people’s increasing demand to consume videos
on mobile devices, instead of conventional TV, through the
advanced access technologies, such as WiFi, WiMax, and LTE.

In these digital communication systems, separate source-
channel design is dominant for its optimality and implementa-
tion convenience. In particular, source coding is implemented
by a succession of functional modules including motion es-
timation, DCT (Discrete Cosine Transform), quantization and
entropy coding. The generated bit sequence is then transmitted
under the protection of a channel code. It is well-known that
the optimality of digital communication relies on Shannon’s
source-channel separation principle [2]. However, a fact is
often neglected that the application of this principle requires
precise CSI at the transmitter, and there is a threshold effect in
performance. One could immediately infer that this principle
does not hold in broadcast channels where receivers have
diverse channels and the feedback channel for CSI is absent.
Besides, an optimal channel code requires high complexity and
introduces infinite delay.

In view of these problems, there has been a surge of
interest recently in the uncoded or near-analog video com-
munication systems [3], [4], [5], [6] built upon the joint
source-channel coding (JSCC) approach. The basic idea is to

skip quantization and entropy coding in source encoder, and
directly transmit DCT coefficients over the channel. In order to
balance the energy consumption of coefficients with different
importance, a linear power scaling operation is applied before
the amplitude modulation. Such a near-analog design differs
from conventional analog system in two key steps, namely
de-correlating transform and power allocation, which allows
the former to achieve much higher transmission efficiency.
In the sense that no digital channel coding is employed, this
scheme is also referred to as an uncoded system. Analyses on
Softcast [7] have shown that this uncoded scheme can achieve
similar end-to-end distortion as the more complex digital
methods while maintaining robustness to channel variations
and lowering computational complexity. Moreover, the system
intrinsically has distortion performance that degrades grace-
fully with channel SNR, providing substantial net performance
gain for broadcast channels or when the channel statistics are
not well estimated.

In spite of the above merits, existing uncoded video
systems are either optimized over a simple additive white
Gaussian noise (AWGN) channel model or assume a slow
fading channel where the transmitter CSI is available. As
mentioned, mobile videos are often requested on-the-go, such
as on the bus, subway, highway, or high speed rail. In these
environments, the transmitted videos will experience fast fad-
ing channels due to multi-path, shadowing and the Doppler
effect. If these factors are neglected in the system design,
users are likely to suffer from severe quality fluctuation. From
the principle of wireless communication [8], we know that
increasing the channel diversity could improve the outage
capacity of fading channel. In other words, the diversity gain
from multiple channel use could increase the channel quality.
If there is no power constraint, it is easy to derive how to
assigning the channel use according to the priorities of data.
However, with the limited power and channel use resource,
assigning more channel uses to high priority (HP) data means
that some of the lower priority (LP) data will be dropped.
There exists a trade-off between the distortion decrease of HP
data and the distortion increase of LP data that makes resource
allocation a challenging task.

In this research, we study the resource allocation problem
for uncoded video transmission and the proposed solution
can strike a good balance for the above trade-off. We start
from generalizing the power allocation problem for uncoded
video transmission. Our proposed solution to this problem is
by no means a straightforward extension of existing work. In
particular, the allocation result of our algorithm would indicate
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which part of the transform coefficients should be dropped
under given noise power. By utilizing the unequal priority
of video data, we propose a greedy algorithm solving the
combination problem for channel allocation which achieves
nearly the same performance as performing a full search.
Moreover, the heterogeneous noise power distribution in mul-
ticast scenario is discussed. The answers to the following three
questions together with the proposed algorithms constitute the
main contributions of this paper. Which part of data should be
dropped? How to assign the saved channel uses to the rest of
the data? How the power should be allocated after the channel
reallocation?

The rest of this paper is organized as follows. In Section
II, we draw a whole picture of the uncoded video transmission
system and set up the system model. In Section III, we present
our motivation and formulate the problem. Section IV and
V describe the problems and proposed algorithms for power
allocation and channel allocation, respectively. The evaluation
of the proposed scheme is presented in Section VI. In Section
VII, we discuss the related work on joint source-channel
coding and uncoded video transmission. Finally we summarize
the paper in Section VIII.

II. SYSTEM MODEL

A. Overview of Uncoded Video Transmission

Fig.1 shows the block diagram of an uncoded video
transmission system. The processing and transmission unit
is a group of pictures (GOP). The size of a GOP could
vary from 4, 8, 16, to 30 or 32 frames. The pictures in a
GOP first subtract 128 from their pixel values and then are
spatially and temporally decorrelated through 3D-DCT. The
DCT coefficients with similar statistics are grouped together as
a chunk. Usually, equal-sized chunk [7], [4] as shown in Fig.1
is implemented. The coefficients in a chunk are considered
as i.i.d. zero-mean Gaussian distributed random variables and
the variance is the average energy of the chunk. Dividing
coefficients into more chunks will produce better performance,
but the overhead will be higher too. Usually, 64 chunks per
picture is adopted because it introduces negligible overhead
with little harm on performance [18].

