
focus

30	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

s o f t war e deve l opm en t t o o l s

Automating Software
Testing Using
Program Analysis

Patrice Godefroid, Peli de Halleux, Aditya V. Nori, Sriram K. Rajamani,
Wolfram Schulte, and Nikolai Tillmann, Microsoft Research

Michael Y. Levin, Microsoft Center for Software Excellence

Three new tools
combine techniques
from static program
analysis, dynamic
analysis, model
checking, and
automated constraint
solving to automate
test generation in
varied application
domains.

D
uring the last decade, code inspection for standard programming errors has
largely been automated with static code analysis. Commercial static program-
analysis tools are now routinely used in many software development organiza-
tions.1 These tools are popular because they find many software bugs, thanks to

three main ingredients: they’re automatic, they’re scalable, and they check many properties.
Intuitively, any tool that can automatically check millions of lines of code against hundreds
of coding rules is bound to find on average, say, one bug every thousand lines of code.

Our long-term goal is to automate, as much as
possible, an even more expensive part of the soft-
ware development process, namely software testing.
Testing usually accounts for about half the R&D
budget of software development organizations. In
particular, we want to automate test generation by
leveraging recent advances in program analysis, au-
tomated constraint solving, and modern comput-
ers’ increasing computational power. To replicate
the success of static program analysis, we need the
same three key ingredients found in those tools.

A key technical challenge is automatic code-
driven test generation: given a program with a set
of input parameters, automatically generate a set
of input values that, upon execution, will exercise
as many program statements as possible. An op-
timal solution is theoretically impossible because
this problem is generally undecidable. In practice,
however, approximate solutions suffice: a tool that
could automatically generate a test suite covering,

say, even half the code of a million-line C program
would have tremendous value.

Such a tool doesn’t exist today, but in this arti-
cle, we report on some recent significant progress
toward that goal. Although automating test genera-
tion using program analysis is an old idea,2 practi-
cal tools have only started to emerge during the last
few years. This recent progress was partly enabled
by advances in dynamic test generation,3 which gen
eralizes and is more powerful than traditional static
test generation.

At Microsoft, we are developing three new tools
for automatic code-driven test generation. These
tools all combine techniques from static program
analysis (symbolic execution), dynamic analysis (test-
ing and runtime instrumentation), model checking
(systematic state-space exploration), and automated
constraint solving. However, they target differ-
ent application domains and include other original
techniques.

	 September/October 2008 I E E E S o f t w a r e � 31

Static versus dynamic
test generation
Work on automatic code-driven test generation can
roughly be partitioned into two groups: static and
dynamic.

Static test generation consists of analyzing a
program P statically by reading the program code
and using symbolic execution techniques to simu-
late abstract program executions to attempt to com-
pute inputs to drive P along specific execution paths
or branches, without ever executing the program.2
The idea is to symbolically explore the tree of all
the computations that the program exhibits with all
possible value assignments to input parameters. For
each control path p (that is, a sequence of the pro-
gram’s control locations), symbolic execution con-
structs a path constraint that characterizes the input
assignments for which the program executes along
p. A path constraint is thus a conjunction of con-
straints on input values. If a path constraint is satisfi-
able, then the corresponding control path is feasible.
We can enumerate all the control paths by consider-
ing all possible branches at conditional statements.
Assuming that the constraint solver used to check
the satisfiability of all path constraints is sound and
complete, this use of static analysis amounts to a
kind of symbolic testing.

Unfortunately, this approach doesn’t work when
ever the program contains statements involving
constraints outside the constraint solver’s scope of
reasoning. The following example illustrates this
limitation:

int obscure(int x, int y) {
 if (x == hash(y)) return -1;	 // error
 return 0; 		 // ok
}

Assume the constraint solver can’t “symbolically
reason” about the function hash. This means that the
constraint solver can’t generate two values for inputs
x and y that are guaranteed to satisfy (or violate) the
constraint x == hash(y). (For instance, if hash is a hash
or cryptographic function, it has been mathemati-
cally designed to prevent such reasoning.) In this
case, static test generation can’t generate test inputs
to drive this program’s execution through either
branch of its conditional statement; static test gen-
eration is helpless for a program like this. In other
words, static test generation is doomed to perform
poorly whenever perfect symbolic execution is im-
possible. Unfortunately, this is frequent in practice
owing to complex program statements (pointer ma-
nipulations, arithmetic operations, and so on) and
calls to operating-system and library functions that

are hard or impossible to reason about symbolically
with good enough precision.

