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Figure 1: An SLR Camera instrumented with our image deblurring attachment that uses inertial measurement sensors and the input image
in an “aided blind-deconvolution” algorithm to automatically deblur images with spatially-varying blurs (first two images). A blurry input
image (third image) and the result of our method (fourth image). The blur kernel at each corner of the image is shown at 2× size.

Abstract
We present a deblurring algorithm that uses a hardware attachment
coupled with a natural image prior to deblur images from consumer
cameras. Our approach uses a combination of inexpensive gyro-
scopes and accelerometers in an energy optimization framework to
estimate a blur function from the camera’s acceleration and angular
velocity during an exposure. We solve for the camera motion at a
high sampling rate during an exposure and infer the latent image
using a joint optimization. Our method is completely automatic,
handles per-pixel, spatially-varying blur, and out-performs the cur-
rent leading image-based methods. Our experiments show that it
handles large kernels – up to at least 100 pixels, with a typical size
of 30 pixels. We also present a method to perform “ground-truth”
measurements of camera motion blur. We use this method to vali-
date our hardware and deconvolution approach. To the best of our
knowledge, this is the first work that uses 6 DOF inertial sensors
for dense, per-pixel spatially-varying image deblurring and the first
work to gather dense ground-truth measurements for camera-shake
blur.

1 Introduction
Intentional blur can be used to great artistic effect in photography.
However, in many common imaging situations, blur is a nuisance.
Camera motion blur often occurs in light-limited situations and is
one of the most common reason for discarding a photograph. If
the blur function is known, the image can be improved by de-
blurring it with a non-blind deconvolution method. However, for
most images, the blur function is unknown and must be recov-
ered. Recovering both the blur or “point-spread function” (PSF)
and the desired deblurred image from a single blurred input (known
as the blind-deconvolution problem) is inherently ill-posed, as the
observed blurred image provides only a partial constraint on the
solution.

Prior knowledge about the image or kernel can disambiguate
the potential solutions and make deblurring more tractable [Fergus

et al. 2006]. Most current approaches use image priors modeled
from local image statistics. While these approaches have shown
some promise, they have some limitations: they generally assume
spatially invariant blur, have long run times, cannot be run on high-
resolution images, and often fail for large image blurs. One of
the most significant aspects of camera-shake blur that recent work
has overlooked is that the blur is usually not spatially invariant.
This can be depth-dependent due to camera translation, or depth-
independent, due to camera rotation. Furthermore, image-based
methods cannot always distinguish unintended camera-shake blur
from intentional defocus blur, e.g., when there is an intentional
shallow depth of field. As many methods treat all types of blur
equally, intentional defocus blur may be removed, creating an over-
sharpened image.

We address some of these limitations with a combined hardware
and software-based approach. We have present a novel hardware
attachment that can be affixed to any consumer camera. The device
uses inexpensive gyroscopes and accelerometers to measure a cam-
era’s acceleration and angular velocity during an exposure. This
data is used as an input to a novel “aided blind-deconvolution” al-
gorithm that computes the spatially-varying image blur and latent
deblurred image. We derive a model that handles spatially-varying
blur due to full 6-DOF camera motion and spatially-varying scene
depth; however, our system assumes spatially invariant depth.

By instrumenting a camera with inertial measurement sensors,
we can obtain relevant information about the camera motion and
thus the camera-shake blur; however, there are many challenges in
using this information effectively. Motion tracking using inertial
sensors is prone to significant error when tracking over an extended
period of time. This error, known as “drift”, occurs due to the in-
tegration of the noisy measurements, which leads to increasing in-
accuracy in the tracked position over time. As we will show in
our experiments, using inertial sensors directly is not sufficient for
camera tracking and deblurring.

Instead, we use the inertial data and the recorded blurry image
together with an image prior in a novel “aided blind-deconvolution”
method that computes the camera-induced motion blur and the la-
tent deblurred image using an energy minimization framework. We
consider the algorithm to be “aided blind-deconvolution”, since it
is only given an estimate of the PSF from the sensors. Our method
is completely automatic, handles per-pixel, spatially-varying blur,
out-performs current leading image-based methods, and our exper-
iments show it handles large kernels – up to 100 pixels, with a typ-
ical size of 30 pixels.
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As a second contribution, we expand on previous work and
develop a validation method to recover “ground-truth”, per-pixel
spatially-varying motion blurs due to camera-shake. We use this
method to validate our hardware and blur estimation approach, and
also use it to study the properties of motion blur due to camera
shake.