All the coefficients in a chunk will share the same scaling
factor and channel allocation, which are decided according to
the variances of the chunk. The scaled coefficients are pair-
wisely mapped to the amplitude of in phase and quadrature
phase transmission signals. In addition, the meta data, includ-
ing the variance of the chunks and the channel use assignment,
should be transmitted through conventional digital method at
a reliable transmission rate (e.g. BPSK with 1/2 coding). With
channel assignment information, maximum ratio combining
(MRC) is performed if multiple channel uses are allocated
to any single coefficient. Based on the estimated CSI and the
refined noise power by MRC, the coefficients can be obtained
by MMSE (minimum mean square error) detection. Finally,
the entire GOP can be reconstructed through inverse 3D-DCT
and adding 128 in pixel values.

B. Definitions and Assumptions

This paper focuses on the resource allocation problem,
which is the dashed rectangle in Fig.1. Without loss of gener-

ality, equal-sized chunk division is assumed. Unless otherwise
specified, the bold letter in this paper denotes a vector of the
corresponding scalar.

Suppose that the DCT coefficients of a GOP are divided
into N chunks. Let cn be a coefficient from the nth chunk.
For resource allocation, the mean energy λn = E[c2n] of each
chunk is estimated by averaging the energy of coefficients in
the chunk. Based on the mean energy, the linear power scaling
factor gn for the nth chunk can be derived. The transmitted
signal for coefficient cn is

sn = gncn

Hence, the transmission power of the nth chunk will be µn =
g2
nλn. The transmission signal is modulated by a pair of scaled

coefficients from the same chunk,

xn = (sn + i · s′n)/
√

2

Without loss of generality, we set the total power constraint
P = N , so that the average transmission power for the GOP
is normalized to unit power.

Suppose that M uncorrelated channels are available for
the transmission. Each channel is in fast fading state and
is modeled as Rayleigh fading channel. Assume that only
the statistics of the channel fading is known at the sender,
which is hm ∼ CN (0, 1). In addition, the channel noise is
modeled as AWGN, i.e. em ∼ CN (0, σ2) and is assumed to
be independent with the fading gain hm.

Let k = (k1, k2, . . . , kN )T be a channel allocation, where
kn is the number of channels assigned to the nth chunk. The
kn channels assigned to signal xn form a vector channel Hn =
(h′1, h

′
2, . . . , h

′
kn

)T . The received signals are kn noisy versions
of xn:

Yn = Hnxn + En

where En = (e′1, e
′
2, . . . , e

′
kn

)T is the noise vector on corre-
sponding channel. Before detection of the coefficients, maxi-
mum ratio combining is applied to improve the channel quality.

x̂n =
H∗n
‖Hn‖2

Yn = xn + ên

where ên ∼ N (0, σ2/‖Hn‖2).

Through low complexity linear MMSE detection, the co-
efficients can be recovered from the real part and imaginary
part of x̂n.

ŝn =
gnλn

g2
nλn + σ2/‖Hn‖2

Re{x̂n}

Define the distortion as the Euclidean norm εn = ‖ŝn− sn‖2.
The minimized mean distortion condition on the CSI, number
of channel use and noise power will be

E[εn|Hn, σ
2] =

λnσ
2

‖Hn‖2g2
nλn + σ2

=
λn

‖Hn‖2ρn + 1
(1)

where ρn = µn/σ
2 is the signal to noise power ratio.



3

Channel  
Assignment

Video source DCT coefficients

1g

2g


Ng

1h 1e

2h 2e


Mh Me

Maximum 
Ratio 

Combining

MMSE 
Detection

222 / nnn

nn

Hg

g







Modulation1c

2c

Nc



Detected DCT 
coefficients

1ĉ
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Fig. 1. Overview of an uncoded video transmission system

TABLE I. RESULTS OF HEURISTIC EXAMPLE.

σ2 = 0.1 σ2 = 0.01 σ2 = 0.001
choice 1 10.995 1.976 0.291
choice 2 6.407 0.850 0.111

choice 2+ 6.407 0.826 0.101

III. PROBLEM FORMULATION

A. Motivation

The DCT coefficients of a natural image usually show
heavily unequal energy distribution. Losing some low-energy
coefficients may have negligible effects on the image qual-
ity. It has been shown [4] that discarding some low-priority
coefficients and spending the saved power on high-priority
coefficients may increase the received video quality. A question
will be, is it possible to improve the video quality and stability
by utilizing both the saved transmission power and channel
use?