Dynamic test generation,4 on the other hand,
consists of

executing the program P, starting with some
given or random inputs;
gathering symbolic constraints on inputs at con-
ditional statements along the execution; and
using a constraint solver to infer variants of the
previous inputs to steer the program’s next ex-
ecution toward an alternative program branch.

This process is repeated until a specific program
statement is reached.

Directed Automated Random Testing (DART)3
is a recent variant of dynamic test generation that
blends it with model-checking techniques to system-
atically execute all of a program’s feasible program
paths, while checking each execution using runtime
checking tools (such as Purify) for detecting various
types of errors. In a DART directed search, each
new input vector tries to force the program’s ex-
ecution through some new path. By repeating this
process, such a directed search attempts to force the
program to sweep through all its feasible execution
paths, similarly to systematic testing and dynamic
software model checking.5

In practice, a directed search typically can’t ex-
plore all the feasible paths of large programs in a
reasonable amount of time. However, it usually
does achieve much better coverage than pure ran-
dom testing and, hence, can find new program
bugs. Moreover, it can alleviate imprecision in sym-
bolic execution by using concrete values and ran-
domization: whenever symbolic execution doesn’t
know how to generate a constraint for a program
statement depending on some inputs, we can always
simplify this constraint using those inputs’ concrete
values.3

Let’s illustrate this point with our previous pro-
gram. Even though it’s statically impossible to gen-
erate two values for inputs x and y such that the con-
straint x == hash(y) is satisfied (or violated), it’s easy
to generate, for a fixed value of y, a value of x that is
equal to hash(y) because the latter is known dynami-
cally at runtime.

A directed search would proceed as follows. For
a first program run, pick random values for inputs
x and y: for example, x = 33, y = 42. Assuming the
concrete value of hash(42) is 567, the first concrete
run takes the else branch of the conditional state-
ment (since 33 ≠ 567), and the path constraint for
this first run is x ≠ 567 because the expression hash(y)
isn’t representable and is therefore simplified with

■

■

■

DART blends
dynamic test
generation
with model
checking to

systematically
execute

a program’s
feasible
program

paths.

32	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

its concrete value 567. Next, the negation of the
simplified constraint x = 567 can easily be solved
and lead to a new input assignment x = 567, y = 42.
Next, running the program a second time with in-
puts x = 567, y = 42 leads to the error.

Therefore, static test generation is unable to gen-
erate test inputs to control this program’s execu-
tion, but dynamic test generation can easily drive
that same program’s executions through all its fea-
sible program paths. In realistic programs, impreci-
sion in symbolic execution typically arises in many
places, and dynamic test generation can recover
from that imprecision. Dynamic test generation ex-
tends static test generation with additional runtime
information, so it’s more general and powerful. It is
the basis of the three tools we present in the remain-
der of this article, which all implement variants and
extensions of a directed search.

SAGE: White-box fuzz
testing for security
Security vulnerabilities (like buffer overflows) are a
class of dangerous software defects that can let an
attacker cause unintended behavior in a software
component by sending it particularly crafted in-
puts. Fixing security vulnerabilities after a product
release is expensive because it might involve deploy-
ing hundreds of millions of patches and tying up the
resources of many engineers. A single vulnerability
can cost millions of dollars.

Fuzz testing is a black-box testing technique that
has recently leapt to prominence as a quick and cost-
effective method for uncovering security bugs. This
approach involves randomly mutating well-formed
inputs and testing the program on the resulting
data.6 Although fuzz-testing tools can be remark-
ably effective, their ability to discover bugs on low-
probability program paths is inherently limited.

We’ve recently proposed a conceptually simple
but different approach of white-box fuzz testing
that extends systematic dynamic test generation.7
We implemented this approach in SAGE (scalable,
automated, guided execution), a new tool using in-
struction-level tracing and emulation for white-box
fuzzing of Windows applications.

SAGE architecture
SAGE repeatedly performs four main tasks.

	 1.	The tester executes the test program on a given
input under a runtime checker looking for vari-
ous kinds of runtime exceptions, such as hangs
and memory access violations.

