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ABSTRACT
We explore the nature of tra�c in data centers, designed to sup-
port the mining of massive data sets. We instrument the servers to
collect socket-level logs, with negligible performance impact. In a
 server operational cluster, we thus amass roughly a petabyte
of measurements over two months, from which we obtain and re-
port detailed views of tra�c and congestion conditions andpatterns.
We further consider whether tra�cmatrices in the clustermight be
obtained instead via tomographic inference from coarser-grained
counter data.

Categories and Subject Descriptors

C.. [Distributed Systems] Distributed applications
C. [Performance of systems] Performance Attributes

General Terms

Design, experimentation, measurement, performance
Keywords

Data center tra�c, characterization,models, tomography

1. INTRODUCTION
Analysis of massive data sets is a major driver for today’s data

centers []. For example, web search relies on continuously col-
lecting and analyzing billions of web pages to build fresh indexes
and mining of click-stream data to improve search quality. As a
result, distributed infrastructures that support query processing on
peta-bytes of data using commodity servers are increasingly preva-
lent (e.g., GFS, BigTable [, ], Yahoo’s Hadoop, PIG [, ] and
Microso
’s Cosmos, Scope [, ]). Besides search providers, the
economics and performance of these clusters appeals to commer-
cial cloud computing providers who o�er fee based access to such
infrastructures [, , ].

To the best of our knowledge, this paper provides the �rst de-
scription of the characteristics of tra�c arising in an operational
distributedqueryprocessing cluster that supports diverseworkloads
created in the course of solving business and engineering problems.
Our measurements collected network related events from each of
the  servers, which represent a logical cluster in an opera-
tional data center housing tens of thousands of servers, for over two
months. Our contributions are as follows:
Measurement Instrumentation. We describe a lightweight, exten-
sible instrumentation and analysis methodology thatmeasures traf-
�c on data center servers, rather than switches, providing socket
level logs. �is server-centric approach, we believe, provides an ad-
vantageous tradeo� for monitoring tra�c in data centers. Server
overhead (CPU, memory, storage) is relatively small, though the
tra�c volumes generated in total are large – over  GB per server
per day. Further, such server instrumentation enables linking up
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Figure : Sketch of a typical cluster. Tens of servers per rack are
connected via inexpensive top of rack switches that in turn con-
nect to high degree aggregation switches. VLANs are set-up be-
tween small numbers of racks to keep broadcast domains small.
We collect traces from all () nodes in a production cluster.

network tra�c to the applications that generate or depend on it, let-
ting us understand the causes (and impact) of network incidents.
Tra�c Characteristics. Much of the tra�c volume could be ex-
plained by two clearly visible patterns which we call Work-Seeks-
Bandwidth and Scatter-Gather. Using socket level logs, we investi-
gate the nature of the tra�c within these patterns: �ow characteris-
tics, congestion, and rate of change of the tra�c mix.
Tomography Inference Accuracy. Will the familiar infer-
ence methods to obtain tra�c matrices in the Internet Service
Provider (ISP) networks extend to data centers [, , , ]? If
they do, the barrier to understand the tra�c characteristics of dat-
acenters will be lowered from the detailed instrumentation that we
have done here to analyzing the more easily available SNMP link
counters. Our evaluation shows that tomography performs poorly
for data center tra�c and we postulate some reasons for this.

A consistent theme that runs through our investigation is that the
methodology that works in the data center and the results seen in
the data center are di�erent than their counterparts in ISP or even
enterprise networks. �e opportunities and “sweet spots” for instru-
mentation are di�erent. �e characteristics of the tra�c are di�er-
ent, as are the challenges of associated inference problems. Simple
intuitive explanations arise from engineering considerations, where
there is tighter coupling in application’s use of network, computing,
and storage resources, than that is seen in other settings.