Let’s consider a simple case. Three symbols {10, 1, 0.1}
are transmitted. The order of magnitude difference among
different part of the DCT coefficients may be even larger.
Considering two transmission choice. The first one, all symbols
are transmitted, i.e. the channel assignment is k = {1, 1, 1}.
When the power allocation for AWGN [7] is used, the
transmission power will be µ = {2.7027, 0.2703, 0.0270}.
The second one, drop the least important symbol 0.1 and
assign the saved channel to symbol 10, i.e. the channel
assignment is k = {2, 1, 0} and the transmission power
is µ = {1.4286, 0.1429, 0}. For different noise power level,
taking expectation over fading gain ‖Hn‖2 in (1), we compute
the total mean distortion ε1 + ε2 + ε3 as shown in table I.

Is that the whole story? No. We find that the existing
power allocation becomes sub-optimal because of the channel
allocation. Based on choice 2, if we subtract some transmission
power from symbol 10 to compensate the symbol 1, the
distortion can be further decreased. With the new power
allocation, say µ = {1.3, 0.4, 0}, the result is shown as
the third row in Table I. It indicates that the diversity gain

could save power to help the transmission of other symbols.
Therefore, both the channel use and transmission power should
be explored to enhance the video transmission in fast fading
channel.

B. Problem Statement

Given a set of N chunks with average energy denoted by
λ1...λN . Without loss of generality, we assume λ1 ≥ λ2 ≥
... ≥ λN . Consider the transmission of N coefficients drawn
from the N chunks respectively. Let M and P be the number
of available channels and the total transmission power, and
σ2 be the noise power, we shall find out the optimal channel
allocation k and power allocation ρ that minimize the total
mean distortion. Mathematically, the problem is formulated
into:

min
∑N
n=1 E[εn]

s.t.
∑N
n=1 kn = M

kn ≥ 0, kn ∈ Z∑N
n=1 knρn = P

σ2

ρn ≥ 0, ρn ∈ R

(2)

Here, εn = f(λn, ρn,Hn) is a multivariable function and Hn

depends on the channel allocation kn. The expectation E[εn]
is taken over the source, the channel fading gain and the noise.

The optimization in (2) is a mixed discrete and continuous
programming problem. No general method can be applied to
derive the solution. Therefore, we propose a heuristic approach
which divides this problem into two sub-problems: optimal
power allocation under a determined channel assignment and
channel allocation based on the optimal power allocation.

IV. POWER ALLOCATION

The first sub-problem is the optimal power allocation under
a given channel allocation k and noise power σ2. It is a relaxed
problem of (2) that the objective of the optimization is replaced
by the conditional expectation of distortion.
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min
∑N
n=1 E[εn|k, σ2]

s.t.
∑N
n=1 knρn = P

σ2

ρn ≥ 0, ρ ∈ R
(3)

where the expectation is taken over the channel fading gains

E[εn|k, σ2] =

∫
E[εn|Hn,k, σ

2]d(P(Hn))

=

∫
E[εn|Hn, σ

2]d(P(Hn))
(4)

A. Convexity

First, we shall prove that (3) is a constraint convex opti-
mization problem.

Under independent Rayleigh fading, the fading gain ‖Hn‖2
is a sum of kn independent Chi-square random variables. It is
Gamma distributed, i.e. ‖Hn‖2 ∼ Γ(kn, 1), the probability
density function (pdf) is

p(kn, x) =
1

Γ(kn)
xkn−1e−x (5)

Hence,

E[εn|k, σ2] =

{ ∫∞
0

λn

ρnt+1p(kn, t)dt kn ≥ 1

λn kn = 0
(6)

E[ε2
n|k, σ2] =

{ ∫∞
0

λ2
n

(ρnt+1)2 p(kn, t)dt kn ≥ 1

λ2
n kn = 0

(7)

From Leibniz integral rule, we can derive the first order
and second order partial derivative for kn ≥ 1.

∂E[εn|k, σ2]

∂ρn
= −

∫ ∞
0

λnt

(ρnt+ 1)2
p(kn, t)dt (8)

∂2E[εn|k, σ2]

∂ρ2
n

=

∫ ∞
0

2λnt
2

(ρnt+ 1)3
p(kn, t)dt (9)

When ρn ≥ 0, ∀t > 0, 2λnt
2

(ρnt+1)3 > 0. Therefore,
∂2E[εn|k,σ2]

∂ρ2n
> 0, i.e. E[εn|k, σ2] is a strict convex function

of ρn. Similarly, we can derive that E[ε2
n|k, σ2] is also a strict

convex function of ρn. When ϕ(x) is a convex function, (3)
is a convex optimization problem.