	 2.	The coverage collector collects instruction ad-
dresses executed during the run; instruction

coverage is used as a heuristic to favor the ex-
pansion of executions with high new coverage.

	 3.	The tracer records a complete instruction-level
trace of the run using the iDNA framework.8

	 4.	Lastly, the symbolic executor replays the re-
corded execution, collects input-related con-
straints, and generates new inputs using the
constraint solver Disolver.9

The symbolic executor is implemented on top
of the trace replay infrastructure TruScan,10 which
consumes trace files generated by iDNA and vir-
tually re-executes the recorded runs. TruScan of-
fers several features that substantially simplify
symbolic execution. These include instruction de-
coding, providing an interface to program symbol
information, monitoring various I/O system calls,
keeping track of heap and stack frame allocations,
and tracking the data flow through the program
structures.

The constraint generation approach SAGE uses
differs from previous dynamic test generation im-
plementations in two main ways. First, instead of
a source-based instrumentation, SAGE adopts a
machine-code-based approach. This lets us use
SAGE on any target program regardless of its source
language or build process with little up-front cost.
This is important in a large company that uses mul-
tiple source languages—both managed and unman-
aged—and various incompatible build processes
that make source-based instrumentation difficult.

Second, SAGE deviates from previous approaches
by using offline trace-based, rather than online, con-
straint generation. Indeed, hard-to-control nonde-
terminism in large target programs makes debug-
ging online constraint generation difficult. Thanks
to offline tracing, constraint generation in SAGE
is completely deterministic because it works with
an execution trace that captures the outcome of all
nondeterministic events encountered during the re-
corded run.

Generational path exploration
Because SAGE targets large applications where a
single execution might contain hundreds of mil-
lions of instructions, symbolic execution is its
slowest component. Therefore, SAGE implements
a novel directed search algorithm, dubbed genera-
tional search, that maximizes the number of new
input tests generated from each symbolic execution.
Given a path constraint, all the constraints in that
path are systematically negated one by one, placed
in a conjunction with the prefix of the path con-
straint leading to it, and attempted to be solved by
a constraint solver. (In contrast, a standard depth-

Fuzz testing,
a black-

box testing
technique, is
a quick and

cost-effective
method for
uncovering

security bugs.

	 September/October 2008 I E E E S o f t w a r e � 33

or breadth-first search would negate only the last or
first constraint in each path constraint.)

Consider the program in Figure 1. This program
takes 4 bytes as input and contains an error when
the value of the variable cnt is greater than or equal
to three. Starting with some initial input good, SAGE
executes its four main tasks. The path constraint for
this initial run is i0 ≠ b, i1 ≠ a, i2 ≠ d, and i3 ≠ !.

Figure 1 also shows the set of all feasible pro-
gram paths for the function top. The left-most path
represents the program’s initial run and is labeled
with 0 for Generation 0. Four Generation 1 inputs
are obtained by systematically negating and solving
each constraint in the Generation 0 path constraint.
By repeating this process, all paths are eventually
enumerated. (See related work7 for other benefits
of a generational search as well as several optimi-
zations that are key to handling long execution
traces.)

Experience
On 3 April 2007, Microsoft released an out-of-
band security patch for code that parses ANI-
format animated cursors. The Microsoft SDL Pol-
icy weblog states that extensive black-box fuzz test-
ing of this code failed to uncover the bug and that
existing static-analysis tools aren’t capable of find-
ing the bug without excessive false positives.

In contrast, SAGE can generate a crash exhibit-
ing this bug starting from a well-formed ANI input
file, despite having no knowledge of the ANI for-
mat. We arbitrarily picked a seed file from a library
of well-formed ANI files and analyzed a small test
program that called user32.dll to parse ANI files.
The initial run generated a path constraint with 341

branch constraints after parsing 1,279,939 instruc-
tions over 10,072 symbolic input bytes. SAGE then
created a crashing ANI file after 7 hours 36 min-
utes and 7,706 test cases, using one core of a 2-GHz
AMD Opteron 270 dual-core processor running
32-bit Windows Vista with 4 Gbytes of RAM.

SAGE is currently being used internally at Mi-
crosoft and has already found tens of previously un-
known security-related bugs in various products.7

Pex: Automating
unit testing for .NET
Although it’s important to analyze existing pro-
grams to find and remove security vulnerabilities,
automatic-analysis tools can help avoid such pro-
gramming errors to begin with when developing
new programs.