2. DATA & METHODOLOGY
We brie�y present our instrumentation methodology. Measure-

ments in ISPs and enterprises concentrate on instrumenting the net-
work devices with the following choices:
SNMP counters, which support packet and byte counts across indi-
vidual switch interfaces and related metrics, are ubiquitously avail-
able on network devices. However, logistic concerns on how o
en
routers can be polled limit availability to coarse time-scales, typi-
cally once every �ve minutes, and by itself SNMP provides little in-
sight into �ow-level or even host-level behavior.
Sampled �ow or sampled packet header level data [, , , ]
can provide �ow level insight at the cost of keeping a higher volume
of data for analysis and for assurance that samples are representa-
tive []. While not yet ubiquitous, these capabilities are becoming
more available, especially on newer platforms [].
Deep packet inspection: Much research mitigates the costs of
packet inspection at high speed [, ] but few commercial devices
support these across production switch and router interfaces.



In this context, how do we design data-center measurements
that achieve accurate and useful data while keeping costs manage-
able? What drives cost is detailed measurement at very high speed.
To achieve speed, the computations have to be implemented in
�rmware and more importantly the high speed memory or stor-
age required to keep track of details is expensive causing little of it
to be available on-board the switch or router. Datacenters provide
a unique choice— rather than collecting data on network devices
with limited capabilities for measurement, we could obtain mea-
surements at the servers, even commodity versions of which have
multiple cores, GBs of memory, and s of GBs or more of local
storage. When divided across servers, the per-server monitoring
task is a surprisingly small fraction of what a network device might
incur. Further, modern data centers have a common management
framework spanning their entire environment–servers, storage, and
network, simplifying the task of managing measurements and stor-
ing the produced data. Finally, instrumentation at the servers allows
us to link the network tra�c with application level logs (e.g., at the
level of individual processes) which is otherwise impossible to do
with reasonable accuracy. �is lets us understand not only the ori-
gins of network tra�cbut also the impact of network incidents (such
as congestion, incast) on applications.

�e idea of using servers to ease operations is not novel, network
exception handlers leverage endhosts to enforce access policies [],
and some prior work adapts PCA-based anomaly detectors to work
well even when data is distributed on many servers []. Yet, per-
forming cluster-wide instrumentation of servers to obtain detailed
measurements is a novel aspect of this work.

We use the ETW (Event Tracing for Windows []) framework to
collect socket level events at each server and parse the information
locally. Periodically, the measured data is stowed away using the
APIs of the underlying distributed �le system which we also use for
analyzing the data.

In our cluster, the cost of turning on ETW was a median increase
of . in CPU utilization, an increase of . in disk utilization,
 more cpu cycles per byte of network tra�c and fewer than a
Mbps drop in network throughput even when the server was us-
ing the NIC at capacity (i.e., at Gbps). �is overhead is low pri-
marily due to the e�cient tracing framework [] underlying ETW
but also because unlike packet capture which involves an interrupt
from the kernel’s network stack for each packet, we use ETW to ob-
tain socket level events, one per application read or write, which
aggregates over several packets and skips network chatter. To keep
the cumulative data upload rate manageable, we compress the logs
prior to uploading. Compression reduces the network bandwidth
used by the measurement infrastructure by at least x.

In addition to network level events, we collect and use applica-
tion logs (job queues, process error codes, completion times etc.) to
see which applications generate what network tra�c as well as how
network artifacts (congestion etc.) impact applications.

Over a month, our instrumentation collected nearly a petabyte
of uncompressed data. We believe that deep packet inspection is
infeasible in production clusters of this scale–it would be hard to
justify the associated cost and the spikes in CPU usage associated
with packet capture and parsing on the server interfaces are a con-
cern production cluster managers. �e socket level detail we collect
is both doable and useful, since as we will show next this lets us an-
swer questions that SNMP feeds cannot.

3. APPLICATION WORKLOAD
Before we delve into measurement results, we brie�y sketch the

nature of the application that is driving tra�c on the instrumented
cluster. At a high level, the cluster is a set of commodity servers that
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Figure : �e Work-Seeks-Bandwidth and Scatter-Gather patterns
in datacenter tra�c as seen in a matrix of loge(Bytes) exchanged
between server pairs in a representative s period. (See §.).