B. Solution

In general, constraint convex optimization problem can be
solved by Lagrangian method. However, we observe that the
derivatives are integral functions and it is difficult to get the
solution to the Lagrangian constraint equations. We propose
to use gradient descent method to solve the problem as shown
in Algorithm 1. For the sake of presentation, we only consider
ϕ(x) = 0 in Algorithm 1 to illustrate the main idea. The
algorithm for other ϕ(x) can be easily derived.

In the description of Algorithm 1, we denote ∗ as the
element wise multiply operation and · as the inner product

Algorithm 1: Optimal power allocation

Data: λ, k, P , σ2

Result: ρ+
n , (n = 1, 2, . . . , N)

1 Initialization: ρ+
n = P

√
λn

σ2
∑N

i=1 ki
√
λi
I(kn);

2 repeat
3 κ = k ∗ I(ρ+);
4 ω = −∂E[εn|κ,σ2]

∂ρ

∣∣
ρ=ρ+ ;

5 θ = α1(ω − κ·ω
‖κ‖2κ);

6 ρ+ = α2max{ρ+ + δθ, 0};
7 D(t) =

∑N
n=1 E[εn|κ, σ2];

8 until ‖D(t) −D(t−1)‖ < ξ;

operation. I(x) is an indicator function that I(x) = 1 if x 6= 0
otherwise I(x) = 0. At first, ρn is initialized with the optimal
power allocation for AWGN channel. During the iteration, the
power allocation should be evolved through the direction θ that
has the largest projection [19] on gradient descent direction ω.

max
∑N
i=1 ωiθi

s.t.
∑N
i=1 κiθi = 0∑N
i=1 θ

2
i = 1

(10)

Through Lagrangian method, we can derive a closed form of
the direction.

θn = α1(ωn − κn
∑N
i=1 κiωi∑N
i=1 κ

2
i

) (11)

where α1 > 0 is the normalization factor that
∑N
i=1 θ

2
i = 1.

It should be noted that the power is a non-negative scalar
and should be lower bound by zero. Due to this bounding,
normalization will be performed if the power of any chunk
is evolved below zero. α2 is the normalization factor that
α2

∑N
i=1 κiρi = P

σ2 . In addition, we virtually set the corre-
sponding channel allocation to zero by line 3 so as to stop
evolving for the zero transmission power chunk.

Although the Algorithm 1 could converge in limited num-
ber of iterations, the integral computation for the expectation
and its partial derivative becomes the bottleneck. Through
analysis, we find an efficient way to compute the integral and
eliminate the concerns on computation cost.

Let’s define

ψ(k, x) =

∫ ∞
0

1

t+ x
tke−tdt (12)

and
η(k, x) =

∫ ∞
0

1

(t+ x)2
tke−tdt (13)

Based on these definition, (6) can be written as

E[εn|k, σ2] =

{ ∫∞
0

λn

ρnt+1
1

Γ(kn) t
kn−1e−tdt kn ≥ 1

λn kn = 0

=

{
λn

Γ(kn)
1
ρn
ψ(kn − 1, 1

ρn
) kn ≥ 1

λn kn = 0

(14)
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The partial derivative is

∂E[εn|k, σ]

∂ρn
=

{
λn

Γ(kn) (− 1
ρ2n

)η(kn,
1
ρn

) ki ≥ 1

0 ki = 0
(15)

Functions ψ(k, x) and η(k, x) can be implemented by
lookup tables to save the computational cost. For each integer
number k, the key (quantized x) of the lookup table is selected
so that the discrete function values are with an interval 0.001.
When looking up the table, the input x is rounded to the
nearest key and the corresponding function value is obtained.
The lookup tables for k = 1, . . . , 100 can be stored in 1 MB
memory.

V. CHANNEL ALLOCATION

The second sub-problem is to find the optimal channel
allocation based on the solution of power allocation. In solving
the problem, we consider both unicast or multicast scenarios.

A. Unicast

For unicast, the noise power can be estimated and fed back
to the sender. Based on the noise power, the sender looks for
the optimal channel assignment to combat the variation caused
by fast fading channel.

min
∑N
n=1 E[εn|σ2]

s.t.
∑N
n=1 kn = M

kn ≥ 0, kn ∈ Z∑N
n=1 knρn = P

σ2

ρn ≥ 0, ρn ∈ R

(16)

As mentioned before, in the power allocation procedure,
the power for some chunks may be evolved to zero. This
means that the channels for these chunks can be assigned
to other chunks to increase their diversity gain. Although
the power allocation indicates whether or not there exists
available channels, where to assign these channels still needs
an exhaustive search. To avoid the complexity of testing all
the combinations, we propose a greedy algorithm based on
the asymptotic analysis of Equation (4).