Specifically, our work has the following contributions: (1) a
novel hardware attachment for consumer cameras that measures
camera motion, (2) a novel aided blind-deconvolution algorithm
that combines a natural image prior with our sensor data to estimate
a spatially-varying PSF, (3) a deblurring method that using a novel
spatially-varying image deconvolution method to only remove the
camera-shake blur and leaves intentional artistic blurs (i.e., shallow
DOF) intact, and (4) a method for accurately measuring spatially-
varying camera-induced motion blur.

2 Related Work
Image deblurring has recently received a lot of attention in the com-
puter graphics and vision communities. Image deblurring is the
combination of two tightly coupled sub-problems: PSF estimation
and non-blind image deconvolution. These problems have been ad-
dressed both independently and jointly [Richardson 1972]. Both
are longstanding problems in computer graphics, computer vision,
and image processing, and thus the entire body of previous work in
this area is beyond what can be covered here. For a more in depth
review of earlier work in blur estimation, we refer the reader to the
survey paper by Kundur and Hatzinakos [1996].

Blind deconvolution is an inherently ill-posed problem due to the
loss of information during blurring. Early work in this area signif-
icantly constrained the form of the kernel, while more recently, re-
searchers have put constraints on the underlying sharp image [Bas-
cle et al. 1996; Fergus et al. 2006; Yuan et al. 2007; Joshi et al.
2008]. Alternative approaches are those that use additional hard-
ware to augment a camera to aid in the blurring process [Ben-Ezra
and Nayar 2004; Tai et al. 2008; Park et al. 2008].

The most common commercial approach for reducing image blur
is image stabilization (IS). These methods, used in high-end lenses
and now appearing in lower-end point and shoot cameras, use me-
chanical means to dampen camera motion by offsetting lens ele-
ments or translating the sensor. IS methods are similar to our work
in that they use inertial sensors to reduce blur, but there are several
significant differences. Fundamentally, IS tries to dampen motion
by assuming that the past motion predicts the future motion [Canon
1993]; however, it does not counteract the actual camera motion
during an exposure nor does it actively remove blur – it only re-
duces blur. In contrast, our method records the actual camera mo-
tion and removes the blur from the image. A further difference
is that IS methods can only dampen 2D motion, e.g., these meth-
ods will not handle camera roll, while our method can handle six
degrees of motion. That said, our method could be used in conjunc-
tion with image stabilization, if one were able to obtain readings of
the mechanical offsetting performed by the IS system.

Recent research in hardware-based approaches to image deblur-
ring modify the image capture process to aid in deblurring. In this
area, our work is most similar to approaches that uses hybrid cam-
eras [Ben-Ezra and Nayar 2004; Tai et al. 2008], which track cam-
era motion using data from a video camera attached to a still cam-
era. This work compute a global frame-to-frame motion to cal-
culate the 2D camera motion during the image-exposure window.
Our work is similar, since we also track motion during the expo-
sure window; however, we use inexpensive, small, and lightweight
sensors instead of a second camera. This allows us to measure more
degrees of camera motion at a higher-rate and lower cost. Another
difficulty of the hybrid camera approach that we avoid is that it can
be difficult to get high-quality, properly exposed images out of the
video camera in the low light conditions where image blur is preva-

lent. We do, however, use a modified form of Ben-Ezra and Nayar’s
work in a controlled situation to help validate our estimated camera
motions.

Also similar to our work is that of Park et al. [2008], who use a
3-axis accelerometer to measure motion blur. The main difference
between our work and theirs is that we additionally measure 3 axes
of rotational velocity. As we discuss later, we have found 3 axes of
acceleration insufficient for accurately measuring motion blur, as
rotation is commonly a significant part of the blur.

Our work is complementary to the hardware-based deblurring
work of Levin el al.’s [2008], who show that by moving a camera
along a parabolic arc, one can create an image such that 1D blur
due to objects in the scene can be removed regardless of the speed
or direction of motion. Our work is also complementary to that of
Raskar et al. [2006], who developed a fluttered camera shutter to
create images with blur that was more easily inverted.

3 Deblurring using Inertial Sensors
In this section, we describe the design challenges and decisions for
building our sensing platform for image deblurring. We first review
the image blur process from the perspective of the six degree motion
of a camera. Next we give an overview of camera dynamics and
inertial sensors followed by our deblurring approach.