Unit testing is a popular way to ensure early and
frequent testing while developing software. Unit
tests are written to document customer require-
ments at the API level, reflect design decisions, pro-
tect against observable changes of implementation
details, and as part of the testing process, achieve
certain code coverage. A unit test, as opposed to an
integration test, should only exercise a single feature
in isolation. This way, unit tests don’t take long to
run, so developers can run them often while writing
new code. Because unit tests target only individual
features, it’s usually easy to locate errors from fail-
ing unit tests.

Many tools, such as JUnit and NUnit, support
unit testing. These tools manage a set of unit tests
and provide a way to run them and inspect the
results. However, they don’t automate the task of
creating unit tests. Writing unit tests by hand is a

good goo! godd god! gaod gao! gadd gad! bood boo! bodd bod! baod bao! badd bad!

0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

void top(char input[4]) {
 int cnt=0;
 if (input[0] == ’b’) cnt++;
 if (input[1] == ’a’) cnt++;
 if (input[2] == ’d’) cnt++;
 if (input[3] == ’!’) cnt++;
 if (cnt >= 3) abort(); // error
}

(a) (b)

Figure 1. Example of
program (a) and its
search space (b) with
the value of cnt at the
end of each run.

34	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

laborious undertaking. In many projects at Micro-
soft, there are more lines of code for the unit tests
than for the implementation being tested.

On the other hand, most fully automatic test-
generation tools suffer from a common problem:
they don’t know when a test fails (except for obvi-
ous errors, such as a division-by-zero exception).
To combine the advantages of automatic test gen-
eration with unit tests’ error-detecting capabilities,
we’ve developed a new testing methodology: the pa-
rameterized unit test (PUT).11

A PUT is simply a method that takes param-
eters. Developers write PUTs, just like traditional
unit tests, at the level of the actual software APIs in
the software project’s programming language. The
purpose of a PUT is to express an API’s intended
behavior. For example, the following PUT asserts
that after adding an element to a non-null list, the
element is indeed contained in the list:

void TestAdd(ArrayList list, object element) {
 Assume.IsNotNull(list);
 list.Add(element);
 Assert.IsTrue(list.Contains(element));
}

This PUT states assumptions on test inputs, per-
forms a sequence of method calls, and asserts prop-
erties that should hold in the final state. (The ini-
tial assumptions and final assertions are similar to

method preconditions and postconditions in the de-
sign-by-contract paradigm.)

Pex (for program exploration; http://research.
microsoft.com/Pex) is a tool developed at Micro-
soft Research that helps developers write PUTs in
a .NET language. For each PUT, Pex uses dynamic
test-generation techniques to compute a set of input
values that exercise all the statements and assertions
in the analyzed program. For example, for our sam-
ple PUT, Pex generates two test cases that cover all
the reachable branches:

void TestAdd_Generated1() {
 TestAdd(new ArrayList(0), new object());
}

void TestAdd_Generated2() {
 TestAdd(new ArrayList(1), new object());
}

The first test executes code (not shown here) in the
array list that allocates more memory because the
initial capacity 0 isn’t sufficient to hold the added el-
ement. The second test initializes the array list with
capacity 1, which is sufficient to add one element.
Pex comes with an add-in for Visual Studio that
enables developers to perform most frequent tasks
with a few mouse clicks. Also, when Pex generates
a test that fails, Pex performs a root cause analysis
and suggests a code change to fix the bug.

Figure 2. A glimpse
of Pex in Visual Studio.

	 September/October 2008 I E E E S o f t w a r e � 35

Figure 2 illustrates Pex in Visual Studio. The up-
per code window shows a PUT; the lower window
shows the results of Pex’s analysis of this test com-
bined with the code-under-test. On the lower left
side is a table of generated input parameter values.
The selected row indicates an assertion violation
when the data argument is an array with two ele-
ments, each of which contain a zero. This violation
is associated with a stack trace shown on the lower
right side and the highlighted line in the upper code
window. In SAGE, the test input is usually just a
sequence of bytes (a file); in contrast, Pex generates
inputs that are typed according to the .NET type
system. Besides primitive types (Boolean, integer,
and so on), the inputs can be arrays, arrays of ar-
rays, value types (struct in C#), or instances of other
classes. When the formal type of an input is an in-
terface or an abstract class, Pex can generate mock
classes with methods that return different values
that the tested code distinguishes. The result is simi-
lar to the behavior of mock objects that developers
would write by hand today. The following example
shows a method of a mock object that can choose
to return any value:

class MFormatProvider : IFormatProvider {
 public object GetFormat(Type type) {
 return PexOracle.ChooseResult<object>();
 }
}

However, the mock objects Pex automatically
generates will often behave unexpectedly. When
the developers aren’t interested in arbitrary mock
objects, they can restrict them by specifying as-
sumptions in a style similar to assumptions on a
PUT’s parameters. Pex’s analysis engine is based
on dynamic test generation, and it uses Z3 as
its constraint solver (http://research.microsoft.com/
projects/Z3). After analyzing a PUT, Pex reports all
the errors found. It can re-execute some of the gen-
erated tests to reproduce errors. It can also reuse the
generated test suite later for regression testing.

We have applied Pex to large components of the
.NET framework used by thousands of developers
and millions of end users. Pex found several errors,
some of which were serious and previously un-
known. Pex is available under an academic license
on the Microsoft Research Web site (http://research.
microsoft.com/Pex), and we’re actively working to-
ward a tighter integration with Visual Studio.

Yogi: Combining testing
and static analysis
Testing and static analysis have complementary

strengths. Because testing executes a program con-
cretely, it precludes false alarms, but it might not
achieve high coverage. On the other hand, static
analysis can cover all program behaviors at the
cost of potential false alarms, because the analysis
ignores several details about the program’s state.
For example, the SLAM project has successfully
applied static analysis to check the properties of
Windows device drivers.12 Thus, it’s natural to try
to combine testing and static analysis. For combin-
ing these, the Yogi tool implements a novel algo-
rithm, Dash13 (initially called Synergy), which was
recently enhanced to handle pointers and proce-
dures. The Yogi tool verifies properties specified by
finite-state machines representing invalid program
behaviors. For example, we might want to check
that along all paths in a program, for a mutex m,
the calls acquire(m) and release(m) are called in strict al-
ternation. Figure 3a shows a program that follows
this rule. There are an unbounded number of paths
for the loop in lines 2 through 6 if the loop count
c is an unbounded input to the program. Thus, it’s
problematic to exercise all the feasible paths of the
program using testing.

Yet Yogi can prove that acquire(m) and release(m) are
correctly called along all paths by constructing a fi-
nite abstraction of the program that includes (that
is, overapproximates) all its possible executions. A
program’s state is defined by a valuation of the pro-
gram’s variables. Programs might have an infinite
number of states, denoted by Σ. The states of the
finite abstraction, called regions, are equivalence
classes of concrete program states from Σ. There is
an abstract transition from region S to region S′ if
there are two concrete states s ∈ S and s′ ∈ S′ such
that there is a concrete transition from s to s′. Fig-
ure 3b shows a finite-state abstraction for the pro-
gram in Figure 3a. This abstraction is isomorphic
to the program’s control-flow graph. By exploring
all the abstraction’s states, Yogi establishes that the
calls to acquire(m) and release(m) always occur in strict
alternation.

One of Yogi’s unique features is that it simul-
taneously searches for both a test to establish that
the program violates the property and an abstrac-
tion to establish that the program satisfies the prop-
erty. If the abstraction has a path that leads to the
property’s violation, Yogi attempts to focus test-
case generation along that path. If such a test case
can’t be generated, Yogi uses information from the
unsatisfiable constraint from the test-case generator
to refine the abstraction. Thus, the construction of
test cases and abstraction proceed hand in hand,
using error traces in the abstraction to guide test-
case generation and constraints from failed test-

36	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

case generation attempts to guide refinement of the
abstraction. Using test cases to refine abstractions is
particularly handy if the program has pointer vari-
ables that potentially alias each other—that is, they
might point to the same object. Consider the fol-
lowing program:

struct DE {
 int lock;
 int y;
};

void prove-me2(DE *p, DE *p1, DE *p2)
{
0: p1 = malloc(sizeof(DE)); p1->lock = 0;
1: p2 = malloc(sizeof(DE)); p2->lock = 0;
2: p->lock = 1;
3: if (p1->lock == 1 || p2->lock == 1)
4: error();
5: p = p1;
6: p = p2;
}