supports map reduce style jobs as well as a distributed replicated
block store layer for persistent storage. Programmers write jobs in
a high-level SQL like language called Scope []. �e scope compiler
transforms the job into a work�ow (similar to that of Dryad [])
consisting of phases of di�erent types. Some of the common phase
types are Extractwhich looks at the raw data and generates a stream
of relevant records, Partition which divides a stream into a set num-
ber of buckets, Aggregate which is the Dryad equivalent of reduce
and Combine which implements joins. Each phase consists of one
or more vertices that run in parallel and perform the same compu-
tation on di�erent parts of the input stream. Input data may need
to be read o� the network if it is not available on the same machine
but outputs are always written to the local disk for simplicity. Some
phases can function as a pipeline, for example Partitionmay start di-
viding the data generated by Extract into separate hash bins as soon
as an extract vertex �nishes, while other phasesmay not be pipeline-
able, for example, anAggregate phase that computes themedian sale
price of di�erent textbooks would need to look at every sales record
for a textbook before it can compute the median price. Hence, in
this case the aggregate can run only a
er every partition vertex that
may output sales records for this book name completes. All the in-
puts and the eventual outputs of jobs are stored in a reliable repli-
cated block storage mechanism called Cosmos that is implemented
on the same commodity servers that do computation. Finally, jobs
range over a broad spectrum from short interactive programs that
may be written to quickly evaluate a new algorithm to long running,
highly optimized, production jobs that build indexes.

4. TRAFFIC CHARACTERISTICS
Context: �edatacenterwe collect tra�c fromhas the typical struc-
ture sketched in Figure . Virtualization is not used in this cluster,
hence each IP corresponds to a distinctmachinewhich we will refer
to as a server. A matrix representing howmuch tra�c is exchanged
from the server denoted by the row to the server denoted by the
column will be referred to as a tra�c matrix (TM). We compute
TMs at multiple time-scales, 1s, 10s and 100s and between both
servers and top-of-rack (ToR) switches. �e latter ToR-to-ToR TM
has zero entries on the diagonal, i.e., unlike the server-to-serverTM
only tra�c that �ows across racks is included here. By�ow, wemean
the canonical �ve-tuple (source IP,port, destination IP,port and pro-
tocol). When explicit begins and ends of a �ow are not available,
similar to much prior work [, ], we use a long inactivity time-
out (default s) to determine when a �ow ends (or a new one be-
gins). Finally, clocks across the various servers are not synchronized
but also not too far skewed to a�ect the subsequent analysis.

4.1 Patterns
Twopronouncedpatterns together comprise a large chunkof traf-

�c in the data center. We call these the work-seeks-bandwidth pat-
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Figure : How much tra�c is exchanged between server
pairs (non-zero entries)?
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Figure : How many other servers does a server correspond
with? (Rack = 20 servers,Cluster ∼ 1500 servers)

tern and the scatter-gather pattern due to their respective causes.
Figure  plots the loge(Bytes) exchanged between server pairs in
a s period. We order the servers such that those within a rack
are adjacent to each other on the axes. �e small squares around
the diagonal represent a large chunk of the tra�c and correspond
to exchanges among servers within a rack. At �rst blush, this �gure
resembles CPU and memory layouts on ASIC chips that are com-
mon in the architecture community. Indeed the resemblance ex-
tends to the underlying reasons. While chip designers prefer plac-
ing components that interact o
en (e.g., cpu-L cache,multiple cpu
cores) close by to get high bandwidth interconnections on the cheap,
writers of data center applications prefer placing jobs that rely on
heavy tra�c exchanges with each other in areas where high network
bandwidth is available. In topologies such as the one in Figure 
this translates to the engineering decision of placing jobs within the
same server, within servers on the same rack or within servers in
the same VLAN and so on with decreasing order of preference and
hence the work-seeks-bandwidth pattern. Further, the horizontal
and vertical lines represent instances wherein one server pushes (or
pulls) data tomany servers across the cluster. �is is indicative of the
map and reduce primitives underlying distributed query processing
infrastructures wherein data is partitioned into small chunks, each
of which is worked on by di�erent servers, and the resulting answers
are later aggregated. Hence, we call this the scatter-gather pattern.
Finally, we note that the dense diagonal does not extend all the way
to the top right corner. �is is because the area on the far right (and
far top) corresponds to servers that are external to the cluster which
upload new data into the cluster or pull out results from it.