3.1 Camera Motion Blur

Spatially invariant image blur is modeled as the convolution of a
latent sharp image with a shift-invariant kernel plus noise, which is
typically considered to be additive white Gaussian noise. Specifi-
cally, blur formation is commonly modeled as:

B = I ⊗K +N, (1)

where K is the blur kernel, N ∼ N (0, σ2) is the noise. With
a few exceptions, most image deblurring work assumes a spatially
invariant kernel; however, this often does not hold in practice [Joshi
et al. 2008; Levin et al. 2009]. In fact there are many properties of a
camera and a scene that can lead to spatially-varying blur: (1) depth
dependent defocus blur, (2) defocus blur due to focal length varia-
tion over the image plane, (3) depth dependent blur due to camera
translation, (4) camera roll motion, and (5) camera yaw and pitch
motion when there are strong perspective effects. In this work, our
goal is to handle only camera induced motion blur, i.e., spatially-
varying blur due to the last three factors.

First, let us consider the image a camera captures during its ex-
posure window. The intensity of light from a scene point (X,Y, Z)
at an instantaneous time t is captured on the image plane at a lo-
cation (ut, vt), which is a function of the camera projection matrix
Pt. In homogenous coordinates, this can be written as:

(ut, vt, 1)T = Pt(X,Y, Z, 1)T . (2)

If there is camera motion, Pt varies with time as a function of
camera rotation and translation causing fixed points in the scene
to project to different locations at each time. The integration of
these projected observations creates a blurred image, and the pro-
jected trajectory of each point on the image plane is that point’s
point-spread function (PSF). The camera projection matrix can be
decomposed as:

Pt = KΠEt, (3)
where K is the intrinsics matrix, Π is the canonical perspective
projection matrix, and Et is the time dependent extrinsics matrix
that is composed of the camera rotation Rt and translation Tt. In
the case of image blur, it is not necessary to consider the absolute
motion of the camera, only the relative motion and its effect on the
image. We model this by considering the planar homography that
maps the initial projection of points at t = 0 to any other time t,
i.e., the reference coordinate frame is coincident with the frame at
time t = 0:
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Figure 2: Our image deblurring algorithm: First the sensor data is used to compute an initial guess for the camera motion. From this, we
use the image data to search for a small perturbation of the x and y end points of the camera translation, to overcome drift. Using this result,
we compute the spatially-varying blur matrix and deconvolve the image.

Ht(d) = [K(Rt +
1

d
TtN

T )K−1] (4)

(ut, vt, 1)T = Ht(d)(u0, v0, 1)T , (5)

for a particular depth d, whereN is the unit vector that is orthogonal
to the image plane.

Thus given an image I at time t = 0, the pixel value of any
subsequent image is:

It(ut, vt) = I(Ht(d)(u0, v0, 1)T ). (6)

This image warp can be re-written in matrix form as:

~It = At(d)~I, (7)

where ~It and ~I are column-vectorized images andAt(d) is a sparse
re-sampling matrix that implements the image warping and resam-
pling due to the homography. Each row of At(d) contains the
weights to compute the value at pixel (ut, vt) as the interpolation
of the point (u0, v0, 1)T = Ht(d)−1(ut, vt, 1)T – we use bilinear
interpolation, thus there are four values per row. We can now de-
fine an alternative formulation for image blur as the integration of
applying these homographies over time:

~B =

∫ s

0

[
At(d)~Idt

]
. (8)

The spatially invariant kernel in Equation 1 is now replaced by a
spatially-variant blur represented by a sparse-matrix:

A(d) =

∫ s

0

At(d)dt, (9)

our spatially-varying blur model is given by:

~B = A(d)~I +N. (10)

Thus, the camera-induced, spatially-varying blur estimation pro-
cess is reduced to estimating the rotations R and translations T for
times [0...t], the scene depths d, and the camera intrinsics K. By
representing the camera-shake blur in the six degrees of motion of
the camera, instead of purely in the image plane, the number of un-
knowns is reduced significantly – there are six unknowns per each
of M time-steps, an unknown depth per-pixel (w × h unknowns),
and the camera intrinsics, of which the focal length is the most im-
portant factor. This results in 6M +wh+ 1 unknowns as opposed
to an image-based approach that must recover an k × k kernel for
each pixel, resulting in k2 × wh unknowns. In practice, since we
assume a single depth for the scene, the unknowns in our system
reduce to 6M + 2.

3.2 Spatially-Varying Deconvolution

If these values are known, the image can be deblurred using non-
blind deconvolution. We modify the formulation of Levin et
al. [2007] to use our spatially-varying blur model. We formulate
image deconvolution using a Bayesian framework and find the most

likely estimate of the sharp image I , given the observed blurred im-
age B, the blur matrix A, and noise level σ2 using a maximum a
posteriori (MAP) technique.

