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ABSTRACT
We show that currently prevalent practices for network path mea-
surements can produce inaccurate inferences because of sampling
biases. �e inferred mean path latency can be more than a factor of
two o� the true mean. We present the Broom toolkit that has three
methods to correct for this bias. Broom places no burden on the
measurement process itself and can be applied post hoc to any mea-
sured data set. Our evaluation �nds that two of the methods are
particularly e�ective. One of them estimates missing path samples
by embedding the nodes in a low-dimensional coordinate space. For
realistic sampling rates, the quality of its estimates for path latency
approximates ideal, unbiased sampling. �e other method is based
on a view of network paths as being composed of source-speci�c,
destination-speci�c, and shared components. It reduces bias for a
wide range of path properties, such as latency, hop count and capac-
ity. Applying Broom to data from a real measurement study leads to
substantial changes in the resulting inferences. For some networks,
the post-correction estimate is  higher than the original.

Categories and Subject Descriptors
C. [Performance of Systems]: Measurement techniques

General Terms
Measurement, Algorithms

Keywords
Networkmeasurement, Sampling bias, Coordinate embedding, Path
decomposition

1. INTRODUCTION
Measurement is a key component of research, development and

practice in many domains. It is used to validate hypotheses, under-
stand complex dynamics, and informpolicy. Examples include stud-
ies of newmedicines, habits of drug addicts, electoral voting tenden-
cies, and tolerable stress level for industrial components.

Computer networks are no di�erent in this regard. Measurements
are used extensively to understand network behavior and optimize
performance. �e community devotes much e�ort towards devel-
oping and re�ning measurement methods.
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However, unlike other domains, relatively little attention has been
paid to how sampling biases in network measurements can taint re-
sults. A notable exception is the study of bias in network topology
measurement [, ], where researchers show how sampling biases
can lead to inferences that di�er markedly from the true topology.

In this paper, we focus on sampling biases in network path mea-
surements, which are frequently used to measure performance and
optimize protocols.

Consider a typical measurement experiment, for instance, to
characterize network path latency between a set of sources anddesti-
nations. Experimenters get as many vantage points as they can (e.g.,
PlanetLab nodes) and measure paths to destinations of interest. �e
vantage point is not necessarily a source of interest but the source-to-
destination component can be isolated by “subtracting” the vantage-
point to source component.

�ere are many challenges in drawing accurate inferences from
such an experiment. One challenge is to accurately infer properties
of measured paths, by accounting for the possible sources of error
in the raw measurements. Example sources of error include rout-
ing changes during measurements and delayed response by desti-
nations. Researchers have developed and continue to evolve tech-
niques to minimize the impact of such errors. �ese techniques are
not the focus of our work.

Assuming accurate pathmeasurements have been obtained,a sec-
ond challenge is to infer network-wide properties, e.g., mean latency
across all paths. �e di�culty is that measuring all paths of interest
is rarely feasible because of limitations in where vantage points are
available, and a signi�cant fraction of paths (-) can go unmea-
sured. �e current practice tends to assume that the set of measured
paths are representative and thus accurate inferences can be drawn
based on those paths.

We show that this is a �awed assumption because the set of mea-
surements is biased by which sources contribute. Using simulations
over realistic network topologies, we �nd that the resulting infer-
ences can be signi�cantly inaccurate. For instance, when  of the
paths are measured, the inferred mean can be more than a factor
of two o� the true mean. �e error is not purely because of mea-
suring too few paths. �e median error is lower by a factor of �ve
with an ideal (but impractical) sampling method that measures the
same number of paths. Even worse, because themeasured data is bi-
ased, standard statistical methods for estimating the uncertainty in
the inferences are rendered ine�ective. �e  con�dence inter-
vals around the mean contain the true mean less than half the time.
Con�dence intervals for the ideal sampling method almost always
contain the true mean.

How can we remedy this bias? At one level, it might appear that
not much can be done. Based on the measured paths alone, one can-
not tell if the unmeasured paths are statistically di�erent. But we are
encouraged by the fact that despite similar limitations researchers
in other domains have developed credible methods over the years
to correct for measurement bias [, , , ]. �ese methods are



by necessity speci�c to their target domain, but their general ap-
proaches apply.

Based on these approaches, we develop and evaluate Broom, a
toolkit of three methods that correct for bias in network path mea-
surements. �e methods in Broom do not burden the measurement
process; rather they can post-process any collected data. We �nd
two of the methods to be particularly e�ective.

One of the methods leverages the observation that network dis-
tances can be well-approximated by embedding the nodes in a low-
dimensional coordinate space [, , ]. �is observation has been
used in the past to avoid the need for all-to-all measurements. We
co-opt it for correcting bias by using measured data to embed nodes
in a coordinate space. �is embedding lets us estimate the prop-
erties of paths that were not directly measured and thus obtain an
unbiased view of the network.

Another method in Broom starts with the observation that net-
work paths can be considered as being composed of a source-speci�c
component, a destination-speci�c component, and a component
shared by all paths (i.e., the network core). It infers the properties
of these components by formulating an inference problem that uses
measured data as constraints that must be satis�ed. Like coordinate
embedding, it can then estimate the properties of unmeasured paths.

We also capture the uncertainty inherent in measured data due to
possible under-sampling. When too few paths are measured multi-
ple coordinate embeddings and path decompositions are consistent
with the measured data. We use this observation to recover multi-
ple possible network con�gurations. �e variance observed across
these con�gurations lets us estimate con�dence intervals in a way
that they contain the true value with a high probability.

We show that coordinate embedding is highly e�ective at infer-
ring network latency. It reduces the median error by a factor of �ve
and approximates well the ideal sampling method for realistic sam-
pling rates. Path decomposition is slightly inferior than coordinate
embedding for inferring latency but is more broadly applicable. It
can be used to infer mean path capacity and hop count as well, for
which it comes close to ideal sampling.

We also show how correcting for bias changes inferences for real
measurement studies. We apply Broom to two data sets collected by
Netdi�, a system to compare backbone ISPs []. For one data set,
correcting for bias increases the inferredmean latency for some ISPs
by asmuch as . For the other data set, the post-correction con�-
dence intervals are much wider, indicating that some of the conclu-
sions that the original study drew are likely problematic.

We do not claim to be the �rst to worry about sampling biases
in network path measurements. Indeed, most researchers are aware
of this possibility. �ey either con�rm the absence of bias (if possi-
ble) or carefully list the assumptions regarding its absence that must
hold for the conclusions to be valid. �e contribution of this paper
is a systematic study of the impact of sampling biases in path mea-
surements and the development of the �rst set of methods that can
be used to correct for bias. Future researchwill hopefully build upon
these methods.

