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Three new tools 
combine techniques 
from static program 
analysis, dynamic 
analysis, model 
checking, and 
automated constraint 
solving to automate 
test generation in 
varied application 
domains.

D
uring the last decade, code inspection for standard programming errors has 
largely been automated with static code analysis. Commercial static program-
analysis tools are now routinely used in many software development organiza-
tions.1 These tools are popular because they find many software bugs, thanks to 

three main ingredients: they’re automatic, they’re scalable, and they check many properties. 
Intuitively, any tool that can automatically check millions of lines of code against hundreds 
of coding rules is bound to find on average, say, one bug every thousand lines of code.

Our long-term goal is to automate, as much as 
possible, an even more expensive part of the soft-
ware development process, namely software testing. 
Testing usually accounts for about half the R&D 
budget of software development organizations. In 
particular, we want to automate test generation by 
leveraging recent advances in program analysis, au-
tomated constraint solving, and modern comput-
ers’ increasing computational power. To replicate 
the success of static program analysis, we need the 
same three key ingredients found in those tools.

A key technical challenge is automatic code-
driven test generation: given a program with a set 
of input parameters, automatically generate a set 
of input values that, upon execution, will exercise 
as many program statements as possible. An op-
timal solution is theoretically impossible because 
this problem is generally undecidable. In practice, 
however, approximate solutions suffice: a tool that 
could automatically generate a test suite covering, 

say, even half the code of a million-line C program 
would have tremendous value.

Such a tool doesn’t exist today, but in this arti-
cle, we report on some recent significant progress 
toward that goal. Although automating test genera-
tion using program analysis is an old idea,2 practi-
cal tools have only started to emerge during the last 
few years. This recent progress was partly enabled 
by advances in dynamic test generation,3 which gen
eralizes and is more powerful than traditional static 
test generation.

At Microsoft, we are developing three new tools 
for automatic code-driven test generation. These 
tools all combine techniques from static program 
analysis (symbolic execution), dynamic analysis (test-
ing and runtime instrumentation), model checking 
(systematic state-space exploration), and automated 
constraint solving. However, they target differ-
ent application domains and include other original 
techniques.
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Static versus dynamic 
test generation
Work on automatic code-driven test generation can 
roughly be partitioned into two groups: static and 
dynamic.

Static test generation consists of analyzing a 
program P statically by reading the program code 
and using symbolic execution techniques to simu-
late abstract program executions to attempt to com-
pute inputs to drive P along specific execution paths 
or branches, without ever executing the program.2 
The idea is to symbolically explore the tree of all 
the computations that the program exhibits with all 
possible value assignments to input parameters. For 
each control path p (that is, a sequence of the pro-
gram’s control locations), symbolic execution con-
structs a path constraint that characterizes the input 
assignments for which the program executes along 
p. A path constraint is thus a conjunction of con-
straints on input values. If a path constraint is satisfi-
able, then the corresponding control path is feasible. 
We can enumerate all the control paths by consider-
ing all possible branches at conditional statements. 
Assuming that the constraint solver used to check 
the satisfiability of all path constraints is sound and 
complete, this use of static analysis amounts to a 
kind of symbolic testing.

Unfortunately, this approach doesn’t work when
ever the program contains statements involving 
constraints outside the constraint solver’s scope of 
reasoning. The following example illustrates this 
limitation:

int obscure(int x, int y) { 
   if (x == hash(y)) return -1;	 // error
   return 0; 		  // ok
}

Assume the constraint solver can’t “symbolically 
reason” about the function hash. This means that the 
constraint solver can’t generate two values for inputs 
x and y that are guaranteed to satisfy (or violate) the 
constraint x == hash(y). (For instance, if hash is a hash 
or cryptographic function, it has been mathemati-
cally designed to prevent such reasoning.) In this 
case, static test generation can’t generate test inputs 
to drive this program’s execution through either 
branch of its conditional statement; static test gen-
eration is helpless for a program like this. In other 
words, static test generation is doomed to perform 
poorly whenever perfect symbolic execution is im-
possible. Unfortunately, this is frequent in practice 
owing to complex program statements (pointer ma-
nipulations, arithmetic operations, and so on) and 
calls to operating-system and library functions that 

are hard or impossible to reason about symbolically 
with good enough precision.

