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Abstract—Prediction of the next-crossing cell is an important issue for mo- position. This information together with cell geometry is used to
bility and connection management in wireless radio networks. In this paper, we predict the next cell to be crossed. The rest of this paper is orga-

propose a new approach to modeling inter-cell user mobility, and develop an __. . . . e
optimum self-learning estimator for trajectory tracking and next-crossing cell nized as follows: In Sectiohl we describe a user mobility model.

prediction. The dynamic states of movement, in terms of speed and position, IN Section/II we propose an adaptive optimum filter for track-
are obtained by modeling the user's acceleration as a time-correlated, semi- ing mobile users. In Sectiofl” we develop an algorithm for pre-

Markovian process, and by passing subsequent signal-strength measurementsy: ~+: ; ; ; ;
to neighboring base stations through an Extended, Self-learning Kalman filter. dICtmg the next cell in the path of the mobile user, and fma”y n

Prediction of next-crossing cell is obtained by evaluating user dynamic states S€CtionV, simulation results are presented.
with cell geometry. Analysis and simulation results show that our prediction
algorithm is robust in the presence of pass loss, shadow fading , and random
movement, being able to predict the position, speed, and direction-of-travel of
the mobile user with a high degree accuracy.

1. SIMULATING USERMOBILITY

Our motivation for User Mobility modeling is based on the ob-
Keywords—Location and Mobility Management servation that the seemingly random choice of inter-cell movement
is actually a logic function of the user's position, velocity, mov-
ing direction and cell geometry. However, User Mobility models
found in the literature assume straight line movement and constant
The key differentiater between wireline and wireless (cellulagpeed [3][4], which are can not reflect real situations.
networks is the latter's ability to maintain connectivity even as theln order to track time-varying movement, we model a mov-
end nodes move between cells. Unfortunately, due to lack of pring user as a linear, dynamical system, on which linear minimum
knowledge of the mobile user's trajectory, lifetime connectivity imean-square estimator can be built in real time to estimate and pre-
not always possible and on-going network connections are ofgint the dynamic states in two-dimensional Cartesian coordinates.
broken prematurely due to lack of resources in the cell entered byrhe basic modeling idea is shown in Figure 1-(a). In real situ-
the mobile. Algorithms that rely on simple heuristics for predicitions, a moving user has a wide acceleration range. Traffic light
ing the mobile user's trajectory, so that the system may reserveggd turns of the road may cause abrupt changes of speedrid
sources in advance, have been proposed previously but these gefirections respectively. In order to follow such sudden changes
erally fall short when the user's movement pattern is random[1][3Liickly and in the mean time be able to keep tracking slow varia-
In this paper, we propose a novel method which facilitates défens . The driving input to the dynamic systems is modeled as a
ficient mobility management through user trajectory prediction #iombination of a semi-Markov proceEt) and a time-correlated
situations which have previously been thought to be unpredictatd@dom process(t). The statesS, Ss,...S,, are discrete levels
[2]. Our method is useful for the case when the subscriber's ceelected to cover the whole acceleration rargémax, Amay. as
rent movement pattern does not match any pattern known to g@wn in Figure 1-(b). Transition from one state to another corre-
system. It is thus complimentary to the pattern matching methaj®nds to the dramatic change of moving behavior. Random accel-
and when combined with these is able to achieve robust predicationr(t) has Gaussian distribution, with zero mean and variance
tion. Our approach is based on viewing the trajectory predictichosen to cover the “gap” between adjacent states. This modeling
problem as a filtering problem, extracting the necessary mobilitiea was once successfully applied in tactical weapon systems for
information from practically available measurements such as timeneuvering target tracking[5][6].
RF signal strength. Thus, trajectory estimation is obtained fromObservation of the output of the moving dynamics directly is ex-
real-time observations and a high degree of prediction accuracpémsive and infeasible. In practical systems, the position and veloc-
guaranteed even when the system has no prior information akigutan be non-linearly related to some practical available measure-
the user's mobility history. An optimum filter, implemented as anent, such as signal-strength measurement from reachable base
Extended, Self-learning Kalman filter, adaptively tracks the usestations, which may be further corrupted by random shadowing.
trajectory and predict her dynamic states in terms of speed and  The following two sub-sections describe the corresponding
mathematical model in terms of dynamic equations and observa-

tion equations.
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S: o a® [ o A tional to 12 -— . Alternatively, this expression can be represented
T N > Dy‘;::ﬁcs F(» + as the summation of deterministic path loss component and a sta-
e VO I+ N tistical shadowing component. The logarithm of the shadowing

sn T 1) Nonlinear component is found, in typical land mobile radio environments,
easurement g X X )
Time Correlated to be a zero-mean Gaussian random variable with a standard devi-
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ation4 — 7dB. Since the shadowing is caused by blockage of local
obstacles surrounding the mobile station, it is generally indepen-
dent of distance [7]. The signal strength @®) of the received

P | :
Pan B Pag sk N signal can be expressed by:

p=p,—10rlogd+ ¢ (5)

A S1 0 S2 Sm ‘A'nax whered is the distance between the mobile station and base station,
r is a slope index (typically = 2 for highways ana = 4 for micro-
cells in a city).p, is a constant determined by transmitted power,
Fig. 1. User Mobility Model wavelength and antenna gain.

The distance to a particular Cgltl;, can be expressed in terms
of the position £,,y,) of the mobile station at time, and the

(b)

® 0 d 0 . / _
where F = [ 0 o } E=G= [ 0 ® } location of base stationg{, b;):
L )2 _1.)\211/2
with 6 — [ 01 } o { 0 ] di = [(x(n) — a:)* + (y(n) — bi)?] (6)
The subscript is the cell index with six neighbor cells indexed
For the problem from 1 to 6 anti-clockwise beginning from the cell in the north
being consideredz(t) = [z(t),#(t),y(t),y(t)]T with z(t) and direction. The current residence cell is indexed by 0.
y(t) as rectangular coordinates(t) = [u,(t),u,(t)]”, u,(t) and  In order to track the mobile station in two dimensional domain,

uy(t) are independent semi-Markovian process which may#akeat least three independent measurement data are needed. For this
possible discrete values respectivelyss, ..., s,,. Random accel- case, we select the three largest measurements to form the obser-
erationr(t) = [r,(t),ry(t)]" is correlated in time; namely if a vation vector,Z,,, which is non-linearly related to dynamic states
moving object is accelerating at tingit is likely to be accelerat- X,,:

ing at timet + 7 for sufficiently smallr. A typical representative

model of the correlation function is [5]: Zn = h(X,) + &, (7)
R, (1) = E[r(t)r(t +7)] = ope™ " ,a >0 (2) The linearized observation equation becomes:

whereo?, is the variance of the random acceleration, arid the . oh

reciprocal of random acceleration time constant. Such random pro- Zn=HX, +& with H= oz |x=x; (8)

cess can be obtained by passing a white Gaussian pro¢gsto ) ) )

t) = —ar(t)+w(t) with 012” :2a0-72n§(7-) () IIl. ADAPTIVE OPTIMUM FILTER DESIGN

bini d q Ning th e are now in a position to develop a linear minimum mean
Com |n|'ngth.'1 and Eq.3, and applying the .state—space MetQfhare filter based on the linear discrete-time model developed in
we obtain the discrete-time dynamic equation: the last section. Observing the fact that the trajectory of a moving

user is non-stationary, Kalman filter is the best candidate, which

Kot = AXa+ BUn + Wa () can also be easily implemented by simple software programming
where X, = [z(n) ve(n) r.(n) y(n) vy(n) r,(n)]”  or DSP chip. However, conventional Kalman filter cannot re-
uz(n) we(n) solve our problem, because the deterministic inpuptis a semi-
Un = uy (n) ] Wn = [ y(n) ] Markovian process with: possible states. Such hidden random-

ness requires a bank af filters with each filter operating on a
A and B are the state and disturbance transition matrités,s possible state. Fortunately, when certain practical assumptions are
discrete time Gaussian white noise with (rn) andw, (n) uncor- made, as discussed in [8], the filter bank can be reduced to a sin-
related. gle Kalman filter augmented by a recursive technique of estimating

_ o Un. The adaptive state estimator then becomes:
B. Measurement and Linearization

A~

In current cellular systems, the movement related measurement Xnt1 = AX,+BU, + A A
is the power level of RF signals transmitted from base stations. The Kypi1(Zpy1 — HAX,, — HBU,) 9)



where

n

Z Un(Si)P(S:L+1/Zn+1)

i=1

Un (10)

Here K, is the standard Kalman gain matrix, abid is an esti-
mate ofU,,. The recursive technique for computitig was devel-
oped in detail by Moose [8], the final results of which are given by
the following equations:

Trfjectory

Un =Y Un(Si)P(Sh41/Zn+1) (11) \
i=1
/lj Cell 4 x
P(S:L+1/Zn+1) = (ConStY(Zn+1/S;+1,Zn) Fig. 2. Geometry for calculating cell-crossing probability
m
0.:P (S, )7 12
a;l 2iP(En/Z0) (12) Minimum MSE matrix update:
where the following are true: Myyimr = I = Knp1Ho1]Myga (18)
1. Probability density functiotf(z,,11/5} 1, Z») has a Gaus- h
sian distribution with meatl,, 1 AX,, (s;) + Hy 1 BU,(s;) €€
and variancél,, 1 [AM,, ), AT +Q,]HL, |+ Ry; M, is the oh
state estimation matrix,, is the measurement error covari- Hyp = X (29)
n+1

ance matrix and),, is the Gaussian disturbance covariance
matrix.
. Probabilityd,; = PU,, = S;|U._1 = S,) is obtained from F_’(S;Jrl/ZMl) fori =1,...,m can be obtained using the recur-
semi-Markov considerations. This parameter can be approXie equation Eq.12.
mated by a valug near unity fori = a and(1 — p)/(m — 1)
for i # « for many tracking situations.
3. The constant (const) is evaluated frdni*, P(S%/Z,) = 1. Prediction of the next crossing cell is performed when the mo-
Based on this result, we are able to complete the adaptive bffe station moves close to the cell boundary, where we assume
timum filter to estimate and predict the dynamic states from tkieere is no chance left for the mobile station to make a dramatic
received signal strength measured at the mobile station. