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Abstract—Prediction of the next-crossing cell is an important issue for mo-
bility and connection management in wireless radio networks. In this paper, we
propose a new approach to modeling inter-cell user mobility, and develop an
optimum self-learning estimator for trajectory tracking and next-crossing cell
prediction. The dynamic states of movement, in terms of speed and position,
are obtained by modeling the user's acceleration as a time-correlated, semi-
Markovian process, and by passing subsequent signal-strength measurements
to neighboring base stations through an Extended, Self-learning Kalman filter.
Prediction of next-crossing cell is obtained by evaluating user dynamic states
with cell geometry. Analysis and simulation results show that our prediction
algorithm is robust in the presence of pass loss, shadow fading , and random
movement, being able to predict the position, speed, and direction-of-travel of
the mobile user with a high degree accuracy.

Keywords—Location and Mobility Management

I. I NTRODUCTION

The key differentiater between wireline and wireless (cellula
networks is the latter's ability to maintain connectivity even as th
end nodes move between cells. Unfortunately, due to lack of pr
knowledge of the mobile user's trajectory, lifetime connectivity i
not always possible and on-going network connections are oft
broken prematurely due to lack of resources in the cell entered
the mobile. Algorithms that rely on simple heuristics for predict
ing the mobile user's trajectory, so that the system may reserve
sources in advance, have been proposed previously but these g
erally fall short when the user's movement pattern is random[1][2

In this paper, we propose a novel method which facilitates e
ficient mobility management through user trajectory prediction
situations which have previously been thought to be unpredictab
[2]. Our method is useful for the case when the subscriber's c
rent movement pattern does not match any pattern known to
system. It is thus complimentary to the pattern matching metho
and when combined with these is able to achieve robust pred
tion. Our approach is based on viewing the trajectory predictio
problem as a filtering problem, extracting the necessary mobili
information from practically available measurements such as t
RF signal strength. Thus, trajectory estimation is obtained fro
real-time observations and a high degree of prediction accuracy
guaranteed even when the system has no prior information ab
the user's mobility history. An optimum filter, implemented as a
Extended, Self-learning Kalman filter, adaptively tracks the use
trajectory and predict her dynamic states in terms of speed and
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osition. This information together with cell geometry is used to
redict the next cell to be crossed. The rest of this paper is orga-
ized as follows: In SectionII we describe a user mobility model.

n SectionIII we propose an adaptive optimum filter for track-
ng mobile users. In SectionIV we develop an algorithm for pre-
icting the next cell in the path of the mobile user, and finally in
ectionV , simulation results are presented.

II. SIMULATING USERMOBILITY

Our motivation for User Mobility modeling is based on the ob-
ervation that the seemingly random choice of inter-cell movement
s actually a logic function of the user's position, velocity, mov-
ng direction and cell geometry. However, User Mobility models
ound in the literature assume straight line movement and constan
peed [3][4], which are can not reflect real situations.
In order to track time-varying movement, we model a mov-

ng user as a linear, dynamical system, on which linear minimum
ean-square estimator can be built in real time to estimate and pre
ict the dynamic states in two-dimensional Cartesian coordinates.
The basic modeling idea is shown in Figure 1-(a). In real situ-

tions, a moving user has a wide acceleration range. Traffic light
nd turns of the road may cause abrupt changes of speed inx and
directions respectively. In order to follow such sudden changes
uickly and in the mean time be able to keep tracking slow varia-

ions . The driving input to the dynamic systems is modeled as a
ombination of a semi-Markov processU(t) and a time-correlated
andom processr(t). The statesS1; S2; :::Sm are discrete levels
elected to cover the whole acceleration range[�Amax; Amax], as
hown in Figure 1-(b). Transition from one state to another corre-
ponds to the dramatic change of moving behavior. Random accel
rationr(t) has Gaussian distribution, with zero mean and variance
hosen to cover the “gap” between adjacent states. This modeling
dea was once successfully applied in tactical weapon systems for

aneuvering target tracking[5][6].
Observation of the output of the moving dynamics directly is ex-

ensive and infeasible. In practical systems, the position and veloc-
ty can be non-linearly related to some practical available measure-

ent, such as signal-strength measurement from reachable bas
tations, which may be further corrupted by random shadowing.
The following two sub-sections describe the corresponding
athematical model in terms of dynamic equations and observa-

ion equations.

. Dynamic Equations for a Moving User

Based on the model mentioned above, the continuous-time dy-
amic equation for a moving user is given by:

_x(t) = Fx(t) +Eu(t) +Gr(t) i = 1; : : : ;m (1)
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Fig. 1. User Mobility Model
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For the problem
being considered,x(t) = [x(t); _x(t); y(t); _y(t)]T with x(t) and
y(t) as rectangular coordinates.u(t) = [ux(t); uy(t)]

T , ux(t) and
uy(t) are independent semi-Markovian process which may takem

possible discrete values respectivelys1; s2; :::; sm: Random accel-
erationr(t) = [rx(t); ry(t)]

T is correlated in time; namely if a
moving object is accelerating at timet, it is likely to be accelerat-
ing at timet + � for sufficiently small� . A typical representative
model of the correlation function is [5]:

Rr(�) = E[r(t)r(t + �)] = �2me
��j� j; � � 0 (2)

where�2m is the variance of the random acceleration, and� is the
reciprocal of random acceleration time constant. Such random p
cess can be obtained by passing a white Gaussian processw(t) to
a one-pole shaping filter:

_r(t) = �� r(t) + w(t) with �2w = 2��2m�(�) (3)

Combining Eq.1 and Eq.3, and applying the state-space meth
we obtain the discrete-time dynamic equation:

Xn+1 = AXn +BUn +Wn (4)

where Xn = [x(n) vx(n) rx(n) y(n) vy(n) ry(n)]
T

Un =

�
ux(n)
uy(n)

�
Wn =

�
wx(n)
wy(n)

�

A andB are the state and disturbance transition matrices,Wn is
discrete time Gaussian white noise withwx(n) andwy(n) uncor-
related.

B. Measurement and Linearization

In current cellular systems, the movement related measurem
is the power level of RF signals transmitted from base stations. T
ro-

od,

ent
he

measured signal strength to a base station at distanced is propor-
tional to 10�=10

dr
. Alternatively, this expression can be represented

as the summation of deterministic path loss component and a sta-
tistical shadowing component. The logarithm of the shadowing
component� is found, in typical land mobile radio environments,
to be a zero-mean Gaussian random variable with a standard devi-
ation4�7dB. Since the shadowing is caused by blockage of local
obstacles surrounding the mobile station, it is generally indepen-
dent of distance [7]. The signal strength (indB) of the received
signal can be expressed by:

p = po � 10r log d+ � (5)

whered is the distance between the mobile station and base station,
r is a slope index (typicallyr = 2 for highways andr = 4 for micro-
cells in a city).po is a constant determined by transmitted power,
wavelength and antenna gain.

The distance to a particular Celli, di, can be expressed in terms
of the position (xn; yn) of the mobile station at timetn and the
location of base stations (ai; bi):

di = [(x(n) � ai)
2 + (y(n)� bi)

2]1=2 (6)

The subscripti is the cell index with six neighbor cells indexed
from 1 to 6 anti-clockwise beginning from the cell in the north
direction. The current residence cell is indexed by 0.

In order to track the mobile station in two dimensional domain,
at least three independent measurement data are needed. For th
case, we select the three largest measurements to form the obse
vation vector,Zn, which is non-linearly related to dynamic states
Xn:

Zn = h(Xn) + �n (7)

The linearized observation equation becomes:

Zn = HXn + �n with H =
@h

@x

��
X=X�

n
(8)

whereX�
n is the optimal estimate ofXn.

III. A DAPTIVE OPTIMUM FILTER DESIGN

We are now in a position to develop a linear minimum mean
square filter based on the linear discrete-time model developed in
the last section. Observing the fact that the trajectory of a moving
user is non-stationary, Kalman filter is the best candidate, which
can also be easily implemented by simple software programming
or DSP chip. However, conventional Kalman filter cannot re-
solve our problem, because the deterministic inputUn is a semi-
Markovian process withm possible states. Such hidden random-
ness requires a bank ofm filters with each filter operating on a
possible state. Fortunately, when certain practical assumptions are
made, as discussed in [8], the filter bank can be reduced to a sin-
gle Kalman filter augmented by a recursive technique of estimating
Un. The adaptive state estimator then becomes:

X̂n+1 = AX̂n +BÛn +

Kn+1(Zn+1 �HAX̂n �HBÛn) (9)



where

Ûn =

nX
i=1

Un(Si)P (Sin+1=Zn+1) (10)

HereKn+1 is the standard Kalman gain matrix, andÛn is an esti-
mate ofUn. The recursive technique for computingÛn was devel-
oped in detail by Moose [8], the final results of which are given b
the following equations:

Ûn =

nX
i=1

Un(Si)P (Sin+1=Zn+1) (11)

P (Sin+1=Zn+1) = (const)f(zn+1=Sin+1; Zn)
mX
�=1

��iP (Sin=Zn) (12)

where the following are true:
1. Probability density functionf(zn+1=Sin+1; Zn) has a Gaus-

sian distribution with meanHn+1AXn(si) +Hn+1BUn(si)
and varianceHn+1[AMn=nA

T+Qn]H
T
n+1+Rn;Mn=n is the

state estimation matrix;Rn is the measurement error covari
ance matrix andQn is the Gaussian disturbance covarianc
matrix.

2. Probability��i = P(Un = SijUn�1 = S�) is obtained from
semi-Markov considerations. This parameter can be appro
mated by a valuep near unity fori = � and(1� p)=(m� 1)
for i 6= � for many tracking situations.

3. The constant (const) is evaluated from
Pm

i=1 P (Sin=Zn) = 1:

Based on this result, we are able to complete the adaptive
timum filter to estimate and predict the dynamic states from t
received signal strength measured at the mobile station. The
sulting algorithm turns out to be very simple:

Prediction:

Xn+1=n = AXn=n +BÛn (13)

Minimum Prediction MSE Matrix:

Mn+1=n = AKn=nA
T +Q (14)

Kalman Gain Matrix:

Kn+1 = Mn+1=nH
T
n+1

[Rn+1 +Hn+1Mn+1=nHn+1] (15)

Correction:

X̂n+1=n+1 = X̂n+1=n +Kn+1[Zn+1

�h(X̂n+1=n)] (16)

Deterministic input update:

Ûn =

nX
i=1

Un(Si)P (Sin+1=Zn+1) (17)
y
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Fig. 2. Geometry for calculating cell-crossing probability

Minimum MSE matrix update:

Mn+1=n+1 = [I �Kn+1Hn+1]Mn+1=n (18)

where

Hn+1 =
@h

@Xn+1

�����
Xn+1=X̂n+1=n

(19)

P (Sin+1=Zn+1) for i = 1; : : : ;m can be obtained using the recur-
sive equation Eq.12.

IV. N EXT CELL PREDICTION

Prediction of the next crossing cell is performed when the mo-
bile station moves close to the cell boundary, where we assume
there is no chance left for the mobile station to make a dramatic
change in its moving direction and speed. Such area is called
Correlation Area. The cell-crossing probability given the dynamic
stateXn, P (Celli=Xn); i = 1; : : : ; 6 can thus be calculated based
on the position of the user(x(n); y(n)), moving direction� and
bearings of the cell vertex�i, i = 1; :::6, as shown in Figure 2.
Moving direction,� can be simply obtained from the velocity in
x andy direction,vx(n); vy(n). Definingf(Xn) as the probabil-
ity density function (pdf) of the dynamic stateXn andf(�=Xn)
as the pdf of the moving direction givenXn, P (celli=Xn) can be
calculated by:

P (Celli=Xn) =

Z �i+1

�i

f(�=Xn)d� with i = 1; 2; : : : ; 6 �7 = �1

Prediction of the next crossing cell becomes:

Next Cell=Xn = argmaxifP (Celli=Xn)g i = 1; : : : ; 6

Calculation ofP (Celli=Xn) is not trivial in general, since� is
nonlinearly related to the dynamic stateXn, i.e.,

� = g(Vn) = tan�1 vy(n)

vx(n)
(20)

whereVn = [vx(n); vy(n)]
T is the velocity vector. SinceVn is

part ofXn, it also has Gaussian distribution with mean�V [n] and



variance�V . If �V [n] � 0, this is the case when the speed of th
mobile station is very slow,f(�=X [n]) becomes a simple uniform
distribution over[0; 2�), in this case,

P (celli=X(n)) =
�i+1 � �i

2�
; (21)

with i = 1; : : : ; 6; �7 = �1

In the general case, numerical method have to be used to c
culatef(�=Xn). However, if the variance of� is small,f(�=Xn)
can be approximated by a Gaussian distribution. We achieve t
by assuming that within the Correlation Area, there is only sma
change of velocity, then Eq.20 can be linearized as:

� � g(V �) +G(�V ) (22)

where

G =
@g

@V

����
V=V �

=
h

�vy(n)
v2x(n)+v

2
y(n)

vx(n)
v2x(n)+v

2
y(n)

i
(23)

�V = V (n+ s)� V (n)

�V is the change of velocity between timetn and tn+s with
s � 1. Since�V has Gaussian distribution with mean��V and
covariance��V , f(�=Xn) becomes:

f(�=X(n)) � N(��;��) � 2 [�� � �; �� + �] (24)

with

�� = g(V �) +H��V ; �� = H�VH
T

Notice that for small��, we assumef(�=X [n]) � 0, if � 62
[�� � �; �� + �], then the cell crossing probability can be repre
sented by aQ-function, i.e.,

P (Celli=Xn) = Q

�
�i+1 � ��

��

�
�Q

�
�i � ��

��

�
(25)

with i = 1; : : : ; 6; �7 = �1

�i can be easily calculated from cell geometry. For example:

�1 = tan�1

�
R cos 30� � (y(n)� b)

R=2� (x(n)� a)

�
(26)

WhereR is cell radius,(x(n); y(n)) is the position of mobile sta-
tion, (a; b) is the location of the base station of current cell.

Prediction of the next crossing cell can be combined with Us
Mobility Pattern (UMP) to predict the remaining cell sequence i
her current journey[1]. The significance of trajectory tracking
based next cell prediction is that a kind of looking-ahead mo
can be enabled in UMP classification. In this mode, the decisi
about the matched UMP is postponed until we look ahead at t
prediction of subsequent cell based on trajectory tracking. As
result, UMP classification error can be greatly reduced, especia
in the cell where there are multiple possible leaving UMPs and t
crossed cell sequence is not enough to identify current UMP,
example, as shown in Figure 3.
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Fig. 3. A practical situation necessitates looking-ahead mode for UMP identifica-
tion

Parameters Comments
T = 0:5s Sampling interval

�2
m

= 0:5m=s2 Variance of random acceleration
Amax= 10m2=s Maximum acceleration

V 2 [30; 60] miles/hr Speed range
1=� = 10s Random acceleration constant
�� = 5dB Standard deviation of random shadowing
p0 = 20w Base station transmission power
gb = 6dB Power gain of base station
gm = 1dB Power gain of mobile station

� Wavelength of RF signal
R = 2km Radiance of cell

TABLE I

SIMULATION PARAMETERS

V. SIMULATION AND RESULTS

To illustrate and demonstrate the prediction performance of the
adaptive optimum filter, three moving users are simulated in the
conventional hexagon cell environment, who are able to move
to any cell in the network along unknown trajectories with non-
constant speed. On-line mobility related information are signal-
strength measurement to neighboring base stations. Parameters
involved in the simulation are summarized in Table I . In order
to cover the range of dynamic acceleration[�Amax; Amax], five
levels (0;�2:5;�7:5)m=s2 are selected as the states of the deter-
ministic driving input.

The result of trajectory tracking is shown in figure 4, with the
dashed curves as the actual trajectories, and solid curves indicating
the predicted trajectories. Figure 5 demonstrates the result of time-
varying velocity prediction. As we can see the proposed algorithm
demonstrates a good estimation performance. The initial value of
the dynamic state is estimated from the averagedRSS value with
position error up to 1000m and speed error up to 5m=s. Because
of the strong “Pull in” power of the filter, it turns out that the adap-
tive filter is relatively insensitive to the initial conditions. The re-
sult of prediction of the next crossing cell is summarized in the
Table II with prediction ratio =75%, 80%, 100% for User 1, 2 and
3 respectively. Here, the prediction ratio is defined as the ratio of
the number of cells correctly predicted to the total number of cells
need to be predicted in the path.

On analyzing the prediction result together with users' trajec-
tory tracking, we find that a high degree of prediction accuracy
is achieved once the Kalman filter becomes stable, and the error
caused by the initial instability is limited to the prediction of the
first-crossing cell at the beginning of the journey, as in the case of
User 1. In the stable state, the prediction accuracy is related to the
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geometric relation of user trajectory and cell boundary. For exa
ple, if a user runs along cell boundary, the uncertainty will be hig
as to which is the next cell. In this case, cell geographic limitatio
and User Mobility Pattern may be used to help choose the n
most probable cell. In addition to this special case, the trackin
based prediction doesn' t assume any prior knowledge of the us
mobility – which is especially valuable for UMP identification and
prediction in the case of random movement.

VI. CONCLUSION

In this paper, we recognize the fact that the dynamic states a
trajectory of a mobile user play an important role in the predictio

User1 Current Cell 1 2 3 4 20
Predicted Cell 6 3 4 20

User2 Current Cell 1 6 5 8 9 19
Predicted Cell 6 5 7 9 19

user3 Current Cell 1 6 7 12 14
Predicted Cell 6 7 12 14

TABLE II

PREDICTION RESULT OFNEXT CELL CROSSING.
of the next cell crossing and in the identification of the user's cur-
rent movement pattern. With this as motivation, we propose a new
approach for user mobility modeling, in which we apply classi-
cal statistical signal processing techniques to extract user mobility
information from noisy measurement. Analysis and simulation re-
sults prove that with such a system in place, the cellular network
can obtain a high degree of prediction accuracy even in the ab-
sence of any prior information about the user's mobility history -
which in turn can lead to significant improvement in the network's
connection quality.
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