We express this as a maximization over the probability distribu-
tion of the posterior using Bayes’ rule. The result is a minimization
of a sum of negative log likelihoods:

P (I|B,A) = P (B|I)P (I)/P (B) (11)
argmax

I
P (I|B) = argmin

I
[L(B|I) + L(I)]. (12)

The problem of deconvolution is now reduced to minimizing the
negative log likelihood terms. Given the blur formation model
(Equation 1), the “data” negative log likelihood is:

L(B|I) = || ~B −A(d)~I||2/σ2. (13)

The contribution of our deconvolution approach is this new data
term that uses the spatially-varying model derived in the previous
section.

Our “image” negative log likelihood is the same as Levin et al.’s
[2007] sparse gradient penalty, which enforces a hyper-Laplacian
distribution: L(I) = λ||∇I||0.8. The minimization is performed
using iteratively re-weighted least-squares [Stewart 1999].

3.3 Rigid Body Dynamics and Inertial Sensors
As discussed in the previous section, camera motion blur is depen-
dent on rotations R and translations T for times [0...t], the scene
depths d, and camera intrinsics K. In this section, we discuss how
to recover the camera rotations and translations, and in Section 4.2
we address recovering camera intrinsics.

Any motion of a rigid body and any point on that body can be
parameterized as a function of six unknowns, three for rotation and
three for translation. We now describe how to recover these quan-
tities given inertial measurements from accelerometers and gyro-
scopes.

Accelerometers measure the total acceleration at a given point
along an axis, while gyroscopes measure the angular velocity at a
given point around an axis. Note that for a moving rigid body, the
pure rotation at all points is the same, while the translations for all
points is not the same when the body is rotating.

Before deriving how to compute camera motion from inertial
measurements, we first present our notation, as summarized in Ta-
ble 1.

A rigid body, such as a camera, with a three axis accelerome-
ter and three axis gyroscope (three accelerometers and gyroscopes
mounted along x, y, and z in a single chip, respectively) measures
the following accelerations and angular velocities:

~ωt
t=

tRi ∗ ~ωi
t (14)

~atp=tRi
(
~ait + ~gi + (~ωi

t × (~ωi
t × ~rqp)) + (~αi

t × ~rqp)
)
. (15)

The measured acceleration is the sum of the acceleration due to
translation of the camera, centripetal acceleration due to rotation,
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Symbol Description
tRi Initial to current frame

~θit, ~ωi
t, ~αi

t Current angular pos., vel., and accel. in initial frame
~ωt
t Current angular vel. in the current frame

~xit,~vit,~ait Current pos., vel. and accel. in the initial frame
~atp Accel. of the accelerometer in the current frame
~xip Position of the accelerometer in the initial frame
~rqp Vector from the accelerometer to center of rotation
~gi Gravity in the camera’s initial coordinate frame

Table 1: Quantities in bold indicate measured or observed values.
Note that these are vectors, i.e., three axis quantities. The “super-
script” character indicates the coordinate system of a value and the
“subscript” indicates the value measured.

the tangential component of angular acceleration, and gravity, all
rotated into the current frame of the camera. The measured angular
velocity is the camera’s angular velocity also rotated in the current
frame of the camera. To recover the relative camera rotation, it is
necessary to recover the angular velocity for each time-step t in the
coordinate system of the initial frame ~ωi

t, which can be integrated to
get the angular position. To recover relative camera translation, we
need to first compute the accelerometer position for each time-step
relative to the initial frame. From this, we can recover the camera
translation.

The camera rotation can be recovered by sequentially integrating
and rotating the measured angular velocity into the initial camera
frame.

~θit=(iRt−1~ωt−1
t−1)∆t+ ~θit−1 (16)

tRi=angleAxisToMat(~θit), (17)

where “angleAxisToMat” converts the angular position vector
to a rotation matrix. Since we are only concerned with relative
rotation, the initial rotation is zero:

~θit=0 = 0, t=0Ri = Identity. (18)

Once the rotations are computed for each time-step, we can com-
pute the acceleration in the initial frame’s coordinate system:

~aip = iRt~atp, (19)

and integrate the acceleration, minus the constant acceleration of
gravity, to get the accelerometer’s relative position at each time-
step:

~vip(t) = (~aip(t− 1)− ~gi)∆t+ ~vip(t− 1) (20)

~xip(t) = 0.5 ∗ (~aip(t− 1)− ~gi)∆t2 (21)

+ ~vip(t− 1)∆t+ ~xip(t− 1).