We attempt to characterize these patterns with a bit more pre-
cision. Figure  plots the log-distribution of the non-zero entries
of the TM. At �rst both distributions appear similar, non-zero en-
tries are somewhat heavy-tailed, ranging from [e4 : e20]with server
pairs that are within the same rack more likely to exchange more
bytes. Yet, the true distributions are quite di�erent due to the num-
bers of zero entries– the probability of exchanging no tra�c is 
for server pairs that belong to the same rack and . for pairs that
are in di�erent racks. Finally, Figure  shows the distributions of
how many correspondents a server talks with. A server either talks
to almost all the other servers within the rack (the bump near  in
Fig.  le
) or it talks to fewer than  of servers within the rack.
Further, a server either doesn’t talk to servers outside its rack (the
spike at zero in Fig.  right) or it talks to about - of outside
servers. �e median numbers of correspondents for a server are
two (other) servers within its rack and four servers outside the rack.
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Figure : Length of Congestion Events

Webelieve that �gs.  to  together form the �rst characterization of
datacenter tra�c at a macroscopic level and comprise a model that
can be used in simulating such tra�c.

4.2 Congestion Within the Datacenter
Next, we shi
 focus to hot-spots in the network, i.e., links that

have average utilization above some constant C . Results in this sec-
tion use a value of C = 70% but choosing a threshold of 90% or
95% yields qualitatively similar results. Ideally, one would like to
drive the network at as high an utilization as possible without ad-
versely a�ecting throughput. Pronounced periods of low network
utilization likely indicate (a) that the application by nature demands
more of other resources such as cpu and disk than the network, or
(b) that the applications canbe re-written tomake better use of avail-
able network bandwidth.

Figure  illustrates when and where links within the monitored
network are highly utilized. Highly utilized links happen o
en!
Among the  inter-switch links that carry the tra�c of the 
monitored machines,  of the links observe congestion lasting at
least  seconds and  observe congestion lasting at least  sec-
onds. Short congestion periods (blue circles, s of high utilization)
are highly correlated across many tens of links and are due to brief
spurts of high demand from the application. Long lasting conges-
tion periods tend to be more localized to a small set of links. Fig-
ure  shows that most periods of congestion tend to be short-lived.
O� all congestion events that are more than one second long, over
 are no longer than  seconds, but long epochs of congestion
exist – in one day’s worth of data, there were  unique episodes
of congestion that each lasted more than s, a few epochs lasted
several hundreds of seconds and the longest lasted for  seconds.

When congestion happens, is there collateral damage to victim �ows
that happen to be using the congested links? Figure  compares the
rates of �ows that overlap high utilization periods with the rates of
all �ows. From an initial inspection, it appears as if the rates do not
change appreciably (see cdf below). Errors such as �ow timeouts or
failure to start may not be visible in �ow rates, hence we correlate
high utilization epochs directly with application level logs. Figure 
shows that jobs experience a median increase of .x in their prob-
ability of failing to read input (s) if they have �ows traversing high
utilization links. Note that while outputs are always written to the
local disk, the next phase of the job that uses this data may have to
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Figure : Impact of high utilization– �e likelihood that a job
fails because it is unable to read requisite data over the network
increases by .x (median) during high utilization epochs.

read it over the network if necessary. When a job is unable to �nd
its input data, or is unable to connect to the machine that has the
input data, or is stuck, i.e., does not make steady progress in read-
ing more of its input, the job is killed and logged as a read failure.
We note upfront that not all read failures are due to the network;
besides congestion they could be caused by an unresponsive ma-
chine, bad so
ware or bad disk sectors. However, we observe a high
correlation between network congestion and read failures leading
us to believe that a sizable chunk of the observed read failures are
due to congestion. Over a one week period, we see that the inabil-
ity to read input (s) increases when the network is highly utilized.
Further, the more prevalent the congestion (on ’th, ’th Jan for ex-
ample), the larger the increase and in particular the days with little
increase (’th, ’th Jan) correspond to a lightly loaded weekend.

When high utilization epochs happen, we would like to know the
causes behind high volumes of tra�c. Operatorswould like to know if
these high volumes are normal. Developers can better engineer job
placement if they know which applications send how much tra�c
and network designers can evaluate architecture choices better by
knowing what drives the tra�c. To attribute network tra�c to the
applications that generate it, we merge the network event logs with
logs at the application-level that describe which job and phase (e.g.,
map, reduce) were active at that time. Our results show that, as ex-
pected, jobs in the reduce phase are responsible for a fair amount of
the network tra�c. Note that in the reduce phase of a map-reduce
job, data in each partition that is present at multiple servers in the
cluster (e.g., all personnel records that start with ‘A‘) has to be pulled
to the server that handles the reduce for the partition (e.g., count the
number of records that begin with ’A’) [, ].

However, unexpectedly, the extract phase also contributed a fair
amount of the �ows on high utilization links. In Dryad [], extract
is an early phase in the work�ow that parses the data blocks. Hence,
it looks at by far the largest amount of data and the job manager at-
tempts to keep the computation as close to data as possible. It turns
out that a small fraction of all extract instances read data o� the net-
work if all of the cores on the machine that has the data are busy
at the time. Yet another unexpected cause for highly utilized links
were evacuation events. When a server repeatedly experiences prob-
lems, the automatedmanagement system in our cluster evacuatesall
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Figure : More than  of the �ows last less than ten seconds,
fewer than . last longer than s and more than  of the
bytes are in �ows lasting less than s.

the usable blocks on that server prior to alerting a human that the
server is ready to be re-imaged (or reclaimed). �e latter two un-
expected sources of congestion helped developer’s re-engineer the
applications based on these measurements.

To sum up, high utilization epochs are common, appear to be
caused by application demand and have amoderate negative impact
on job performance.

4.3 Flow Characteristics
Figure  shows that the tra�c mix changes frequently. �e �gure

plots the durations of million �ows (a day’sworth of �ows) in the
cluster. Most �ows come and go ( last less than s) and there
are few long running �ows (less than . last longer than s).
�is has interesting implications for tra�c engineering. Central-
ized decisionmaking, in terms of deciding which path a certain �ow
should take, is quite challenging–not only would the central sched-
uler have to deal with a rather high volume of scheduling decisions
but it would also have to make the decisions very quickly to avoid
visible lag in �ows. One might wonder whether most of the bytes
are contained in the long running �ows. If this were true, schedul-
ing just the few long running �owswould be enough. Unfortunately,
this does not turn out to be the case in DC tra�c; more than half the
bytes are in �ows that last no longer than s.

Figure  shows how the tra�c changes over time within the data
center. �e �gure on the top shows the aggregate tra�c rate over
all server pairs for a ten hour period. Tra�c changes quite quickly,
some spikes are transient but others last for awhile. Interestingly the
top of the spikes is more than half the full-duplex bisection band-
width of the network. Communication patterns that are full duplex
are rare, because typically at any time, the producers and consumers
of data are �xed. Hence, this means that at several times during a
typical day all the used network links run close to capacity.

Another dimension in tra�c change is the �ux in participants–
even when the net tra�c rate remains the same, the servers that
exchange those bytes may change. Fig  (bottom) quanti�es the
absolute change in tra�c matrix from one instant to another nor-
malized by the total tra�c. More precisely if M(t) and M(t + τ )
are the tra�c matrices at time t and t + τ , we plot

Normalized Change =
|M(t + τ ) − M(t)|

|M(t)|
,

where the numerator is the absolute sum of the entry wide di�er-
ences of the twomatrices and the denominator is the absolute sumof
entries in M(t). We plot changes for both τ = 100s and τ = 10s.
At both these time-scales, the median change in tra�c is roughly
 and the th and th percentiles are  and  respec-
tively. �is means that even when the total tra�c in the matrix re-
mains the same (�at regions on the top graph), the server pairs that
are involved in these tra�c exchanges change appreciably. �ere
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Figure : Tra�c in the data-center changes in both the magni-
tude (top) and the participants (bottom).

are instances of both leading and lagging change; short bursts cause
spikes at the shorter time-scale (in dashed line) that smooth out at
the longer time scale (in solid line) whereas gradual changes appear
conversely, smoothed out at shorter time-scales yet pronounced on
the longer time-scale. Signi�cant variability appears to be a key as-
pect of data center tra�c.

Figure  portrays the distribution of inter-arrival times between
�ows as seen at hosts in the datacenter. How long a
er a �ow ar-
rives would one expect another �ow to arrive? If �ow arrivals were a
Poisson process, network designers could safely design for the aver-
age case. Yet, we see evidence of periodic short-termbursts and long
tails. �e inter-arrivals at both servers and top-of-rack switches have
pronounced periodic modes spaced apart by roughly  ms. We be-
lieve that this is likely due to the stop-and-go behavior of the appli-
cation that rate-limits the creation of new �ows. �e tail for these
two distributions is quite long as well, servers may see �ows spaced
apart by up to s. Finally, the median arrival rate of all �ows in the
cluster is 105 �ows per second, or 100 �ows in every millisecond.
Centralized schedulers that decide which path to pin a �ow on may
be hard pressed to keep up. Scheduling application units (jobs etc.)
rather than the �ows caused by these units is likely to be more feasi-
ble, as would distributed schedulers that engineer �ows by making
simple random choices [, ].

4.4 On Incast
We do not see direct evidence of the incast problem [, ], per-

haps because we don’t have detailed TCP level statistics for �ows
in the datacenter. However, we comment on how o
en the sev-
eral assumptions that need to happen in the examined datacenter
for incast to occur. First, due to the low round-trip times in data-
centers, the bandwidth delay product is small which when divided
over the many contending �ows on a link results in a small conges-
tion window for each �ow. Second, when the interface’s queue is
full, multiple �ows should see their packets dropped. Due to their
small congestion windows, these �ows cannot recover via TCP fast
retransmit, are stuck until a TCP timeout andhave poor throughput.
�ird, for the throughput of the network to also go down, synchro-
nization should happen such that no other �ow is able to pick up
the slack when some �ows are in TCP timeout. Finally, an applica-
tion is impacted more if it cannot make forward progress until all
its network �ows �nish.

MapReduce, or at least the implementation in our datacenter, ex-
hibits very few scenarios wherein a job phase cannot make incre-
mental progress with the data it receives from the network. Further,
two engineering decisions explicitly limit the number of mutually
contending �ows–�rst, applications limit their simultaneously open
connections to a small number (default to ) and second, computa-
tion is placed such that with a high probability network exchanges
are local (i.e., within a rack, within a VLAN etc. Figure ). �is lo-
cal nature of �ows, most are either within the same rack or VLAN,
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Figure : Distribution of inter-arrival times of the �ows seen
in the entire cluster, at Top-of-Rack switches (averaged) and at
servers (averaged).

implicitly isolates �ows from other �ows elsewhere in the network
and reduces the likelihood that a bottleneck-ed switch will carry the
large number of �ows needed to trigger incast. Finally, several jobs
run on the cluster at any time. �ough one or a few �owsmay su�er
timeouts, this multiplexing allows other �ows to use up the band-
width that becomes free thereby reducing the likelihood of whole-
sale throughput collapse.

We do believe that TCP’s inability to recover from even a few
packet drops without resorting to timeouts in low bandwidth delay
product settings is a fundamental problem that needs to be solved.
However on the observed practical workloads,which is perhaps typ-
ical of a wide set of datacenter workloads, we see little evidence of
throughput collapse due to this weakness in TCP.

5. TOMOGRAPHY IN THE DATA CENTER
Socket level instrumentation, which we used to drive the results

presented so far in the paper, is unavailable in most datacenters
but link counters at routers (e.g., SNMP byte counts) are widely
available. It is natural to ask – in the absence of more detailed in-
strumentation, to what approximation can we achieve similar value
from link counters? In this section, we primarily focus on network
tomography methods that infer tra�c matrices (origin-destination
�owvolumes) from link level SNMPmeasurements [,]. If these
techniques are as applicable in datacenters as they are in ISP net-
works, theywould help us unravel the nature of tra�c inmanymore
datacenters without the overhead of detailed measurement.