Dynamic test generation,4 on the other hand, 
consists of

executing the program P, starting with some 
given or random inputs;
gathering symbolic constraints on inputs at con-
ditional statements along the execution; and
using a constraint solver to infer variants of the 
previous inputs to steer the program’s next ex-
ecution toward an alternative program branch.

This process is repeated until a specific program 
statement is reached.

Directed Automated Random Testing (DART)3 
is a recent variant of dynamic test generation that 
blends it with model-checking techniques to system-
atically execute all of a program’s feasible program 
paths, while checking each execution using runtime 
checking tools (such as Purify) for detecting various 
types of errors. In a DART directed search, each 
new input vector tries to force the program’s ex-
ecution through some new path. By repeating this 
process, such a directed search attempts to force the 
program to sweep through all its feasible execution 
paths, similarly to systematic testing and dynamic 
software model checking.5

In practice, a directed search typically can’t ex-
plore all the feasible paths of large programs in a 
reasonable amount of time. However, it usually 
does achieve much better coverage than pure ran-
dom testing and, hence, can find new program 
bugs. Moreover, it can alleviate imprecision in sym-
bolic execution by using concrete values and ran-
domization: whenever symbolic execution doesn’t 
know how to generate a constraint for a program 
statement depending on some inputs, we can always 
simplify this constraint using those inputs’ concrete 
values.3

Let’s illustrate this point with our previous pro-
gram. Even though it’s statically impossible to gen-
erate two values for inputs x and y such that the con-
straint x == hash(y) is satisfied (or violated), it’s easy 
to generate, for a fixed value of y, a value of x that is 
equal to hash(y) because the latter is known dynami-
cally at runtime.

A directed search would proceed as follows. For 
a first program run, pick random values for inputs 
x and y: for example, x = 33, y = 42. Assuming the 
concrete value of hash(42) is 567, the first concrete 
run takes the else branch of the conditional state-
ment (since 33 ≠ 567), and the path constraint for 
this first run is x ≠ 567 because the expression hash(y) 
isn’t representable and is therefore simplified with 
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its concrete value 567. Next, the negation of the 
simplified constraint x = 567 can easily be solved 
and lead to a new input assignment x = 567, y = 42. 
Next, running the program a second time with in-
puts x = 567, y = 42 leads to the error.

Therefore, static test generation is unable to gen-
erate test inputs to control this program’s execu-
tion, but dynamic test generation can easily drive 
that same program’s executions through all its fea-
sible program paths. In realistic programs, impreci-
sion in symbolic execution typically arises in many 
places, and dynamic test generation can recover 
from that imprecision. Dynamic test generation ex-
tends static test generation with additional runtime 
information, so it’s more general and powerful. It is 
the basis of the three tools we present in the remain-
der of this article, which all implement variants and 
extensions of a directed search.

SAGE: White-box fuzz 
testing for security
Security vulnerabilities (like buffer overflows) are a 
class of dangerous software defects that can let an 
attacker cause unintended behavior in a software 
component by sending it particularly crafted in-
puts. Fixing security vulnerabilities after a product 
release is expensive because it might involve deploy-
ing hundreds of millions of patches and tying up the 
resources of many engineers. A single vulnerability 
can cost millions of dollars.

Fuzz testing is a black-box testing technique that 
has recently leapt to prominence as a quick and cost-
effective method for uncovering security bugs. This 
approach involves randomly mutating well-formed 
inputs and testing the program on the resulting 
data.6 Although fuzz-testing tools can be remark-
ably effective, their ability to discover bugs on low-
probability program paths is inherently limited.

We’ve recently proposed a conceptually simple 
but different approach of white-box fuzz testing 
that extends systematic dynamic test generation.7 
We implemented this approach in SAGE (scalable, 
automated, guided execution), a new tool using in-
struction-level tracing and emulation for white-box 
fuzzing of Windows applications.