As we are concerned with relative position, we set the initial posi-
tion to zero, and we also assume that the initial velocity is zero:

~xip(0) = ~vip(0) = [0, 0, 0]. (22)

The accelerometers’ translation (its position relative to the initial
frame) in terms of the rigid body rotation and translation is:

~xip(t) = tRi~xip(0) + ~xit. (23)

Given this, we can compute the camera position at time t:

~xit = tRi~xip(0)− ~xip(t). (24)

In Equation 20, it is necessary to subtract the value of gravity in
the initial frame of the camera. We note, however, that the initial
rotation of the camera relative to the world is unknown, as the gy-
roscopes only measure velocity. The accelerometers can be used to
estimate the initial orientation if the camera initially has no exter-
nal forces on it other than gravity. We have found this assumption
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Figure 3: The rigid-body dynamics of our camera setup.

unreliable, so we instead make the assumption that the measured ac-
celeration is normally distributed about the constant force of grav-
ity. We have found this reliable when the camera motion is due to
high-frequency camera-shake. Thus we set the direction of mean
acceleration vector as the direction of gravity:

~gi = mean(~aip(t), [0...T ])). (25)

To summarize, the camera rotation and translation are recovered
by integrating the measured acceleration and angular velocities that
are rotated into the camera’s initial coordinate frame. This gives
us the relative rotation and translation over time, which is used to
compute the spatially-varying PSF matrix in Equation 10. If the
measurements are noise-free, this rotation and motion information
is sufficient for deblurring; however, in practice, the sensor noise
introduces significant errors. Furthermore, even if the camera mo-
tion is known perfectly, one still needs to know the scene depth, as
discussed in Section 3. Thus additional steps are needed to deblur
an image using the inertial data.

3.4 Drift Compensation and Deconvolution
It is well known that computing motion by integrating differential
sensors can lead to drift in the computed result. This drift is due to
the noise present in the sensor readings. The integration of a noisy
signal leads to a temporally increasing deviation of the computed
motion from the true motion.

We have measured the standard deviation of our gyroscope’s
noise to be 0.5deg/s and the accelerometer noise is 0.006m/s2,
using samples from when the gyroscopes and accelerometers are
held stationary (at zero angular velocity and constant acceleration,
respectively) . In our experiments, there is significantly less drift in
rotation, due to the need to perform only a single integration step
on the gyroscope data. The necessity to integrate twice to get posi-
tional data from the accelerometers causes more drift.

To get a high-quality deblurring results, we must overcome the
drift. We propose a novel aided blind deconvolution algorithm that
computes the camera-motion, and in-turn the image blur function,
that best matches the measured acceleration and angular velocity
while maximizing the likelihood of the deblurred latent image ac-
cording to a natural image prior.

Our deconvolution algorithms compensate for positional drift by
assuming it is linear in time, which can be estimated if one knows
the final end position of the camera. We assume the rotational drift
is minimal. The final camera position is, of course, unknown; how-
ever, we know the drift is bounded and thus the correct final position
should lie close to our estimate from the sensor data. Thus in con-
trast to a traditional blind-deconvolution algorithm that solves for
each value of a kernel or PSF, our algorithm only has to solve for
a few unknowns. We solve for these using an energy minimization
framework that performs a search in a small local neighborhood
around the initially computed end point.
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In our experiments, we have found that the camera travels on the
order of a couple millimeters during a long exposure (the longest we
have tried is a 1/2 second). We note that a few millimeter translation
in depth (z) has little effect on the image for lenses of common fo-
cal lengths, thus the drift in x and y is the only significant source of
error. We set our optimization parameters to search for the optimal
end point within a 1mm radius of the initially computed end point,
subject to the constraints that the acceleration along that recovered
path matches the measured accelerations best in the least-squares
sense. The optimal end point is the one that results in a decon-
volved image with the highest log-likelihood as measured by the
hyper-Laplacian image prior (discussed in Section 3.1).

Specifically, let us define a function ρ that given a potential end
point (u, v) computes the camera’s translational path as that which
best matches, in the least squares sense, the observed acceleration
and terminates at (u, v):

φ(~ai, u, v) = argmin
~xi

T∑
t=0

(
d2~xit
dt2
− ~ait)2 (26)

+(θix,T − u)2 + (θiy,T − v)2.

For notational convenience, let ρ define a function that forms
the blur sampling matrix from the camera intrinsics, extrinsics, and
scene depth as using the rigid-body dynamics and temporal integra-
tion processes discussed in Section 3.1 and 3.3:

A(d) = ρ(~θi, ~xi, d,K) (27)

The drift-compensated blur matrix and deconvolution equations
are:

A(d, u, v) = ρ(~ωi, φ(~ai, u, v), d,K), (28)

I = argmin
I,d,u,v

[|| ~B −A(d, u, v)~I||2/σ2 + λ||∇I||0.8]. (29)

We then search over the space of (u, v) to find the (u, v) that
results in the image I that has the highest likelihood given the ob-
servation and image prior. We perform this energy minimization
using the Nelder-Mead simplex method, and the spatially-varying
deconvolution method discussed in Section 3.2 is used as the error
function in the inner loop of the optimization. We perform the op-
timization on 1/10 down-sampled versions (of our 21 MP images).

The results from our search process are shown as plots of the
camera motion in Figure 5 and visually in Figure 7, when used to
deblur images. The running time for this search method is about 5
minutes on a 0.75 MP image. The search only needs to be run once
either for the entire image, or could be run on a subsection of the
image if that is preferable. Once the drift is corrected for, the PSF
is more accurate for the entire image.

Computing Scene Depth: Note that a spatially invariant scene
depth is implicitly computed during the drift compensation process,
as scaling the end point equally in the x and y dimensions is equiva-
lent to scaling the depth value. Specifically, the optimization is over
u′ = u/d and v′ = v/d and thus solves for a single depth value for
the entire scene.

4 Deblurring System
In the previous section, we discussed how to remove camera mo-
tion blur by recovering the camera rotation and translation from
accelerometers and gyroscopes. In this section, we describe our
hardware for recording the accelerometer and gyroscope data and
implementation related concerns and challenges.

4.1 Hardware Design
Since there are six unknowns per time-step, the minimal configura-
tion of sensors is six. It is possible to recover rotation and transla-
tion using six accelerometers alone, by sensing each axis in pairs at

Figure 4: Ground Truth Blur Measurements: We attach a high-
speed camera next to an SLR and capture high-speed video frames
during the camera exposure. With additional wide-baseline shots,
we perform 3D reconstruction using bundle adjustment. We show
our high-speed camera attachment and a few images from the high-
speed camera (we took about a hundred total for the process).

three different points on a rigid-body; however, after experiment-
ing with this method we found accelerometers alone to be too noisy
for reliable computation of rotation. Thus our prototype hardware
system, shown in Figure 1, is a minimal configuration consisting of
a three-axis ±1.5g MEMS accelerometer package and three single
axis ±150◦/s MEMS gyroscopes wired to an Arduino controller
board with a Bluetooth radio. All parts are commodity, off-the-
shelf components purchased online. Additionally, the SLR’s hot-
shoe, i.e., flash trigger signal, is wired to the Arduino board. The
trigger signal from the SLR remains low for the entire length of
the exposure and is high otherwise. The Arduino board is inter-
rupt driven such that when the trigger signal from the SLR fires, the
accelerometers and gyroscopes are polled at 200Hz during the ex-
posure window. Each time the sensors are read, the values are sent
over the Bluetooth serial port interface. Additionally, an internal
high-resolution counter is read and the actual elapsed time between
each reading of the sensors is reported.

The sensors and Arduino board are mounted to a laser-cut acrylic
base that secures the board, the sensors, and a battery pack. The
acrylic mount is tightly screwed into the camera tripod mount. The
only other connection to the camera is the flash trigger cable.

Our hardware attachment has an optional feature used for cal-
ibration and validation experiments: mounting holes for a Point
Grey high-speed camera. When the Arduino board is sampling the
inertial sensors, it can also send a 100 Hz trigger to the high-speed
camera. We use the high-speed data to help calibrate our sensors
and to acquire data to get ground truth measurements for motion
blur.

4.2 Calibration and Ground-truth Measurements
To accurately compute camera motion from inertial sensors, it is
necessary to calibrate several aspects of our system. We need to
accurately calibrate the sensor responses, as we have found them
to deviate from the published response ranges. It is also necessary
to know the position of the accelerometer relative to the camera’s
optical center. Lastly, we need to calibrate the camera intrinsics.

We calibrate these values in two stages. The first stage is to
calibrate the sensors’ responses. We do this by rotating the gyro-
scopes at a known constant angular velocity to recover the mapping
from the 10-bit A/D output to degrees/s. We performed this mea-
surement at several known angular velocities to confirm that the
gyroscopes have a linear response. To calibrate the accelerometers,
we held them stationary in six orientations with respect to gravity,
(±x,±y,±z), which allows us to map the A/D output to units of
m/s2.