According to the definition in (12), we find that ψ(k, x) is
an recursive function regarding k. When k ≥ 1, we can derive

ψ(k, x) =

∫ ∞
0

t

t+ x
tk−1e−tdt

=

∫ ∞
0

tk−1e−tdt− x
∫ ∞

0

1

t+ x
tk−1e−tdt

= Γ(k)− xψ(k − 1, x)

(17)

where Γ(·) is the Gamma function. When k = 0, we have

ψ(0, x) =

∫ ∞
0

1

t+ x
e−tdt = ex

∫ ∞
x

1

t
e−tdt

= −exEi(−x)

(18)

where Ei(−x) is the exponential integral function. It can be
represented by two series according to the value of x. For
small x, by integrating the Taylor series,

−exEi(−x) = −ex
[
γ + log x+

+∞∑
m=1

(−x)m

mΓ(m+ 1)

]
(19)

Algorithm 2: Greedy Algorithm for Channel Allocation

Data: λ, P , σ2

Result: k+
n , ρ+

n (n = 1, 2, . . . , N)
1 Initialization: St = {1}, nd = N , k+

n = 1;
2 compute ρ+

n and D(0) by Algorithm 1 with k+
n ;

3 repeat
4 for nt ∈ St do
5 set κ = k+, κnt

= κnt
+ 1 and κnd

= κnd
− 1;

6 compute ρ and D by Algorithm 1 with κ;
7 end
8 D(t) = min{D};
9 if D(t) < D(t−1) then

10 k+ = κ with min{D};
11 ρ+ = ρ with min{D};
12 if k+

nd
== 0 then

13 nd = nd − 1
14 end
15 St = {1}

⋃
{n|k+

n < k+
n−1, 2 ≤ n < nd};

16 end
17 until D(t) > D(t−1);

where γ is the Euler-Mascheroni constant. For large x, there
is a divergent approximation,

−exEi(−x) ≈ −
+∞∑
m=1

Γ(m)(−x)−m (20)

Based on these two series, we can analyze the asymptotic
property of (4) for small and large noise power, respectively.
From the recursion in (17), ψ(k, x) can be written as

xψ(k − 1, x) = Γ(k)− ψ(k, x)

= Γ(k)− (−x)k(−exEi(−x))−
k−1∑
m=0

(−x)mΓ(k −m)

(21)

Let’s define

Ψ(k, x) ,
1

Γ(k)
xψ(k − 1, x)

= 1− −e
xEi(−x)

Γ(k)
(−x)k −

k−1∑
m=0

Γ(k −m)

Γ(k)
(−x)m

(22)

When x→ +∞,

Ψ(k, x) ≈
+∞∑
m=1

Γ(m)

Γ(k)
(−x)k−m −

k−1∑
m=1

Γ(k −m)

Γ(k)
(−x)m

= 1 +

+∞∑
m=1

Γ(k +m)

Γ(k)
(−x)m

= 1− k

x
+ o(

1

x2
)

(23)

When x→ 0, ex ≈ 1.
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Ψ(k, x) ≈ (−x)k

Γ(k)
[γ + log x+ o(x)]−

k−1∑
m=1

Γ(k −m)

Γ(k)
(−x)m

=
x

ξ(k)
+ o(x2)

(24)

where

ξ(k) =

{
1

− log x−γ k = 1

k − 1 k ≥ 2

is an increasing function of k.

Since (6) can be represented by

E[εn|k, σ2] = λn

(
1− ψ(kn, 1/ρn)

Γ(kn)

)
= λnΨ(kn, 1/ρn)

(25)

Therefore, ∀kn ≥ 1, we have

E[εn|k, σ2] ≈

{
λn

ξ(kn)ρn
σ2 → 0

λn(1− knρn) σ2 →∞
(26)

We have assumed that the mean energy of the chunks are
in descending order, i.e. λ1 ≥ λ2 ≥ . . . ≥ λN . For both
cases, to achieve the minimum sum of mean distortion with
the constraint

∑N
n=1 knρn = P

σ2 , the product of knρn should
be in descending order too, i.e. k1ρ1 ≥ k2ρ2 ≥ . . . ≥ kNρN .
This condition could be easily achieved if the channel uses are
in descending order, i.e. k1 ≥ k2 ≥ . . . ≥ kN . Therefore, we
develop a greedy algorithm for problem (16) which satisfies
this strict constraint.