This program has three inputs p, p1, and p2, all
of which are non-null pointers to structs of type DE
(with two fields DE->lock and DE->y). At lines 0 and 1,
pointers p1 and p2 are pointed to newly allocated
memory, and p1->lock and p2->lock are both set to 0.
Thus, the assignment to p->lock at line 3 can’t af-
fect the values of p1->lock or p2->lock, and the error
statement at line 4 can never be reached. Note that
p might alias with p1 or p2 because of assignments
at lines 5 and 6. Thus, a flow-insensitive, may-
alias static analysis, as implemented in tools such
as SLAM, will have to conservatively assume that
at the assignment at line 2, the variable p may alias
with p1 or p2, and consider all possible alias combi-
nations. However, Yogi can prove line 4 is unreach-
able while only considering the alias combination (p
≠ p1 ∧ p ≠ p2) that occurs along all concrete execu-
tions. (Because this program has only one feasible
execution path, SAGE and Pex would be able to
prove this, too.)

Although a simple flow-sensitive path analysis
would handle this example, real C programs have
lots of pointers and procedures, which make fully
precise context-sensitive path-sensitive analysis
problematic for large programs. Instead, Yogi le-
verages test executions to get precise information
about pointers.

We’ve used Yogi to analyze several examples
of Windows device drivers. Yogi was able to prove
or find bugs in several device drivers where SLAM
times out due to explosions in the number of alias-
ing possibilities. (More details on this are available
elsewhere.13)

T he tools we describe here might give us a
glimpse of what the future of software-
defect detection could be. In a few years,

mainstream bug-finding tools might be able to

y = y + 1

prove-me1(...)

0

x = 0; y = 0;
acquire(m); i = 0

1

assume(i < c)

2

index = c%n

3

5

assume(!b[index])

as
su

me
(!(

i <
 c)

)

assume(b[index])

i =
 i +

1

4

x = x + 1

release(m)

7

void prove-me1(mutex *m, count c, bool b[], int n)
{
 //assume that the array b has n elements
 int x = 0; y = 0;
0: acquire(m);
1: for(i = 0; i < c ; i++) {
2: int index = c%n; //assign index = c mod n
3: if(b[index])
4: x = x + 1;
 else
5: y = y + 1;
 }
6: release(m);
}(a)

(b)

6

Figure 3. Program
example (a) and a finite
abstraction (b). Yogi
uses static analysis and
the abstraction to avoid
exploring infinitely
many paths.

	 September/October 2008 I E E E S o f t w a r e � 37

generate both a concrete input exhibiting each bug
found (with no false alarms) and an abstract ex-
ecution trace expressed in terms of predicates on
program inputs that would be useful to understand
key input properties explaining the bug. Such tools
would be automatic, scalable (compositional14 and
incremental), and efficient (thanks to the combina-
tion with static analysis) and would check many
properties at once. They would also be integrated
with other emerging techniques such as mock-object
creation and software contracts, and would enable
and be supported by new, more productive soft-
ware development and testing processes.

References
	 1.	 J. Larus et al., “Righting Software,” IEEE Software,

vol. 21, no. 3, May/June 2004, pp. 92–100.
	 2.	 J.C. King, “Symbolic Execution and Program Testing,”

J. ACM, vol. 19, no. 7, 1976, pp. 385–394.
	 3.	 P. Godefroid, N. Klarlund, and K. Sen, “DART:

Directed Automated Random Testing,” Proc. Conf.
Programming Language Design and Implementation
(PLDI 05), ACM Press, 2005, pp. 213–223.

	 4.	 B. Korel, “A Dynamic Approach of Test Data Genera-
tion,” Proc. IEEE Conf. Software Maintenance (ICSM
90), IEEE CS Press, 1990, pp. 311–317.

	 5.	 P. Godefroid, “Model Checking for Programming Lan-
guages Using VeriSoft,” Proc. Ann. Symp. Principles of
Programming Languages (POPL 97), ACM Press, 1997,
pp. 174–186.