SAGE architecture
SAGE repeatedly performs four main tasks.

	 1.	The tester executes the test program on a given 
input under a runtime checker looking for vari-
ous kinds of runtime exceptions, such as hangs 
and memory access violations.

	 2.	The coverage collector collects instruction ad-
dresses executed during the run; instruction 

coverage is used as a heuristic to favor the ex-
pansion of executions with high new coverage.

	 3.	The tracer records a complete instruction-level 
trace of the run using the iDNA framework.8

	 4.	Lastly, the symbolic executor replays the re-
corded execution, collects input-related con-
straints, and generates new inputs using the 
constraint solver Disolver.9

The symbolic executor is implemented on top 
of the trace replay infrastructure TruScan,10 which 
consumes trace files generated by iDNA and vir-
tually re-executes the recorded runs. TruScan of-
fers several features that substantially simplify 
symbolic execution. These include instruction de-
coding, providing an interface to program symbol 
information, monitoring various I/O system calls, 
keeping track of heap and stack frame allocations, 
and tracking the data flow through the program 
structures.

The constraint generation approach SAGE uses 
differs from previous dynamic test generation im-
plementations in two main ways. First, instead of 
a source-based instrumentation, SAGE adopts a  
machine-code-based approach. This lets us use 
SAGE on any target program regardless of its source 
language or build process with little up-front cost. 
This is important in a large company that uses mul-
tiple source languages—both managed and unman-
aged—and various incompatible build processes 
that make source-based instrumentation difficult.

Second, SAGE deviates from previous approaches 
by using offline trace-based, rather than online, con-
straint generation. Indeed, hard-to-control nonde-
terminism in large target programs makes debug-
ging online constraint generation difficult. Thanks 
to offline tracing, constraint generation in SAGE 
is completely deterministic because it works with 
an execution trace that captures the outcome of all 
nondeterministic events encountered during the re-
corded run.

Generational path exploration
Because SAGE targets large applications where a 
single execution might contain hundreds of mil-
lions of instructions, symbolic execution is its 
slowest component. Therefore, SAGE implements 
a novel directed search algorithm, dubbed genera-
tional search, that maximizes the number of new 
input tests generated from each symbolic execution. 
Given a path constraint, all the constraints in that 
path are systematically negated one by one, placed 
in a conjunction with the prefix of the path con-
straint leading to it, and attempted to be solved by 
a constraint solver. (In contrast, a standard depth- 
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or breadth-first search would negate only the last or 
first constraint in each path constraint.)

Consider the program in Figure 1. This program 
takes 4 bytes as input and contains an error when 
the value of the variable cnt is greater than or equal 
to three. Starting with some initial input good, SAGE 
executes its four main tasks. The path constraint for 
this initial run is i0 ≠ b, i1 ≠ a, i2 ≠ d, and i3 ≠ !.

Figure 1 also shows the set of all feasible pro-
gram paths for the function top. The left-most path 
represents the program’s initial run and is labeled 
with 0 for Generation 0. Four Generation 1 inputs 
are obtained by systematically negating and solving 
each constraint in the Generation 0 path constraint. 
By repeating this process, all paths are eventually 
enumerated. (See related work7 for other benefits 
of a generational search as well as several optimi-
zations that are key to handling long execution 
traces.)

Experience
On 3 April 2007, Microsoft released an out-of-
band security patch for code that parses ANI- 
format animated cursors. The Microsoft SDL Pol-
icy weblog states that extensive black-box fuzz test-
ing of this code failed to uncover the bug and that 
existing static-analysis tools aren’t capable of find-
ing the bug without excessive false positives.

In contrast, SAGE can generate a crash exhibit-
ing this bug starting from a well-formed ANI input 
file, despite having no knowledge of the ANI for-
mat. We arbitrarily picked a seed file from a library 
of well-formed ANI files and analyzed a small test 
program that called user32.dll to parse ANI files. 
The initial run generated a path constraint with 341 

branch constraints after parsing 1,279,939 instruc-
tions over 10,072 symbolic input bytes. SAGE then 
created a crashing ANI file after 7 hours 36 min-
utes and 7,706 test cases, using one core of a 2-GHz 
AMD Opteron 270 dual-core processor running 
32-bit Windows Vista with 4 Gbytes of RAM.

SAGE is currently being used internally at Mi-
crosoft and has already found tens of previously un-
known security-related bugs in various products.7

Pex: Automating  
unit testing for .NET
Although it’s important to analyze existing pro-
grams to find and remove security vulnerabilities, 
automatic-analysis tools can help avoid such pro-
gramming errors to begin with when developing 
new programs.

Unit testing is a popular way to ensure early and 
frequent testing while developing software. Unit 
tests are written to document customer require-
ments at the API level, reflect design decisions, pro-
tect against observable changes of implementation 
details, and as part of the testing process, achieve 
certain code coverage. A unit test, as opposed to an 
integration test, should only exercise a single feature 
in isolation. This way, unit tests don’t take long to 
run, so developers can run them often while writing 
new code. Because unit tests target only individual 
features, it’s usually easy to locate errors from fail-
ing unit tests.

Many tools, such as JUnit and NUnit, support 
unit testing. These tools manage a set of unit tests 
and provide a way to run them and inspect the 
results. However, they don’t automate the task of 
creating unit tests. Writing unit tests by hand is a 

good goo! godd god! gaod gao! gadd gad! bood boo! bodd bod! baod bao! badd bad!

0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

void top(char input[4]) {
   int cnt=0;
   if (input[0] == ’b’) cnt++;
   if (input[1] == ’a’) cnt++;
   if (input[2] == ’d’) cnt++;
   if (input[3] == ’!’) cnt++;
   if (cnt >= 3) abort(); // error
} 

(a) (b)

Figure 1. Example of 
program (a) and its 
search space (b) with 
the value of cnt at the 
end of each run.
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laborious undertaking. In many projects at Micro-
soft, there are more lines of code for the unit tests 
than for the implementation being tested.

On the other hand, most fully automatic test-
generation tools suffer from a common problem: 
they don’t know when a test fails (except for obvi-
ous errors, such as a division-by-zero exception). 
To combine the advantages of automatic test gen-
eration with unit tests’ error-detecting capabilities, 
we’ve developed a new testing methodology: the pa-
rameterized unit test (PUT).11

A PUT is simply a method that takes param-
eters. Developers write PUTs, just like traditional 
unit tests, at the level of the actual software APIs in 
the software project’s programming language. The 
purpose of a PUT is to express an API’s intended 
behavior. For example, the following PUT asserts 
that after adding an element to a non-null list, the 
element is indeed contained in the list:

void TestAdd(ArrayList list, object element) {
   Assume.IsNotNull(list);
   list.Add(element);
   Assert.IsTrue(list.Contains(element));
}

This PUT states assumptions on test inputs, per-
forms a sequence of method calls, and asserts prop-
erties that should hold in the final state. (The ini-
tial assumptions and final assertions are similar to 

method preconditions and postconditions in the de-
sign-by-contract paradigm.)

Pex (for program exploration; http://research.
microsoft.com/Pex) is a tool developed at Micro-
soft Research that helps developers write PUTs in 
a .NET language. For each PUT, Pex uses dynamic 
test-generation techniques to compute a set of input 
values that exercise all the statements and assertions 
in the analyzed program. For example, for our sam-
ple PUT, Pex generates two test cases that cover all 
the reachable branches:

void TestAdd_Generated1() {
   TestAdd(new ArrayList(0), new object());
}

void TestAdd_Generated2() {
   TestAdd(new ArrayList(1), new object());
}

The first test executes code (not shown here) in the 
array list that allocates more memory because the 
initial capacity 0 isn’t sufficient to hold the added el-
ement. The second test initializes the array list with 
capacity 1, which is sufficient to add one element. 
Pex comes with an add-in for Visual Studio that 
enables developers to perform most frequent tasks 
with a few mouse clicks. Also, when Pex generates 
a test that fails, Pex performs a root cause analysis 
and suggests a code change to fix the bug.