2. SAMPLING BIASES IN NETWORK
PATH MEASUREMENTS

In this section, we evaluate the quality of inferences obtained us-
ing current measurement practices. Consider the following com-
mon scenario. Given a network with a set S of sources and a set
D of destinations, we are interested in accurately estimating some
aggregate property of the set of paths from sources to destinations.
�ese two sets neednot be disjoint, andmay evenbe identical. While
we will evaluate other possibilities later in the section, we begin by

focusing on latency as the path property of interest and on mean as
the aggregate measure.

In most network measurement scenarios, not all paths can be di-
rectly measured and thus the estimates must be obtained by sam-
pling a subset. Which paths can be sampled is limited by many
practical constraints such as where measurement vantage points are
available. We assume that for paths that are sampled, accurate path-
level properties have been obtained by applying appropriate tech-
niques to account for any error in the raw measurements.

We study three di�erent methods for sampling paths. One is an
ideal but impractical method that can measure any path. �e other
two methods are limited to a certain set of sources that contribute
measurements. �ese contributing sources can then measure the
path to any destination. �e three sampling methods are:

• Uniformpath sampling is an ideal method that samples each
network path with the same probability and is thus capable of
estimating aggregate path properties without any bias.

• Uniform source sampling picks contributing sources with
equal probability. �is sampling method can yield biased re-
sults when the aggregate properties of paths from selected
sources di�er from other sources.

In practice, uniform source sampling is rarely feasible and
experimenters must work with whatever sources are avail-
able. For instance, a measurement systemmight be limited by
where PlanetLab nodes are available. �e range of errors in
estimates with uniform source sampling for a given fraction
of sources represents how bad the error can be in any given
situation that uses only that fraction of the sources.

• Degree-biased source sampling picks contributing sources
with probability proportional to their degree. It simulates a
sampling scenario in which well-connected sources are more
likely to contribute measurements, for instance, because they
are present in bigger cities.

We also studied other sampling methods that sample sources
non-uniformly, including one where each source has a ran-
domly assigned weight and one where some sources are com-
pletely unavailable. We �nd that the bias because of them is
similar or less than degree-biased source sampling. We omit
results for these other methods from this paper.

What percentage of paths are typically sampled in measurement
experiments? To understand the impact of the sampling percentage
across the board, we show results for percentages ranging from –
. In §, however, we show that a real study that uses a setup
similar to the one that we outlined above measures – of the
paths. We thus focus on this range when discussing the results. For
convenience, the graphs highlight this range.

To sample K paths in a source sampling method, we �rst pick
⌈ K

|D|
⌉ sources. All picked sources except the last one measure paths

to all destinations. �e last source may measure to fewer destina-
tions, which are randomly selected with equal probability.

For faster simulations, we sample paths and sources with replace-
ment. We �nd that it yields results similar to sampling without re-
placement except when the sampling percentage is well over .
�is regime is outside our sampling region of interest.

Evaluation criterion: We evaluate the sampling methods using
two measures. First, relative error measures how far the estimated
value is from the true value. �at is:

relative error =
estimated value− true value

true value



AS Nodes, Links

Genuity () , 
UUNET () , 
Verio () , 
Level  () , 
Global Crossing () , 
Cable &Wireless () , 
Globix () , 
AT&T () , 

Table : Rocketfuel topologies used in our study.

�e estimated mean for a sampling method is simply the mean of
the sampled paths.

Sampling methods should provide not only the best estimate of
the true value but also a con�dence interval within which the true
value lies with a high probability. �is interval lets measurement
consumers judge the uncertainty in the estimate. When too few
paths are sampled, the possibility of a high relative error is unavoid-
able even if sampling is unbiased. However, regardless of how many
paths are sampled, the true value should lie within the estimated
con�dence interval with a high probability.

Our second measure computes how o
en the true value lies
within the estimated con�dence interval. We compute con�dence
intervals around themean using Student’s t-distribution [], treating
each pathmeasurement as an independent observation.�e alterna-
tive of treating all measurements from a source as one independent
observation leads to much wider con�dence intervals as fewer in-
dependent observations are available. Excessively wide con�dence
ranges are not useful. In the extreme, a range of −∞ to ∞ always
contain the true value, but its practical utility is minimal. Hence, we
examine the sizes of the con�dence intervals as well when compar-
ing their frequency of containing the true value.

We compare sampling methods by providing each with the same
number of paths to isolate the estimation error induced by sampling
too few paths from the bias introduced by the sampling method.

Network topologies: We use Rocketfuel’s inferred city-level
topologies of ISP networks, shown in Table  []. �ese topolo-
gies are annotated with link latencies and approximate link weights
used for routing []. �e annotations let us compute routing paths
and latencies between any pair of nodes. We consider each node in
a topology to be a source as well as a destination of interest.

Rocketfuel topologies are a good vehicle for our work because
they are reasonably complete. �ey let us estimate the true value
of the network property of interest and compare that to what is ob-
tained in a sampling experiment. (Sampling experiments do not typ-
ically uncover the whole topology.)

To verify that our results are general, we also use -node syn-
thetic topologies. �ese topologies have heavy-tailed node degree
distribution [] and are generated using Brite [].

2.1 Estimating Path Latency
Figure (a) depicts a scatter plot of the error in estimating mean

latency for Rocketfuel topologies as the percentage of paths sam-
pled is varied from –. �e shading in the graph corresponds
to the sampling range of interest (–). For each combination of
topology, sampling method and sampling percentage, we perform
 experiments with di�erent random seeds.

We see that the error with source sampling is much higher than
that with uniform path sampling. When  of the paths are sam-
pled, the estimatedmean can be o� by more than  (i.e., a factor
of two) with source sampling. In contrast, the error is under 
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(a) Scatterplot of relative error in estimating mean path latency.
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Figure : Error in estimating mean path latency for Rocketfuel
topologies. Source sampling methods have high relative error.
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Figure : �e frequency with which the true mean is within the
estimated  con�dence interval. �e truemean lies outside the
con�dence intervals more than half the time for source sampling
methods.

with uniform path sampling. As more paths are sampled, the rela-
tive error reduces for all sampling methods. But even when  of
the paths are sampled, the relative error with source sampling can be
as high as , while it is below  with uniform path sampling.

For the same data, Figure (b) plots the median, th and th
percentiles for the magnitude of the relative error. When  of the
paths are sampled, the median error with source sampling () is
worse by a factor of �ve compared to the median error with uniform
path sampling ().