	 6.	 J.E. Forrester and B.P. Miller, “An Empirical Study of
the Robustness of Windows NT Applications Using
Random Testing,” Proc. 4th Usenix Windows System
Symp., Usenix Assoc., 2000, pp. 59–68.

	 7.	 P. Godefroid, M.Y. Levin, and D. Molnar, “Automated
Whitebox Fuzz Testing,” Proc. 15th Ann. Network and
Distributed System Security Symp. (NDSS 08), Internet
Society (ISOC), 2008; www.isoc.org/isoc/conferences/
ndss/08/papers/10_automated_whitebox_fuzz.pdf.

	 8.	 S. Bhansali et al., “Framework for Instruction-Level
Tracing and Analysis of Programs,” Proc. 2nd ACM/
Usenix Int’l Conf. Virtual Execution Environments
(VEE 06), ACM Press, 2006, pp. 154–163.

	 9.	 Y. Hamadi, Disolver: The Distributed Constraint
Solver Version 2.44, tech. report, Microsoft Research,
2006; http://research.microsoft.com/~youssefh/
DisolverWeb/disolver.pdf.

	10.	 S. Narayanasamy et al., “Automatically Classifying Be-
nign and Harmful Data Races Using Replay Analysis,”
Proc. Conf. Programming Language Design and Imple-
mentation (PLDI 07), ACM Press, 2007, pp. 22–31.

	11.	 N. Tillmann and W. Schulte, “Parameterized Unit
Tests,” Proc. 10th European Software Eng. Conf. and
13th ACM Sigsoft Int’l Symp. Foundations of Soft-
ware Eng. (ESEC/Sigsoft FSE), ACM Press, 2005, pp.
241–244.

	12.	 T. Ball and S.K. Rajamani, “Automatically Validat-
ing Temporal Safety Properties of Interfaces,” Proc.
8th SPIN Workshop (SPIN 01), Springer, 2001, pp.
103–122.

	13.	 N.E. Beckman et al., “Proofs from Tests,” Proc. 2008
Int’l Symp. Software Testing and Analysis (Issta 08),
ACM Press, 2008, pp. 3–14.

	14.	 P. Godefroid, “Compositional Dynamic Test Genera-
tion,” Proc. Ann. Symp. Principles of Programming
Languages (POPL 07), ACM Press, 2007, pp. 47–54.

For more information on this or any other computing topic, please visit our

Digital Library at www.computer.org/csdl.

About the Authors
Patrice Godefroid is a principal researcher at Microsoft Research. His research inter-
ests include program specification, analysis, testing, and verification. Godefroid received
his PhD in computer science from the University of Liege, Belgium. Contact him at pg@
microsoft.com.

Peli de Halleux is a software design engineer at Microsoft Research. His research
involves combining dynamic and static program analysis techniques for automatic test-case
generation and making those accessible to the masses of developers. de Halleux received
his PhD in applied mathematics from the Catholic University of Louvain. Contact him at
jhalleux@microsoft.com.

Aditya V. Nori is a researcher at Microsoft Research India. His research interests in-
clude static, dynamic, and statistical analysis of programs and tools for improving software
reliability and programmer productivity. Nori received his PhD in computer science from the
Indian Institute of Science, Bangalore. Contact him at adityan@microsoft.com.

Sriram K. Rajamani is principal researcher and manager of the Rigorous Software
Engineering group at Microsoft Research India. His research interests are in tools and
methodologies for building reliable systems. Rajamani received his PhD in computer science
from the University of California at Berkeley. Contact him at sriram@microsoft.com.

Wolfram Schulte is a principal researcher at Microsoft Research. His research
interests include the practical application of formal techniques to improve programs’
correctness and reliability. Schulte received his habilitation degree in computer science from
the University of Ulm. Contact him at Schulte@microsoft.com.

Nikolai Tillmann is a senior research software design engineer at Microsoft Re-
search. His research involves combining dynamic and static program analysis techniques
for automatic test-case generation. Tillmann received his MS in computer science from the
Technical University of Berlin. Contact him at nikolait@microsoft.com.

Michael Y. Levin leads the Runtime Analysis group at the Microsoft Center for Soft-
ware Excellence. His interests include automated test generation, anomaly detection and de-
bugging in distributed systems, and scalable log analysis. Levin received his PhD in computer
science from the University of Pennsylvania. Contact him at mlevin@microsoft.com.