Figure 2. A glimpse  
of Pex in Visual Studio.
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Figure 2 illustrates Pex in Visual Studio. The up-
per code window shows a PUT; the lower window 
shows the results of Pex’s analysis of this test com-
bined with the code-under-test. On the lower left 
side is a table of generated input parameter values. 
The selected row indicates an assertion violation 
when the  data argument is an array with two ele-
ments, each of which contain a zero. This violation 
is associated with a stack trace shown on the lower 
right side and the highlighted line in the upper code 
window. In SAGE, the test input is usually just a 
sequence of bytes (a file); in contrast, Pex generates 
inputs that are typed according to the .NET type 
system. Besides primitive types (Boolean, integer, 
and so on), the inputs can be arrays, arrays of ar-
rays, value types (struct in C#), or instances of other 
classes. When the formal type of an input is an in-
terface or an abstract class, Pex can generate mock 
classes with methods that return different values 
that the tested code distinguishes. The result is simi-
lar to the behavior of mock objects that developers 
would write by hand today. The following example 
shows a method of a mock object that can choose 
to return any value:

class MFormatProvider : IFormatProvider {
   public object GetFormat(Type type) {
       return PexOracle.ChooseResult<object>();
   }
}

However, the mock objects Pex automatically 
generates will often behave unexpectedly. When 
the developers aren’t interested in arbitrary mock 
objects, they can restrict them by specifying as-
sumptions in a style similar to assumptions on a 
PUT’s parameters. Pex’s analysis engine is based 
on dynamic test generation, and it uses Z3 as  
its constraint solver (http://research.microsoft.com/ 
projects/Z3). After analyzing a PUT, Pex reports all 
the errors found. It can re-execute some of the gen-
erated tests to reproduce errors. It can also reuse the 
generated test suite later for regression testing.

We have applied Pex to large components of the 
.NET framework used by thousands of developers 
and millions of end users. Pex found several errors, 
some of which were serious and previously un-
known. Pex is available under an academic license 
on the Microsoft Research Web site (http://research.
microsoft.com/Pex), and we’re actively working to-
ward a tighter integration with Visual Studio.

Yogi: Combining testing  
and static analysis
Testing and static analysis have complementary 

strengths. Because testing executes a program con-
cretely, it precludes false alarms, but it might not 
achieve high coverage. On the other hand, static 
analysis can cover all program behaviors at the 
cost of potential false alarms, because the analysis 
ignores several details about the program’s state. 
For example, the SLAM project has successfully 
applied static analysis to check the properties of 
Windows device drivers.12 Thus, it’s natural to try 
to combine testing and static analysis. For combin-
ing these, the Yogi tool implements a novel algo-
rithm, Dash13 (initially called Synergy), which was 
recently enhanced to handle pointers and proce-
dures. The Yogi tool verifies properties specified by 
finite-state machines representing invalid program 
behaviors. For example, we might want to check 
that along all paths in a program, for a mutex m, 
the calls acquire(m) and release(m) are called in strict al-
ternation. Figure 3a shows a program that follows 
this rule. There are an unbounded number of paths 
for the loop in lines 2 through 6 if the loop count 
c is an unbounded input to the program. Thus, it’s 
problematic to exercise all the feasible paths of the 
program using testing.

Yet Yogi can prove that acquire(m) and release(m) are 
correctly called along all paths by constructing a fi-
nite abstraction of the program that includes (that 
is, overapproximates) all its possible executions. A 
program’s state is defined by a valuation of the pro-
gram’s variables. Programs might have an infinite 
number of states, denoted by Σ. The states of the 
finite abstraction, called regions, are equivalence 
classes of concrete program states from Σ. There is 
an abstract transition from region S to region S′ if 
there are two concrete states s ∈ S and s′ ∈ S′ such 
that there is a concrete transition from s to s′. Fig-
ure 3b shows a finite-state abstraction for the pro-
gram in Figure 3a. This abstraction is isomorphic 
to the program’s control-flow graph. By exploring 
all the abstraction’s states, Yogi establishes that the 
calls to acquire(m) and release(m) always occur in strict 
alternation.