To calibrate our setup and to measure ground-truth measure-
ments for camera-shake, we developed a method to accurately re-
cover a camera’s position during an exposure using a method in-
spired by Ben-Ezra and Nayar [2004]. However, instead of tracking
2D motion, we track 6D motion. We attached a high-speed camera

5



To appear in the ACM SIGGRAPH conference proceedings

Figure 5: Drift compensation: Angular and translational position
of the camera versus time is shown for the image in the blue box
in Figure 7. The “ground-truth” motion, computed using structure
from motion, is shown as solid lines. The dashed lines are the mo-
tions from using the raw sensor data and the “+” marked lines are
the result after drift compensation. The drift compensated results
are much closer to the ground-truth result. Note the bottom right
plot does not show a drift corrected line as we only compensate for
x and y drift.

(200 FPS PointGrey DragonFly Express) to our sensor platform,
and our Arduino micro-controller code is set to trigger the high-
speed camera at 100 FPS during the SLR’s exposure window. In
a lab setting, we created a scene with a significant amount of tex-
ture and took about 10 images with exposures ranging from 1/10 to
1/2 of a second. For each of these images, accelerometer and gyro
data was recorded in addition to high-speed frames. We took the
high-speed frames from these shots and acquired additional wide-
baseline shots with the SLR and high-speed camera. Using all of
this data, we created a 3D reconstruction of the scene using bundle
adjustment (our process uses RANSAC for feature matching, com-
putes sparse 3D structure from motion, and computes the camera
focal length). Figure 4 shows our high-speed camera attachment
and a few frames from the high speed cameras (we took about a
hundred total with both cameras for the process).

This reconstruction process gives us a collection of sparse 3D
points, camera rotations, and camera translations, with an unknown
global transformation and a scale ambiguity between camera depth
and scene depth. We resolve the scale ambiguity using a calibration
grid of known size.

5 Results
We will now describe the results of our ground-truth camera-shake
measurements and compare results using our deblurring method to
the ground-truth measurements. We also compare our results to
those of Shan et al. [2008] and Fergus et al. [2006], using the imple-
mentations the authors have available online. We also show results
of our methods running on natural images acquired outside of a lab
setup and compare these to results using previous work as well.

5.1 Lab Experiments and Camera-Shake Study

In Figure 6, we show visualizations of the ground-truth spatially-
varying PSFs for an image from our lab setup. This image shows
some interesting properties. There is a significant variation across
the image plane. Also, the kernels displayed are for a fixed depth,
thus all the spatial variance is due to rotation. To demonstrate the
importance of accounting for spatial variance, on the bottom row of

Figure 6: Visualization of ground-truth spatially-varying PSFs:
For the blurry image on top, we show a sparsely sampled visual-
ization of the blur kernels across the image plane. There is quite
a significant variation across the image plane. To demonstrate the
importance of accounting for spatially variance, in the bottom row
we show a result where we have deconvolved using the PSF for the
correct part of the image and a non-corresponding area.

Figure 6, we show a result where we have deconvolved using the
PSF for the correct part of the image and the PSF for a different,
non-corresponding area. These results are quite interesting as they
show that some of the common assumptions made in image decon-
volution do not always hold. Most deconvolution work assumes
spatially invariant kernels, which really only applies for camera
motion under an orthographic model; however, with a typical imag-
ing setup (we use a 40mm lens), the perspective effects are strong
enough to induce a spatially-varying blur. We also note that there is
often a roll component to the blur, something that is also not mod-
eled by spatially invariant kernels. Lastly, we observe that trans-
lation, and thus depth dependent effects can be significant, which
is interesting as it is often thought that most camera-shake blur
is due to rotation. Please visit http://research.microsoft.com/en-
us/um/redmond/groups/ivm/imudeblurring/ for examples.

In Figure 7, using the same scene as above, we show compar-
isons of deconvolution results using our method, ground-truth, and
two others. The images shown of the lab calibration scene were
taken at exposures from 1/3 to 1/10 of a second. For each image
we show the input, the result of deconvolving with PSFs from the
initial motion estimate and after performing drift correction, and
compare these to a deconvolution using PSFs from the recovered
ground-truth motions, and PSFs recovered using the methods of
Shan et al. [2008] and Fergus et al. [2006]. For these latter two com-
parisons, we made a best effort to adjust the parameters to recover
the best blur kernel possible. To make the comparison fair, all re-
sults were deblurred using exactly the same deconvolution method,
that of Levin et al. [2007]. The results in Figure 7, show a wide
variety of blurs, yet our method recovers an accurate kernel and
provides deconvolution results that are very close to that of the
ground-truth. In all cases, our results are better than those using
Shan et al.’s and Fergus et al.’s methods.