The algorithm is described in Algorithm 2. The channel
allocation is evolved from the initial value of one channel use
per coefficient. In each iteration, we take one channel use from
the least important chunk being transmitted and try to assign
it to more important chunks. In this re-allocation procedure,
we keep kn’s in descending order. With this constraint, the
number of possible positions to allocate the channel use is
dramatically decreased. The distortions of all possible choices
are evaluated, and the one with the minimum distortion will
be selected as the result of current iteration. We continue this
process until the minimum distortion does not decrease any
more.

B. Multicast

For multicast, the noise power is heterogeneous among
different receivers. The channel allocation should consider the
overall performance rather than the performance of a specific
receiver. The heterogeneous condition is modelled as a discrete
set of noise power, the distribution of which is known to the
sender. The problem can be formulated as:

min
∑N
n=1 E[εn]

s.t.
∑N
n=1 kn = M

kn ≥ 0, kn ∈ Z∑N
n=1 kng

2
nλn = P

gn ≥ 0, gn ∈ R

(27)

Algorithm 3: Channel Allocation for Multicast
Data: λ, P , S = {σ2|P(σ2)}
Result: k+

n , ρ+
n (n = 1, 2, . . . , N)

1 for σ2 ∈ S do
2 find k and ρ by Algorithm 2;
3 compute E[D] =

∑
σ2 P(σ2)

∑N
n=1 E[εn|k, σ2];

4 end
5 k+ = k with min E[D];
6 ρ+ = ρ with min E[D];

Based on Algorithm 2, the channel allocation problem for
multicast session can be easily solved by Algorithm 3. Please
note that, the solution can be extended to other applications,
such as video pricing, by simply replacing the optimization
objective.

VI. EVALUATION

We carry out the evaluation based on monochrome CIF
video sequences, with a resolution of 352 × 288, and the
frame rate 30 fps (frame per second). A simple calculation
would tell that the source bandwidth is 1.52 MHz (in complex
symbols). Similar to the test sequence used in SoftCast [7],
our test sequence is composed of multiple standard video
test sequences including ’akiyo’, ’bus’, ’coastguard’, ’crew’,
’football’, ’foreman’, ’news’, ’harbour’,’husky’,’ice’. They are
indexed from 1 to 10.

Since this paper focuses on the transmission for uncoded
video, SoftCast is considered as a reference system. With suffi-
cient bandwidth, Softcast does not drop any chunks, regardless
of the receiver’s noise power. When such information is
available at the sender, we extend Softcast such that the sender
drops less important chunks according to the noise power
using the formulas given in [12]. We name this extension as
Softcast+. For a fair comparison, all systems use GOP size 4
and equal chunk division with 8×8 chunks per frame. We use
Rayleigh fading channel model with unit mean power for the
evaluation, i.e. hm ∼ CN (0, 1) and adopt AWGN model to
generate random noise. The number of available channel uses
is assumed to be equal to source bandwidth.

We use the objective video quality assessment, peak signal-
to-noise ratio (PSNR) in dB, as the evaluation metric. The
PSNR of a frame is PSNR = 10 log10

2552

MSE , where MSE is the
mean squared error over all pixels in a frame. The PSNR of a
sequence is the average PSNR over all frames.

A. Micro-Benchmark

This subsection is devoted to explain the observations and
conclusions drawn from analysis in previous sections. Due to
space limit, we only present results of sequence ’foreman’ on
channel SNR 10dB. Similar results are obtained for other video
sequences and on other channel SNR values.

1) Power allocation: This experiment shows our resource
allocation results and demonstrates the difference between the
proposed algorithm and Softcast in power allocation. Fig. 2
contains four sub-figures. The first sub-figure depicts the
channel assignment for each chunk. To ensure stability, the
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Fig. 2. Resource allocation result of the proposed scheme and the comparison
with Softcast

first and second chunk of a GOP are allocated with 12 and
5 transmission opportunities, respectively. It is clear that the
channel allocation possesses a stair-step shape. Around half of
the chunks are not assigned transmission opportunity in order
to save the channel uses for HP chunks. Although not shown
in the figure, experiments over other channel SNRs show that
more chunks are discarded under poorer channel conditions
and less chunks are discarded under better channel conditions.