�e higher relative error of a sampling methodmay be tolerable if
the uncertainty in the estimate is correctly captured. �at is, the true
value lies within the estimated con�dence interval. Figure  shows
that this property o
en does not hold for source sampling. Almost
half the time, the true mean is outside the estimated con�dence in-
terval. For uniform path sampling, the true value is within the con-
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Figure : �e size of con�dence intervals normalized by the true
mean. All sampling methods have similar interval sizes.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01  0.02  0.05  0.1  0.2  0.5  0.9F
ra

ct
io

n 
of

 E
xp

er
im

en
ts

 C
on

ta
in

in
g 

 T
ru

e 
M

ea
n 

In
si

de
 C

on
fid

en
ce

 R
an

ge

Fraction of Paths Sampled

Degree-biased source
Uniform path

Uniform source

(a) Fraction of experiments where the true mean is within the
 con�dence interval.
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Figure : Bias in latency measurements for Brite topologies.
Source sampling methods yield inaccurate inferences.

�dence intervals with a very high frequency. �us, not only do the
source sampling methods have higher error, they also are unable to
tell when their estimates are inaccurate.

Of course, by estimating large con�dence intervals, any sampling
method can produce con�dence intervals that contain the truemean
with a high probability. Figure  shows that the ability of uniform
path sampling to contain the true mean does not arise from bigger
con�dence intervals. All three methods have similar con�dence in-
terval sizes.

Figure  con�rms that the bias in latency inferences is not lim-
ited toRocketfuel topologies. A similar sampling bias exists for Brite
topologies as well.

While the results above are for mean latency, we show in §.
that erroneous estimates due to bias plague other aggregatemeasures
such as median and th percentile as well.
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Figure : �e distribution of path latencies in the entire network
and from two sources in the AT&T network. Latency distribu-
tions of individual sources are di�erent from those of the entire
network.

2.2 Understanding Bias in Source Sampling
Why does source sampling produce biased results even when

sources are sampled uniformly at random? �e central reason is that
the distribution of path latencies from any given source can be very
di�erent from the distribution across all paths.

Consider an ISP network spread across the continental USA. If we
measure paths from a node that is in one corner of the country (e.g.,
Miami), the mean latency will likely be higher than the true mean.
Conversely, if we measure paths from a more central location (e.g.,
Chicago), themean will be likely be lower. Figure  shows this e�ect.
For the AT&T network, it plots the path latency across all paths, for
paths from a central source, and for paths from a distant source. �e
three latency distributions are di�erent.

�us, each source provides a biased window into the path la-
tency distribution. �e combination of multiple, randomly selected
sources is not guaranteed to �x this bias. Uniform path sampling on
the other hand does well by sampling directly from the true under-
lying distribution.

In theory, source sampling can sample unbiasedly if we sample
only one path to a randomly selected destination from each source.
But this constraint drastically reduces the number of available mea-
surements. In a network with a hundred destination nodes, sam-
pling only one path per source reduces the number of available sam-
ples by two orders ofmagnitude. With such a reduction, even if sam-
pling is unbiased, the relative error can be signi�cantly higher and
the uncertainty in the estimatewill be high. It is preferable instead to
collect more samples and correct the data for any bias. In Section ,
we present three potential correction techniques.

2.3 Estimating Properties Besides Latency
�e presence of bias is not unique to path latency measurements

but plagues other path properties as well. In this section, we show
this e�ect for hop count and path capacity measurements.

Hop count: Figure  shows the results for hop count measure-
ments. We see signi�cant bias in terms of both the relative error and
the ability to estimate the con�dence interval around the mean.

Another factor that stands out in these graphs is that degree-
biased source sampling is much worse than uniform source sam-
pling. To explain this di�erence, Figure  plots the CDF of hop
counts observed with the two source sampling methods across all
experiments. We see that uniform source sampling results in a dis-
tribution that closely approximates the distribution of the set of all
paths (though the degree of errormay di�er across themeasurement
experiments). On the other hand, the distribution of degree-biased
source sampling is consistently to the le
 of the true distribution.
�is discrepancy occurs because nodes with high degree, which are
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Figure : Bias in path hop count measurements with di�erent
sampling methods. Source sampling methods yield inaccurate
inferences. Degree-biased source sampling is particularly poor.

more likely to be chosen asmeasurement sources, happen to be cen-
trally located in the graph; paths from them to various destinations
tend to have fewer hops than those from other sources. �is dif-
ference implies that degree-biased source sampling creates a more
biased view of path hop count.

Path capacity: Figure  shows the bias in path capacity measure-
ment with di�erent sampling measurements. For link capacities, we
use the values assigned by Kandula et al. [] for the same Rocket-
fuel topologies. �ey use a simple model in which link capacities
have a bimodal distribution between . and  Gbps; the capacity
of a link is based on its centrality in the topology. �us, path capac-
ities in our experiments also have a bimodal distribution between
the two values. Despite this simplicity of the underlying property,
our results show that inferences with source sampling methods can
be signi�cantly �awed due to bias.

3. GENERAL APPROACHES TO COR-
RECT FOR BIAS

Before we present the bias correctionmethods that are part of our
Broom toolkit, we survey in this section general approaches that we
�nd being employed in other domains.

3.1 Minimizing source dependency
Since each starting point (that is, a measurement source in our

terminology) introduces a bias of its own, one approach to reducing
bias is to minimize the impact of the starting point. Sociological ex-
periments, for instance, to estimate the drug use habits of addicts,
o
en start with biased sources (e.g., users personally known to the
researcher) and recursively recruit acquaintances of existing users.
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Figure : Hop count distributions observed with the two source
sampling methods. Degree-biased source sampling produces a
view in which paths have fewer hops.
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Figure : Bias in path capacitymeasurements with di�erent sam-
pling methods. Source sampling methods yields inaccurate in-
ferences. In particular, degree-biased source sampling has high
error even when more than  of paths are sampled.



Figure : Extrapolation from the tail half avoids bias from repeat-
edly sampling portions of the paths close to the source.

�e drug use habits across all users thus surveyed can be highly bi-
ased by the initial set. To minimize this bias, experimenters keep
track of connectivity among the sampled users and a
er-the-fact ig-
nore users within a few hops of the initial set [, ]. Under certain
conditions, this �ltering yields unbiased steady state distribution.

Another technique tominimize source dependency has beenused
for sampling graphs such as peer-to-peer networks []. Experi-
menters employ a random walk in the graph structure to arrive at
another node before starting the measurement.