5.2 Real Images

After calibrating our hardware system using the method discussed
in Section 4.2, we took the camera outside of the lab, using a lap-
top with a Bluetooth adapter to capture the inertial sensor data. In
Figure 8, we show several results where we have deblurred images
using our method, Shan et al.’s method, and Fergus et al.’s method.
The Shan et al. and Fergus et al. results were deconvolved using
Levin et al.’s method [2007], and our results are deconvolved us-
ing our spatially-varying deconvolution method discussed in Sec-
tion 3.1.
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For all the images, our results show a clear improvement over
the input blurry image. There is still some residually ringing that
is unavoidable due to frequency loss during blurring. The Shan
et al. results are of varying quality, and many show large ringing
artifacts that are due to kernel misestimation and over-sharpening;
the Fergus et al. results are generally blurrier than ours. All the
images shown here were shot with 1/2 to 1/10 second exposures
with a 40mm lens on a Canon 1Ds Mark III.

For additional results, visit http://research.microsoft.com/en-
us/um/redmond/groups/ivm/imudeblurring/.

6 Discussion and Future Work
In this work, we presented an aided blind deconvolution algorithm
that uses a hardware attachment in conjunction with a correspond-
ing blurry input image and a natural image prior to compute per-
pixel, spatially-varying blur and that deconvolves an image to pro-
duce a sharp result.

There are several benefits to our method over previous ap-
proaches: (1) our method is automatic and has no user-tuned pa-
rameters and (2) it uses inexpensive commodity hardware that could
easily be built into a camera or produced as a mass-market attach-
ment that is more compact than our prototype. We have shown ad-
vantages over purely image-based methods, which in some sense is
not surprising—blind deconvolution is an inherently ill-posed prob-
lem, thus the extra information of inertial measurements should be
helpful. There are many challenges to using this data properly,
many of which we have addressed; however, our results also sug-
gest several areas for future work.

The biggest limitation of our method is sensor accuracy and
noise. Our method’s performance will degrade under a few cases:
(1) if the drift is large enough that the search space for our opti-
mization process is too large, i.e., greater than a couple mm, (2)
if our estimation of the initial camera rotation relative to gravity is
incorrect or similarly, if the camera moves in a way that is not nor-
mally distributed about the gravity vector, (3) if there is significant
depth variation in the scene and the camera undergoes significant
translation, (4) if the camera is translating at some initial, constant
velocity, and (5) if there is large image frequency information loss
to blurring.

To handle (1), we are interested in using more sensors. The sen-
sors are inexpensive and one could easily add sensors for redun-
dancy and perform denoising by averaging either in the analog or
digital domain. For (2) one could consider adding other sensors,
such as a magnetometer, to get another measure of orientation –
this is already a common approach in IMU based navigation sys-
tems. For (3) one could recover the depth in the scene by perform-
ing a “depth from motion blur” algorithm, similar to depth from
defocus. We are pursuing this problem; however, it is important to
note that varying scene depth does not always significantly affect
the blur. For typical situations, we have found that depth is only
needed for accurate deblurring of objects within a meter from the
camera. Most often people take images where the scene is farther
than this distance.

For (4) we assume the initial translation velocity is zero and our
accelerometer gives us no measure of this. While we currently only
consider the accelerometer data during an exposure, we actually
record all the sensors’ data before and after each exposure as well.
Thus one way to address this issue is to try to identify a station-
ary period before the camera exposure and track from there to get
a more accurate initial velocity estimate. (5) is an issue with all
deblurring methods. Frequency loss will cause unavoidable arti-
facts during deconvolution that could appear as ringing, banding, or
over-smoothing depending on the deconvolution method. It would
be interesting to combine our hardware with the Raskar et al. [2006]
flutter shutter hardware to reduce frequency loss during image cap-
ture.
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Figure 7: Deblurring results and comparisons: Here we show deblurring results for a cropped portion of the scene shown in Figure 6. These
sections are cropped from an 11 mega-pixel image. The results in the green box are the final output of our method, where the sensor data plus
our drift compensation method are used to compute the camera motion blur. Subtle differences in the PSF before and after drift compensation
can have a big result on the quality of the deconvolution.

Input IMU Deblurring
(Our Final Output)

Shan et al. Fergus et al.

Figure 8: Natural images deblurred with our setup: For all the images our results show a clear improvement over the input blurry image.
The blur kernel at each corner of the image is shown at 2× size. There is still some residual ringing that is unavoidable due to frequency loss
during blurring. The Shan et al. results are of varying quality, and many show large ringing artifacts that are due to kernel misestimation and
over-sharpening; the Fergus et al. results are generally blurry than our results. With the stones image, the intentionally defocused background
stones are not sharpened in our result.
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