The second sub-figure plots the energy (or variance) of
each chunk in descending order. The third and fourth sub-
figures compare the per-slot energy allocation (ρ) and per-
coefficient energy allocation (kρ) between our scheme and
Softcast. An obvious difference between the two schemes is
that Softcast keeps ρ proportional to λ while our scheme
keeps kρ proportional to λ. Intuitively, when an HP chunk
has diversity gain, its overall energy expenditure could be
reduced, and the saved power could be allocated to LP chunks
to improve the overall performance. This experiment shows
that our power allocation result is in good agreement with the
intuition.

2) Channel allocation: The channel allocation results
shown in Fig. 3 note two observations. First, power allocation
algorithm has a perceptible impact on the channel allocation
algorithm. This supports our claim that channel allocation
should be jointly designed with power allocation. The second
sub-figure is obtained by replacing our power allocation with
Softcast power allocation in Algorithm 2. Softcast power allo-
cation neglects the power saving benefits of diversity gain, and
continues to allocate a large amount of power to HP chunks
even if they have high diversity gain. As such, the power
expenditure on LP chunks will be dramatically decreased.
As a result, the channel allocation algorithm becomes more
conservative in increasing the diversity gain of HP chunks.
Comparing the first and the second sub-figure, we can find
that by using Softcast power allocation, less LP chunks are
discarded, and the first a few HP chunks are only allocated
with 4 channel use.

The second observation is that the simplifications we made
in channel allocation algorithm and implementation have a
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Fig. 3. Simplifications in channel allocation algorithm and implementation
do not incur loss.

negligible impact on the results. In the proposed channel
allocation algorithm (Algorithm 2), we progressively increase
the diversity gain for HP chunks, and the number of candidate
chunks in each iteration is limited by the proposed constraint
k1 ≥ k2 ≥ ... ≥ kN . In this experiment, we test the full search
option and present the result in the third sub-figure. In addition,
we have implemented the integral computation of expected
distortion and the first derivative of expected distortion through
lookup tables. We evaluate the effect of such approximation
through comparing the result with using precise computation.
Almost identical channel allocation result in the first and fourth
sub-figures shows that using lookup tables do not incur any
loss.

B. System Comparison

We implement a video transmission system based on
the proposed resource allocation algorithms, and compare its
performance against Softcast and Softcast+. Both Unicast and
Multicast scenarios are considered.

1) Unicast: For Unicast transmission, it is assumed that
the sender has the information of receiver noise power. At
typical signal-to-noise ratios, including 5dB, 10dB, 20dB and
30dB, we carry out 1000 test runs for each GOP of the test
videos. Then the average PSNR and the PSNR fluctuation
range are computed and compared among our system, Softcast
and Softcast+. The PSNR fluctuation range is defined by the
5th and 95th percentiles of the achieved PSNR in 1000 test
runs. The 5th percentile PSNR is also called the outage PSNR
as an indication to the robustness of a video transmission
system.

From the results shown in Fig. 4, we find that our system
not only achieves better average performance but is more
stable than Softcast and Softcast+. Softcast+ only has marginal
performance improvement over Softcast. At the four typical
SNRs, our system achieves 1.9 dB, 2.2 dB, 2.2 dB and 0.9 dB
gain over Softcast in average PSNR, respectively. In addition,
our system achieves striking 4.2 dB, 5.2 dB, 5.9 dB and 5.0
dB gain over Softcast in outage PSNR.
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Fig. 4. Comparing the video quality and stablity with Softcast and Softcast+.

2) Multicast: Multicast is an important application scenario
of wireless video transmission. In a multicast session, receivers
have different receive noise power. Therefore, it is impossible
to optimize the performance for all receivers. This experiment
evaluates the performance tradeoffs achieved among different
receivers. To run our system and Softcast+, we would set
a target SNR and allocate resources accordingly. Then, the
performance at receives whose actual SNRs range from 5dB
to 30dB are evaluated.

Table II provides the average PSNR and the variance
of PSNR (over 10 test sequences) achieved by the three
comparing systems (index 1, 2 and 3 denotes the proposed
system, Softcast and Softcast+ respectively). As Softcast is
a one-size-fits-all design, its result only occupies one row in
the Table. As a matter of fact, Softcast assumes zero noise

TABLE II. THE MEAN AND VARIANCE PAIR OF VIDEO PSNR
ACHIEVED BY THREE COMPARING SYSTEMS (1: PROPOSED, 2: SOFTCAST,

3: SOFTCAST+)

Target Actual Es/N0
5dB 10dB 20dB 30dB

1

5dB 30.56, 0.32 33.81, 0.26 37.55, 0.10 38.35, 0.03
10dB 30.48, 0.39 34.30, 0.35 40.18, 0.21 42.11, 0.07
20dB 29.96, 0.62 33.95, 0.62 42.14, 0.59 48.11, 0.41
30dB 30.04, 0.76 33.76, 0.79 41.63, 0.83 49.23, 0.96