�ere are two potential ways to apply this approach in our setting.
�e �rst is to use source routing such that measurement probes are
bounced o� of a random node and only the part of the path from the
redirecting node to the destination is considered. Because source
routing is not widely deployed in the Internet, this technique is un-
likely to be practical.

An alternative is to ignore some part of the path that is close to the
source and extrapolate from the rest. We present a simple method
based on such tail extrapolation in §..

3.2 Explicitly computing source contribution
In some settings, the bias introduced by a source can be inferred

in a way that makes it possible to remove it from the measurements.
An example of this setting is the bias of an MRI (magnetic reso-
nance imaging) machine. Correlating multiple images taken by the
same machine enables estimation of the imperfections of an MRI
machine []. �ese imperfections can then be subtracted from the
individual images to obtain versions that are not tainted bymachine-
speci�c bias.

We present in §. a method based on path decomposition that is
based on this approach.

3.3 Using known properties of the system
Another approach to correct for bias is to leverage known proper-

ties of the system being sampled. A method that belongs to this ap-
proach is used by election surveys [, ]. �ese surveys leverage
prior knowledge about the underlying distribution of likely voters
along several key dimensions (e.g., race, age, sex, etc.). �is allows
survey collectors to randomly sample the entire population instead
of �rst identifying likely voters. �e bias due to the di�erence in the
two distributions can then be corrected by re-weighting the results
of each class of voters using their known ratio among likely voters.

�is method can be adapted to our setting if we knew, for in-
stance that there were well-de�ned link or path types (e.g., local,
national) and their relative frequency of occurrence. �en, based
on the measured latencies of each type and this frequency distribu-
tion, we could re-weight the measured data as above to estimate the
mean latency in the network. However, such a breakdown into types
is not known for links (or paths) in the Internet.

We present instead in §. a bias correction technique that uses
the property that network distances can be well-approximated by
placing the nodes in a low-dimension coordinate space [, , ].

3.4 Using control groups
�euse of control groups is prevalent inmedical experiments and

drug trials []. To account for the uncontrollable sources of bias (e.g.,
income level, race, age, etc.) that might a�ect test results, it is a de-

x
1

x
2

x
1

Figure : Embedding nodes in a coordinate space, such that
distances in the space approximate the path property being es-
timated. �is embedding helps correct for bias by providing an
estimate for paths that are not measured directly.

facto standard to recruit a control group that has the same statistical
properties as the group undergoing evaluation and validate the re-
sults achieved in the primary group by comparing against the con-
trol group. We do not know how this approach can be adapted to
our setting.

4. THE Broom TOOLKIT
Inspired by the high-level approaches outlined above, we now

present three methods to correct for bias in network path measure-
ments. �esemethods place no burden on themeasurement process
and they can be applied to the data a
er collection. Each method
makes di�erent assumptions about network paths, which we discuss
below. We evaluate these methods in the next section.

4.1 Extrapolating the Tail Half
Our �rst method attempts to correct for bias by minimizing the

source dependency in the measured data. It follows a simple in-
tuition. With source sampling, a major factor underlying the bias
stems from repeatedly sampling links that are close to the selected
sources. If these links happen to be longer or shorter than the aver-
age, the data will be non-representative and the estimate erroneous.
Because links closer to destinations are more extensively sampled in
a measurement experiment, it is likely that the path estimates based
on the tail half of the path will be more representative.

Hence, as shown in Figure , we may reduce bias by consider-
ing only the tail half. We use hop count to divide the path into
two halves. �at is, for a four-hop path, the tail consists of the last
two hops. We then extrapolate the values of full paths using the tail
halves. �e extrapolation is property dependent. For latency, we
use double the tail value, and for capacity the value is unchanged.
Tail extrapolation assumes that the measurements yield a per-hop
breakdown in the property being estimated. For some properties,
such as latency, providing this breakdown is straightforward (e.g.,
using traceroute) but for others, such as capacity, it may be di�cult.

To e�ectively remove bias, this method makes two assumptions.
First, the distribution of number of hops per measured path should
be similar to that for the overall distribution. Second, the distribu-
tion of the per-link property values (e.g., link latency) for path tails
should be similar to the overall distribution. If either of these con-
ditions are not true, the extrapolation will be biased.

In §, we �nd that these assumptions can be too strong in some
settings. In particular, tail extrapolation provides little bene�t with
degree-biased source sampling because the �rst assumptiondoesnot
hold with such sampling. Nevertheless, we include tail exploration
in Broom because of its simplicity, and as we show in §, it reduces
some types of biases.

4.2 Embedding Into a Coordinate Space
Our secondmethod attempts to correct for bias by using a known

property of the network. �e property in question is that path mea-
sures such as latency can be well-approximated by embedding the
nodes into a low-dimensional coordinate space; that is, the path
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Figure : Error in predicting latency for the unmeasured paths
in the AT&T network a
er embedding the nodes in a coordinate
space using the measured  of the paths. �e prediction error
is low for the vast majority of the unmeasured paths.

Pathij=  Di U[Cr] Dj+ +

Figure : Decomposing a path into two node-speci�c compo-
nents and a random hop on a shared ring. Estimating these com-
ponents helps correct for bias by providing an estimate for paths
that were not directly measured.

measure between twonodes can be approximated by the distance be-
tween their coordinates. Several researchers have shown this prop-
erty to hold in the Internet [, , ].

Such an embedding can be used to correct for bias, as illustrated
in Figure . �e measured data can be used to embed nodes into a
coordinate space. Once an embedding is obtained, it lets us estimate
the path measure for paths that could not be directly measured (i.e.,
the dotted paths in the �gure). �ese estimates, which were previ-
ouslymissing, let us create amore complete and thus less biased view
of the network.

We embednodes into a coordinate space by considering each path
measurement as a constraint — the coordinate distance between
two nodes should roughly equal the measured value. �e embed-
ding process satis�es as many constraints as possible. If the measure
being estimated is embeddable [, ], e.g., triangle inequality vio-
lations are not common, the resulting coordinate distances closely
approximate the path measure. For computing appropriate coordi-
nates, we use an existing implementation of Vivaldi [] as a black
box. It uses a four-dimensional coordinate space along with a node-
speci�c “height” factor []. A
er coordinates have been assigned to
all nodes in the network, we can estimate measures for paths in the
system that have not been directly measured.

Figure  shows the result of this process for an example experi-
ment using the AT&T network in which  of the paths are sam-
pled using degree-biased source sampling. It plots the error in the
predicted latencies of the unmeasured  of the paths based on
embedding the nodes in the coordinate space. We see that the pre-
dictions are quite accurate for the vast majority of the paths. Com-
bining these predictions with measured data yields a more accurate
view of the network than that obtained using measurements alone.