One of Yogi’s unique features is that it simul-
taneously searches for both a test to establish that 
the program violates the property and an abstrac-
tion to establish that the program satisfies the prop-
erty. If the abstraction has a path that leads to the 
property’s violation, Yogi attempts to focus test-
case generation along that path. If such a test case 
can’t be generated, Yogi uses information from the 
unsatisfiable constraint from the test-case generator 
to refine the abstraction. Thus, the construction of 
test cases and abstraction proceed hand in hand, 
using error traces in the abstraction to guide test-
case generation and constraints from failed test-
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case generation attempts to guide refinement of the 
abstraction. Using test cases to refine abstractions is 
particularly handy if the program has pointer vari-
ables that potentially alias each other—that is, they 
might point to the same object. Consider the fol-
lowing program:

struct DE {
  int lock;
  int y;
};

void prove-me2(DE *p, DE *p1, DE *p2)
{
0:  p1 = malloc(sizeof(DE)); p1->lock = 0;
1:  p2 = malloc(sizeof(DE)); p2->lock = 0;
2:  p->lock = 1;
3:  if (p1->lock == 1 || p2->lock == 1)
4:    error();
5:  p = p1;
6:  p = p2;
}

This program has three inputs p, p1, and p2, all 
of which are non-null pointers to structs of type DE 
(with two fields DE->lock and DE->y). At lines 0 and 1, 
pointers p1 and p2 are pointed to newly allocated 
memory, and p1->lock and p2->lock are both set to 0. 
Thus, the assignment to p->lock at line 3 can’t af-
fect the values of p1->lock or p2->lock, and the error 
statement at line 4 can never be reached. Note that 
p might alias with p1 or p2 because of assignments 
at lines 5 and 6. Thus, a flow-insensitive, may-
alias static analysis, as implemented in tools such 
as SLAM, will have to conservatively assume that 
at the assignment at line 2, the variable p may alias 
with p1 or p2, and consider all possible alias combi-
nations. However, Yogi can prove line 4 is unreach-
able while only considering the alias combination (p 
≠ p1 ∧ p ≠ p2) that occurs along all concrete execu-
tions. (Because this program has only one feasible 
execution path, SAGE and Pex would be able to 
prove this, too.)

Although a simple flow-sensitive path analysis 
would handle this example, real C programs have 
lots of pointers and procedures, which make fully 
precise context-sensitive path-sensitive analysis 
problematic for large programs. Instead, Yogi le-
verages test executions to get precise information 
about pointers.

We’ve used Yogi to analyze several examples 
of Windows device drivers. Yogi was able to prove 
or find bugs in several device drivers where SLAM 
times out due to explosions in the number of alias-
ing possibilities. (More details on this are available 
elsewhere.13)

T he tools we describe here might give us a 
glimpse of what the future of software-
defect detection could be. In a few years, 

mainstream bug-finding tools might be able to 
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void prove-me1(mutex *m, count c, bool b[], int n)
{
 //assume that the array b has n elements
 int x = 0; y = 0;
0:  acquire(m);
1:  for( i = 0; i < c ; i++) {
2:    int index = c%n; //assign index = c mod n
3:    if(b[index])
4:      x = x + 1;
   else
5:      y = y + 1;
 }
6:  release(m);
}(a)

(b)

6

Figure 3. Program 
example (a) and a finite 
abstraction (b). Yogi 
uses static analysis and 
the abstraction to avoid 
exploring infinitely 
many paths.
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generate both a concrete input exhibiting each bug 
found (with no false alarms) and an abstract ex-
ecution trace expressed in terms of predicates on 
program inputs that would be useful to understand 
key input properties explaining the bug. Such tools 
would be automatic, scalable (compositional14 and 
incremental), and efficient (thanks to the combina-
tion with static analysis) and would check many 
properties at once. They would also be integrated 
with other emerging techniques such as mock-object 
creation and software contracts, and would enable 
and be supported by new, more productive soft-
ware development and testing processes.
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