�ere are several challenges for tomographymethods to extend to
data centers. Tomography inherently is an under-constrained prob-
lem; while the number of origin-destination �ow volumes to be es-
timated is quadratic (n(n − 1)), the number of link measurements
available (i.e., constraints) is much fewer, o
en a small constant
times the number of nodes. Further, the typical datacenter topol-
ogy (Fig. ) represents a worst-case scenario for tomography. As
many ToR switches connect to one or a few high-degree aggregation
switches, the number linkmeasurements available is small (typically
2n). To combat this under-constrained nature, tomography meth-
odsmodel the tra�c seen in practice and use thesemodels as apriori
estimates of the tra�c matrix, thereby narrowing the space of TMs
that are possible given the link data.

A second di�culty stems from the fact that many of the priors
that are known to be e�ective make simplifying assumptions. For
example, the gravity model assumes that the amount of tra�c a
node (origin) would send to another node (destination) is propor-
tional to the tra�c volume received by the destination. �ough this
prior has been shown to be a good predictor in ISP networks [,
], the pronounced patterns in tra�c that we observe are quite far
from the simple spread that the gravity prior would generate. A �nal
di�culty is due to scale. While most existing methods can compute
tra�cmatrices between a fewparticipants (e.g., POPs in an ISP),
even a reasonable cluster has several thousand servers.
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Figure : �e fraction of entries that comprise 75% of the traf-
�c in the ground truth TM correlates well (negatively) with the
estimation error of tomogravity.

Methodology: We compute link counts from the ground truth
TM and measure how well the TM estimated by tomography from
these link counts approximates the true TM. Our error function
avoids penalizing mis-estimates of matrix entries that have small
values []. Speci�cally, we choose a threshold T such that en-
tries larger than T make up about 75% of tra�c volume and
then obtain the Root Mean Square Relative Error (RMSRE) as
s

P

xtrue
ij

≥T

„

xest
ij

−xtrue
ij

xtrue
ij

«2

, where xtrue
ij , xest

ij are the true and

estimated entries respectively. �is evaluation sidesteps the issue of
scale by attempting to obtain tra�c matrices at the ToR level. We
report aggregate results over  ToR-level TMs, which is about a
day’s worth of  min average TMs.

5.1 Tomogravity
Tomogravity based tomography methods [] use the gravity

tra�c model to estimate apriori the tra�c between a pair of nodes.
In Figure , we plot the CDF of tomogravity estimation errors of
 min TMs taken over an entire day. Tomogravity results in fairly
inaccurate inferences, with estimation errors ranging from 35% to
184% and a median of 60%. We observed that the gravity prior
used in estimation tends to spread tra�c aroundwhereas the ground
truth TMs are sparse. An explanation for this is that communica-
tion is more likely between nodes that are assigned to the same job
rather than all nodes, whereas gravity model, not being aware of
these job-clusters, introduces tra�c across clusters, thus resulting
in many non-zero TM entries. To verify this conjecture, we show,
in Figure , that the estimation error of tomogravity is correlated
with the sparsity of the ground truth TM – the fewer the number
of entries in ground truth TM the larger the estimation error. (A
logarithmic best-�t curve is shown in black.)

5.2 Sparsity Maximization
Given the sparse nature of datacenter TMs, we consider an esti-

mation method that favors sparser TMs among the many possible.
Speci�cally, we formulated a mixed integer linear program (MILP)
that generates the sparsest TM subject to link tra�c constraints.
Sparsity maximization has been used earlier to isolate anomalous
tra�c []. However, we �nd that the sparsest TMsaremuch sparser
than ground truth TMs (see Figure ) and hence yield a worse esti-
mate than tomogravity (see Figure ). �e TMs estimated via spar-
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Figure : Comparing the TMs estimated by various tomography
methods with the ground truth in terms of the number of TM en-
tries that account for 75% of the total tra�c. Ground truth TMs
are sparser than tomogravity estimated TMs, and denser than
sparsity maximized estimated TMs.

sity maximization contain typically 150 non-zero entries, which is
about 3% of the total TM entries. Further, these non-zero entries
do not correspond to heavy hitters in the ground truth TMs–only a
handful (5-20) of these entries correspond to entries in ground truth
TMwith value greater than the 97-th percentile. Sparsitymaximiza-
tion appears overly aggressive and datacenter tra�c appears to be
somewhere in between the dense nature of tomogravity estimated
TMs and the sparse nature of sparsity maximized TMs.