4.3 Path Decomposition
Our third method attempts to correct for bias by explicitly com-

puting the source (and destination) contributions. We model net-
work paths as concatenation of a component that is unique to the
source, a component that is shared across paths, and a component

Term Meaning

i, j Indices for nodes
a, b Indices for rings
Vij Measured path value between nodes i and j

Ca Circumference of Ring a

U [Ca] Random number sampled uniformly in [, Ca]
Di Height of node i away from its ring
Dab Inter-ring distance between rings a and b

Sij Estimated path value between nodes i and j

Na Number of nodes in Ring a

Ri Ring to which node i belongs
R,N Number of Rings, Nodes respectively

Table : De�nition of terms in the path decomposition problem.

that is unique to the destination. �is model is motivated by the na-
ture of topology and routing in the Internet. Packets along a path
typically traverse from the source to the network core, then traverse
within the core, and �nally traverse from the core to the destination.

�is model can be used to correct for bias if we can approximate
the source, destination, and core components. �at approximation
lets us estimate the measure for paths in the network that were not
directly measured. Like coordinate embedding, this estimation cre-
ates a more complete view of network. But unlike coordinate em-
bedding, which has been shown to work only for path properties
such as latency, path decomposition is general and applies to path
properties such as capacity and hop count as well.

Figure  shows a simpli�ed view of how we approximate path
components. Wemodel the network core as a ring and posit that the
path between a source-destination pair traverses a random distance
inside that ring. By formulating a constraint satisfaction problem
over the measured data, we obtain best-�t values for the ring size
and the distance of each node from the edge of the ring. From these
best �t values, we can estimate the path measure for unmeasured
paths (e.g., the paths between the four nodes on the le
 in Figure ).
To drive the decomposition towards more realistic network topolo-
gies, we also impose parsimonious constraints such as minimizing
the sum of the ring size and the node distances. For the example in
Figure , because of such constraints, the bene�t of reducing the
distances for all other nodes outweighs the cost of assigning a larger
distance to the one source on the right.

Modeling the network core as a single ring is problematic, how-
ever. For topologies that tend to be combinations of clusters, e.g., be-
cause they span continents, using only one ring over-constrains the
underlying space and the estimates of ring sizes and distances are
poor approximations of measured values. See the grayed out pos-
sibilities in the middle of Figure . Ideally, we would like to posit
precisely as many rings as necessary to obtain a good �t. See the
decomposition on the right in Figure .

So we generalize our model to allow multiple rings. Each node
attaches to exactly one ring. As before, we infer best-�t values for the
distance from a node to its ring and the ring sizes. Additionally, we
also infer the inter-ring distances. For nodes that attach to the same
ring, the path between them ismodeled as before. �epath for nodes
that belong to di�erent rings traverses the inter-ring component, the
two rings and the two node-speci�c components.

Formally, path decomposition solves the following optimization
problem, where Table  de�nes the notation:



Figure : Approximating the network on the le
 with just one ring in the core overestimates the latency for many paths. �e two grayed
out decompositions in the middle show this e�ect. We model network core using multiple rings, which leads to decompositions such as
the one on the right. �is decomposition better matches the measured data.

min
X

i,j

(Vij − Sij)
2 +

X

a

NaCa + 0.1
X

i

Di +
0.1

P

ab Dab

R − 1

s.t.

Sij = Di ⊕ Dj ⊕ (1 + U [ǫ])



U [CRi
] if Ri = Rj

DRiRj
⊕ U [CRi

] ⊕ U [CRj
] o/w

Ca, Dab ≥ 0 ∀ rings

�ede�nition ofSij describes how the path property can be com-
posed from the node and ring components. Mathematically, this
composition (represented by ⊕) depends on the property of inter-
est. For additive metrics, such as latency, hop count or (log of) loss
rate, it involves addition. For others, such as capacity, it involves tak-
ing theminimumof the three portions. �eU [∗] values are assigned
at run time using a random number generator. �e factor 1 + U [ǫ],
where ǫ is a small constant, ensures that a di�erent path decompo-
sition is obtained each time the problem is solved. It helps compute
the uncertainty in the measured data (see §.).

In the minimization goal,
P

(Vij − Sij)
2 ensures that estimated

path latenciesSij lie close to the measured value Vij . �e rest of the
goal imposes a parsimony constraint. We attempt to minimize the
distances of nodes to the ring Di, the ring sizes Ca and the inter-
ring distanceDab. �is minimization and the relative weights of .
for the last two terms re�ects the following concerns:

• We should change the size of a ring, which impacts latencies
for all nodes belonging to the ring, only if it leads to a better
�t in the distances of many nodes that attach to that ring.

• We should change the inter-ring separation, which impacts
the latencies for all paths spanning the rings, if it results in a
better �t for the sizes of the rings and hence latencies for paths
within the rings.

�e optimization problem above takes the number of rings and
node to ring mapping as input. Formulating a single optimization
problem that determines these two factors along with component
sizes leads to a problem that is too slow to solve. We instead use
a simple clustering procedure to obtain these two factors as a pre-
processing step. We divide nodes into two groups. �e �rst group,
called close-by, is the largest subset of nodes such that no pair has a
path value greater than a threshold k. �e remaining nodes are in
the faraway group. We then recursively split the faraway group in
a similar manner. If the close-by group has only one node at some
recursion level, that node is merged with the close-by group from
the previous level instead of being in its own group. We merge such
nodes because a single distant node (or,more generally,multiple dis-
tant nodes that are not close to each other) can bemodeled with one
ring. Only when multiple distant nodes are close to one another, we
need an additional ring tomodel the data. Each group thus obtained
de�nes a ring of its own.
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Figure : Error in latencies predicted using path decomposition
for the same sampling experiment as Figure . Prediction errors
are low but higher than those for coordinate embedding.
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Figure : If the network is under-sampled, there aremultiple co-
ordinate assignments that matchmeasured data. We capture this
uncertainty by computing con�dence intervals basedonmultiple
random assignments.

We choose k to be slightly smaller than the median observed path
value. �is choice is based on the trade-o� that for obtaining a de-
composition that well approximates themeasured data, an extra ring
that may not be needed is better than omitting a needed ring.

Once various node-to-ring and inter-ring component values are
computed, we can estimate the values of unmeasured paths by ap-
propriately composing the components. Figure  shows the re-
sult of this process for the same sampling experiment as Figure .
We see that the prediction error is low but higher than coordinate
embedding. �is higher error stems in part from the fact that our
formulation of path decomposition is geared towards reducing the
mean error rather than the error for individual paths. For example,
even if a pair of nodes happens to have a short latency path between
them, their shortest distance in the path decomposition embedding
would still consist of a randomhopon a ring. �e formulationmakes
up for such over estimation of small values by corresponding under-
estimation of the larger values since the stable point for the min-
imization goal preserves the mean. As we show later, this formu-
lation is a good vehicle for estimating means, but is inaccurate for
estimating percentiles on either the low or the high ends.

4.4 Capturing uncertainty in the estimates
Coordinate embedding and path decomposition are essentially

constraint solving problems. When not enough measured data is
available, these problems are under-constrained. �at is, there are
multiple (non-isomorphic) coordinate assignments or path decom-
positions that satisfy themeasured values. �is scenario is illustrated
in Figure . In such cases, the network con�guration obtained is a



random one amongst all feasible ones. If we were to base our esti-
mate on only one possible con�guration, the estimated value could
be signi�cantly di�erent from the true value.

�us, along with an estimated value, we want to also compute a
con�dence interval such that the true value is contained in the in-
terval with a high probability. Ideally, we would directly obtain the
two extreme network con�gurations that match the measured data
and compute the minimum and the maximum value for the mea-
sure of interest. However, we do not know of a way to directly infer
such con�gurations. (Vivaldi and other scalable coordinate embed-
ding systems assign coordinates based on local actions rather than a
central global optimization.)

Instead, we estimate the con�dence interval empirically, by exe-
cuting the underlying constraint solver multiple times. �e inputs
to the solver are randomly perturbed such that the output is essen-
tially a di�erent random network con�guration of all feasible ones.
For Vivaldi, we randomize initial node positions. For path decom-
position, di�erent values for the various random numbers help in
obtaining di�erent decompositions.

Once multiple network con�gurations are derived as above, we
compute K-th percentile con�dence interval for given values of K.
�e lower end of this interval is the K-th percentile of the paths in
the hypothetical network con�guration in which the value of each
path is the minimum observed across these iterations. Similarly, the
higher end is based on a hypothetical network con�guration with
the maximum value observed for each path. We output the best es-
timate of the mean as the half-way point between these two extreme
network con�gurations.

�ese hypothetical networks may not be consistent with the mea-
sured data but the bounds thus computed contain the true valuewith
a high probability. In our experiments, we �nd that as few as ten it-
erations su�ce to provide good con�dence intervals, and the incre-
mental value of more iterations is negligible.

While we use it to estimate con�dence intervals a
er the data has
been collected, an online version of the procedure above can also
guide the measurement process itself if the experimenter wants a
tight con�dence interval with as few measurements as possible.

5. EVALUATION
We now evaluate empirically the three methods in the Broom

toolkit. We use a methodology similar to that of §. A
er sampling
paths, we post-process the data using each method. We then mea-
sure their e�ectiveness in terms of the relative error in the estimated
values and the ability to compute con�dence intervals that contain
the true value. Our key �ndings are:

• Tail extrapolation is of limited value. With uniform source
sampling, it improves inferences compared to not using any
correction method. But it provides no bene�t with degree-
biased source sampling.

• Coordinate embedding is the best method for correcting bias
in path latency measurements. It reduces median error by a
factor of �ve compared to not using bias correction. In the
sampling range of interest, its e�ectiveness approaches that of
the ideal sampling method, that is, uniform path sampling.
Coordinate embedding is less e�ective at correcting for bias in
hop count and capacitymeasurements, though it does provide
bene�t compared to not correcting for bias.

• Path decomposition is broadly useful. It is slightly inferior to
coordinate embedding for latency measurements but vastly
superior for hop count and capacity measurements. For all

three measures, it comes close to ideal sampling in the sam-
pling range of interest when estimating mean.

We now present our results in detail, starting with the task of es-
timating mean path latency. We then consider estimating aggregate
measures other than the mean, followed by estimating path proper-
ties other than latency. Unless otherwise stated, the results are for
the Rocketfuel topologies (Table ).

As before, we show results for the entire – sampling range
to study the behavior of Broom’s methods across the board and their
limits. But we focus on the – range while discussing the results
and highlight this range in our graphs.

5.1 Estimating mean latency
We �rst consider uniform source sampling in Rocketfuel topolo-

gies, followed by degree-biased source sampling. We then show that
our key conclusions also hold for the Brite topologies.

Uniform source sampling: Figure  shows the results for the
case where paths are sampled using uniform source sampling. For
comparison, it also shows the results when bias is not corrected and
when the same number of paths are sampled using ideal (uniform
path) sampling.

Figure (a) plots the frequencywith which the truemean lies in-
side the  con�dence interval. We see that each of Broom’s three
methods improves over the case where bias is not corrected. Even
the simple tail extrapolation method helps, by increasing the fre-
quency from  to . When  of the paths are sampled, the
other two methods improve this frequency to over . Beyond
that, they are indistinguishable from ideal sampling.

By simply increasing the con�dence interval size, it is easy for any
method to ensure that the true mean lies inside the interval. Fig-
ure (b) shows that the size of the con�dence interval is not a ma-
jor factor behind the improvement brought about by Broom. �eir
con�dence intervals are similar to those for the case where bias is
not corrected.

Figure (c) shows the median, th and th percentile of rel-
ative error in estimating the mean latency of the network. When
 of the paths are sampled, the median error without bias cor-
rection is about . Tail extrapolation reduces this error to .
Path decomposition reduces it by half to . Coordinate embedding
matches ideal sampling with only  median error. When over 
of the paths are sampled, path decomposition too begins to match
ideal sampling.

Degree-biased source sampling: We now study the impact of
degree-biased source sampling, which we showed earlier as produc-
ing more biased results than uniform source sampling. Figure 
shows that the e�ectiveness of path decomposition and coordinate
embedding is similar to the case of uniform source sampling.

However, tail extrapolation completely falls apart. Its frequency
for containing the true mean is similar to not correcting for bias at
all, and its relative error is substantial. �is ine�ectiveness is a re-
sult of the fact that the number of hops in paths with degree-biased
source sampling tends to be fewer than the true underlying distri-
bution (as shown in Figure ). Extrapolating from the tail halves
of such paths does not reduce bias because even the tail halves are
systematically shorter than a typical half-path in the network.

Brite topologies: Figure  shows the results for the Brite topolo-
gies; we present results only for degree-biased source sampling. We
see that the results are qualitatively similar to those for the Rock-
etfuel topologies. One exception is that tail extrapolation appears
to be a little more e�ective than it is for Rocketfuel topologies with
degree-biased source sampling. �e continued e�ectiveness of the



 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.02  0.05  0.1  0.2  0.5  0.9

F
ra

ct
io

n 
in

si
de

 c
on

f. 
in

te
rv

al

Fraction of Paths Sampled

Ideal sampling
No correction

Tail extrapolation
Coordinate embedding

Path decomposition

(a) Fraction of experiments where the true mean is within the
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Figure : Correcting for bias in latency measurements when
uniform source sampling is used. Each of the three methods im-
proves the accuracy of the inferences. Coordinate embedding is
the most e�ective method.

other two methods on Brite topologies suggests that they are robust
to the nature of the underlying topology.

5.2 Estimating other aggregate measures
We now study if Broom can correct for bias in aggregatemeasures

other than the mean. �is investigation is preliminary, and a more
detailed study is a subject of ongoing work. We consider the task
of estimating the th (median) and the th percentiles in path la-
tency distributions. We quantify estimation error using the magni-
tude of the di�erence between the estimated and true values divided
by the true mean. �e division gives a sense of the signi�cance of
the error compared to the mean path latency.

Figure  plots the median, th and th percentile of the error
in estimating the two percentiles. We see that coordinate embedding
is remarkably e�ective. In the sampling sampling region of interest,
its errors are comparable to those of ideal sampling.
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(b) Median, th, and th percentile of the magnitude of the
relative error.

Figure : Correcting for bias in latency measurement when
degree-biased source sampling is used. Tail extrapolation brings
no bene�t but the other two methods are e�ective.

Path decomposition, however, is not e�ective at estimating per-
centile values. As mentioned before, this shortcoming stems from
formulating the decomposition problem in a way that focuses on
reducing the error in computing the mean rather than obtaining
good estimates for each path. In the future, we will consider for-
mulations using which both the mean and percentile values can be
well-approximated.

5.3 Estimating other path properties
We now study the e�ectiveness of Broom for other kinds of path

measurements. In particular, we consider hop count andpath capac-
ity. We present results only for the more challenging case of degree-
biased source sampling.

Path hop count: Figure  shows the results for hop count mea-
surements. We see that for coordinate embedding this measure
presents a more challenging case. It improves results compared to
not correcting for bias; when  of the paths are sampled, it en-
compasses the true mean roughly  of the time compared to 
for not correcting for bias, and its median relative error is roughly
half as high. But it is far from ideal sampling and is unable to match
the e�ectiveness it showed for latency measurements. �is behav-
ior suggests that Internet path hop counts are not amenable to being
characterized using a low-dimensional coordinate space.

Path decomposition on the other hand continues to be e�ective
at correcting for bias in hop count measurements. In the sampling
region of interest, its e�ectiveness is similar to that for estimating
mean latency.

Path capacity: Figure  shows the results for path capacitymea-
surements. As before, we see that coordinate embedding is not as ef-
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Figure : Correcting for bias in latency measurement when
degree-biased source sampling is used over Brite topologies. Co-
ordinate embedding and path decomposition are e�ective.

fective as it is for latency, though it improves over the no correction
case. In contrast, path decomposition remains remarkably e�ective.
It comes close to ideal sampling whenevermore than  of the paths
are sampled.

6. A CASE STUDY OF APPLYING Broom
We now show that the potential existence of bias and its removal

are notmerely theoretical concerns. �e results of real measurement
studies can di�er signi�cantly depending of whether the data is cor-
rected for bias.

�e data that we use for this case study is collected by Netdi�,
a system to quantify and compare the performance of backbone
ISPs []. Netdi� characterizes ISP performance in terms of path
latency. It collects two types of data sets. �e �rst is for paths inter-
nal to an ISP. Such paths start from an ISP PoP (point of presence)
and end at another PoP. �is set of paths is thus similar to those in
our experimental setup in the previous section. �e second data set
is for paths from an ISP PoP to an eventual destination. �e set of
destinations correspond to BGP atoms that represents a group of IP
address pre�xes with a common routing policy [].

Not all paths of either type can be directly measured in a prac-
tical manner. Following standard practices, Netdi� measures the
latency of as many paths as it can, in this case from the PlanetLab
nodes. It then computes and reports the mean and con�dence in-
tervals around the mean for each type of path. �e authors assume
that the set of measured paths are not biased; see §. of the Netdi�
paper [].

Table  characterizes the Netdi� data sets that we use. �e data
contain measurements of eighteen ISPs collected on one day (Feb
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Figure : �e median, th and th percentile error in esti-
mating two percentile values for path latency distribution when
degree-based source sampling is used. Coordinate embedding
provides a good estimate of percentile values as well.

, ).1 Results for other days are qualitatively similar to those
presented below. �e second column of the table lists the number
of PoPs inside each ISP. �e third column shows the number of in-
ternal paths measured for each ISP. �e fourth column shows the
number of destinations present in the data set; the set of destinations
measured di�ers across ISPs. �e �
h column shows the number
of destination paths that are directly measured. �e third and �
h
columns also show in parenthesis what percentage of paths of each
type are measured. For the �rst data set, of internal paths that are
similar to those we study before, we see that more than  of the
paths are measured in each case.

For these two data sets, we computed the mean latency and con�-
dence intervals without bias correction. We also processed the data
using coordinate embedding, our best method for latency measure-
ments, which yields bias-corrected estimates of the mean and con�-
dence intervals. We compare the two sets of estimates below.

Data set  – Internal paths: Figure (a) shows the directly mea-
sured mean latency and  con�dence interval and the latency es-
timates a
er correcting for bias. We see that correction can produce
signi�cantly di�erent estimates. For Qwest, GlobalX, and VSNL, the
di�erence is close to . For seven of the eighteen ISPs, the two
con�dence intervals are non-overlapping, whichmeans that at most
one of the twomethods captures the truemean. If the con�dence in-
terval a
er correcting for bias contains the true mean, as suggested
by the results from the previous section, the pre-correction con�-
dence interval does not.

While some of the Netdi� and Rocketfuel ISPs (Table ) are com-
mon, the topologies are not directly comparable because they were
collected roughly six years apart.
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Figure : Correcting for bias in hop count measurement when
degree-biased source sampling is used. Path decomposition is the
most e�ective method.

Figure (a) also shows that the latency estimates a
er correcting
for bias tend to be higher. We speculate that measured data is more
likely to contain paths from PoPs in big cities because it is easier to
�ndmeasurement vantage points there.�enature of ISP topologies
is such that paths from bigger cities tend to be shorter than those
from smaller cities []. Latency estimates computed a
er correct-
ing for this bias will thus be higher.

Data set  – Destination paths: Figure (b) shows the latency
estimates for destination paths. For this type of paths, the key dif-
ference between directly computed latency and that estimated a
er
correcting for bias is the size of the con�dence interval. Correcting
for bias produces much bigger con�dence intervals. In most cases
a small fraction of the paths are measured, and thus it is likely that
the measurements do not describe a particularly restrictive way of
mapping nodes to a coordinate space. As a result, the space of possi-
bilities with respect to latencies of unobserved paths is higher, which
translates to bigger con�dence intervals.

Results a
er correcting for bias indicate that there is not enough
data to characterize most ISPs’ performance to measured destina-
tions. Directly computed latency and con�dence intervals (likely er-
roneously) suggest otherwise.

7. FUTURE WORK
�e work in this paper points to a few promising directions for

further investigation.

Analyticalmodeling of bias correction: Our bias correctionmeth-
ods are essentially empirical but we believe that their function can
be analytically modeled and explained. Such modeling can provide
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Figure : Correcting for bias in capacity measurement when
degree-biased source sampling is used. Path decomposition is the
most e�ective method.

 PoPs  internal paths  dst.  dst. paths
( of total) in trace ( of total)

AOL   (.)   (.)
ATT   (.)   (.)
Above   (.)   (.)
British   (.)   (.)
Bwing   (.)   (.)
Cogent   (.)   (.)
Deutsche   (.)   (.)
France   (.)   (.)
GlobalX   (.)   (.)
Level   (.)   (.)
NTT   (.)   (.)
Qwest   (.)   (.)
Savvis   (.)   (.)
Sprint   (.)   (.)
Tiscali   (.)   (.)
VSNL   (.)   (.)
Verizon   (.)   (.)
XO   (.)   (.)

Table : Characteristics of the Netdi� data sets.

more insight into why they work. A starting point towards devel-
oping these analytic models is recognizing that at their core coor-
dinate embedding and path decomposition are stochastic imputa-
tion techniques. Stochastic imputation refers to compensating for
missing data inmeasurements by instantiating an underlyingmodel
that can estimate the values of missing data. Both of our methods
do such compensation, though the models they use are di�erent —
low-dimensional coordinate space versus composition of network
paths from individual components. Formalizing these models and
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(b) Destination paths (from PoPs to destination atoms)

Figure : Latency estimated using two di�erent methods for the two kinds of paths. In gray, the graphs show the directly measured
mean and the  con�dence intervals around themean. In black, they show the estimatedmean and  con�dence intervals a
er bias
correction. �enumbers close to the x-axis show the relative di�erence between the twomeans. In eachgraph, the ISPs are ordered based
on the mean of direct measurements. Observe that bias correction signi�cantly changes the estimatedmean and con�dence internals for
many ISPs.

the process for conducting measurements on them can provide an
analytic basis for both estimating and correcting bias.

Using additional information for bias correction: �e current set
of methods in Broom only requires basic information that is avail-
able in all path measurement experiments — measured path values
between pairs of nodes. (Tail extrapolation assumes the availability
of per-hop values as well.) A question that remains open is whether
leveraging additional information that may be available in some ex-
periments can improve bias correction. We plan to investigate the
types of additional information that are commonly available and
how they can help correct for bias.

For example, assume that topology information is available, per-
haps through out-of-band channels such as public ISP maps. As-
sume also that routing information, i.e., the series of links traversed
between pairs of nodes, is available. �en, using measured path val-
ues along with this additional information, we can infer per-link val-
ues (e.g., latency). One way to do this inference is by solving a set
of equations that constrain the composition of the per-link values
along a path to equal the measured path value (akin to Mahajan et
al. []). �ese inferred per-link values can then be used to estimate
the path values for unmeasured paths. Of course, for such a method
to be useful when too few paths are sampled, we would also need a
mechanism to capture the uncertainty in the estimates.

Alternate network models: Other network models that can work
with the same basic information as Broom exist. One such possibil-
ity is presented by Ramasubramanian et al., who show that Internet
paths can be modeled as a tree for properties such as latency and
capacity []. Investigating the e�ectiveness of these other network
models at correcting bias is open for future work.

8. RELATED WORK
While we investigate the presence and reduction of bias in net-

work pathmeasurements, other researchers have studied bias in net-
work topologymeasurements. Lakhina et al. focus on biases inmea-
suring router degree distributions []. �ey show that for realistic
network topologies this bias can be high unless a large number of
sources are used for measurements. �ey present a statistical test for
detecting bias but do not propose methods to correct it. Chang et al.
show that AS-level connectivity graphs inferred from RouteViews-
like sources are biased in that they tend to miss a higher propor-
tion of a particular kind of inter-AS edges []. He et al. propose
methods to reduce this bias by combining information from multi-
ple sources [].

Researchers have also investigated biases in sampling peers in sev-
eral large peer-to-peer networks []. �e methods in this domain
rely on random walks, which are typically not possible for Internet
path measurements.



A related line of work developsmethods to obtain a representative
view of the network by carefully selecting a subset of paths to mea-
sure [, , ]. �ese works assume that any relevant network path
can be directly measured. �e ability to measure any path is present
in some settings; for instance, the network path between any pair of
overlay nodes can be measured. But it is typically absent in Internet
path measurements, which is why we focus on removing bias from
whatever path measurements are available.

9. CONCLUSIONS
We showed that the inferences obtained using prevalent method-

ology for network path measurements can be highly inaccurate be-
cause of sampling biases. For instance, the estimated mean path la-
tency can be a factor of two o� the true mean. We presented the
Broom toolkit with threemethods to reduce sampling biases in mea-
sured data without burdening the measurement process itself. We
showed that two of those methods are highly e�ective. One of them
uses coordinate embedding. It is extremely e�ective for latencymea-
surements, where it came close to ideal, bias-free sampling. �e
other is based on decomposing the path into source, destination, and
network core components. It is broadly useful because it can correct
for bias in a wider class of path properties such as hop count and
capacity. Applying Broom to two real data sets signi�cantly altered
their inferences, providing further evidence that prevalent practices
run the risk of invalid conclusions unless they correct for sampling
biases in their measurements.

Network pathmeasurements, while important and common, rep-
resent only one aspect of the overall network measurement land-
scape. Researchers conduct many other types of measurements as
well, and the presence of bias in those measurements has not been
explored. We hope that our work triggers a broader debate on sam-
pling bias in network measurements and more active research on
understanding and correcting for such bias.
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