2 any 28.69, 1.69 32.12, 1.79 39.93, 2.00 48.29, 2.33

3

5dB 28.94, 1.64 32.22, 1.69 39.12, 1.62 44.38, 1.14
10dB 28.82, 1.68 32.23, 1.76 39.86, 1.91 47.50, 1.97
20dB 28.70, 1.69 32.14, 1.79 39.94, 1.99 48.28, 2.32
30dB 28.69, 1.69 32.13, 1.79 39.93, 2.00 48.29, 2.33

power at the receiver, so its performance is almost identical
to Softcast+ when the latter’s target SNR is 30dB. It can be
seen from the Table that our system achieves a much smaller
variance than the other two systems while the average PSNR
performance is superior. When the target SNR is 30dB, our
system achieves 1.35dB, 1.64dB, 1.70dB and 0.94dB gain in
average PSNR over Softcast for receivers with actual SNR of
5dB, 10dB, 20dB and 30dB. The gain in outage PSNR is as
large as 5.3 dB on average. Overall, our system achieves the
design goal of robust and efficient video transmission.

VII. RELATED WORK

A. Uncoded video transmission systems

The pioneer work Softcast arouses a surge of interest in
uncoded video transmission systems. Follow-up works include
ParCast [4], Dcast [9], [5], and Cactus [6]. These systems share
the same core modules with Softcast, but differ from each other
in the way to remove or utilize the source redundancy. Among
these works, Parcast is the most related one to our research.
It concerns the uncoded video transmission across MIMO-
OFDM channel. The basic idea is to separate the MIMO-
OFDM channel into a set of orthogonal subchannels and then
match the more important source (belonging to a Gaussian
distribution with larger variance) to higher gain subchannel.
Let si be the ith largest channel gain, then the optimal power
allocation is to scale each coefficient with a factor proportional
to (λis

2
i )
− 1

4 . Although Parcast considers fading channels, it
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assumes availability of transmit CSI and therefore can only be
applied to Unicast communications.

B. Theoretical work on analog JSCC

There has been a large body of theoretical work on analog
JSCC, among which linear coding and single-letter coding
have attracted the most attention for their simplicity and low
delay. At the intersection of these two coding schemes, there is
the uncoded transmission strategy in which no compression or
channel coding is used and the source samples are transmitted
by appropriately scaling according to the transmitter power
constraint P . Surprisingly, such a simple strategy has been
shown to achieve optimality in certain practical cases [10],
[11]. A famous example is to transmit a uniform-distributed
binary source with Hamming distance distortion metric over
a binary symmetric channel. Another one is to transmit a
Gaussian source with squared-error distortion metric over an
AWGN channel.

The uncoded transmission strategy concerned in this re-
search is slightly different from the above two examples,
because the source under consideration is modeled by mixed-
Gaussian. Source samples belonging to different Gaussian
distributions should be scaled by different factors to achieve
optimality. Lee and Petersen [12] have carried out comprehen-
sive investigation on this optimal linear coding problem, and
Softcast and Parcast are straightforward implementations based
on their obtained results. Unfortunately, Lee and Petersen do
not consider the case when the fading channel parameter is
not available at the transmitter.

Considering the fading channels, and under a more real-
istic assumption that the receiver has perfect CSI while the
transmitter has only statistical information about the channel
state, Kashyap et al. [13] have derived the performance of
linear coding scheme. They find that, for the Rayleigh fading
channel, while linear coding is suboptimal in general, it is
close to optimal in the low SNR regime. Xiao et al. [14] have
also considered the linear coding of a discrete memoryless
Gaussian source transmitted through a discrete memoryless
fading channel with AWGN. They show that among all single-
letter codes, linear coding achieves the smallest MSE. How-
ever, these works do not consider the mixed-Gaussian source.

Although there are other non-linear JSCC strategies [15]
and semianalog strategies [16], [17] that have shown near-
optimal performance, we focus this research on linear analog
(near-uncoded) coding strategies for their simplicity. In partic-
ular, we are interested in transmitting mixed-Gaussian source
over fast fading channels, a problem rooted from wireless
video communications.

VIII. CONCLUSION

This paper presents the design of robust uncoded video
transmission over fast fading channels. Based on the observa-
tion that increasing the channel diversity of HP data is essential
to increasing the transmission robustness, we have designed a
channel allocation algorithm under total resource constraint.
Further, we have found that channel allocation and power
allocation should be jointly performed to achieve the optimum
performance. In future, we plan to study the resource allocation
problem in MIMO fast fading channel.
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