5.3 Prior based on application metadata
Can we leverage application logs to supplement the shortcom-

ings of tomogravity? Speci�cally, we use metadata on which jobs
ran when and which machines were running instances of the same
job. We extend the gravitymodel to include an additional multiplier
for tra�c between two given nodes (ToRs) i and j that is larger if the
nodes share more jobs and fewer otherwise, i.e., the product of the
number of instances of a job running on servers under ToRs i and j,
summed over all jobs k. In practice however, this extension seems
to not improve vanilla tomogravity by much, the estimation errors
are only marginally better (Figure ) though the TMs estimated by
this method are closer to ground truth in terms of sparsity (Figure
). We believe that this is due to nodes in a job assuming di�erent
roles over time and tra�c patterns varying with respective roles. As
future work, we plan to incorporate further information on roles of
nodes assigned to a job.

6. RELATED WORK
Data center networking has recently emerged as a topic of inter-

est. �ere is not much work on measurement, analysis, and charac-
terization of datacenter tra�c. Greenberg et al. [] report datacen-
ter tra�c characteristics–variability at small timescales and statistics
on �ow sizes and concurrent �ows, and use these to guide network
design. Benson et al. [] perform a complementary study of tra�c
at the edges of a datacenter by examining SNMP traces from routers
and identify ON-OFF characteristics whereas this paper examines
novel aspects of tra�c within a data center in detail.

Tra�c measurement in enterprises is better studied with papers
that compare enterprise tra�c to wide-area tra�c [], study the
health of an enterprise network based on the fraction of successful
�ows generated by end-hosts [] and use tra�c measurement on
end-hosts for �ne-grained access control [].

7. DISCUSSION
We believe that our results here would extend to other mining

data centers that employ some �avor of map-reduce style work�ow
computation on top of a distributed block store. For example, sev-
eral companies including Yahoo! and Facebook have clusters run-
ning Hadoop, an open source implementation of map-reduce and
Google has clusters that run map reduce. In contrast, web or cloud



data centers that primarily deal with generating responses for web
requests (e.g., mail, messenger), are likely to have di�erent charac-
teristics. Our results are primarily dictated by how the applications
have been engineered and are likely to hold even as the speci�cs such
as network topology and over-subscription ratios change. However,
we note that pending future data center measurements, based per-
haps on instrumentation similar to that described here, these beliefs
remain conjectures at this point.

An implication of our measurements is worth calling out. By par-
titioning the measurement problem which in the past was done at
switches or routers across many commodity servers we relax many
of the typical constraints (memory, cycles) for measurement. Clever
counters or data structures to perform measurement at line speed
under constrained memory are no longer as crucial but continue
to be useful in keeping overheads small. Conversely, however, han-
dling scenarios where multiple independent parties are each mea-
suring a small piece of the puzzle gains new weight.

8. CONCLUSIONS
In spite of widespread interest in datacenter networks, little has

been published that reveals the nature of their tra�c, or the prob-
lems that arise in practice. �is paper is a �rst attempt to capture
both the macroscopic patterns – which servers talk to which oth-
ers, when and for what reasons – as well as the microscopic char-
acteristics – �ow durations, inter-arrival times, and like statistics –
that should provide a useful guide for datacenter network designers.
�ese statistics appear more regular and better behaved than coun-
terparts from ISPnetworks (e.g., “elephant” �ows only last about one
second). �is, we believe, is the natural outcome of the tighter cou-
pling between network, computing, and storage in datacenter ap-
plications. We did not see evidence of super large �ows (�ow sizes
being determined largely by chunking considerations, optimizing
for storage latencies), TCP incast problems (the preconditions ap-
parently not arising consistently), or sustained overloads (owing to
near ubiquitous use of TCP). However, episodes of congestion and
negative application impact do occur, highlighting the signi�cant
promise for improvement through better understanding of tra�c
and mechanisms that steer demand.
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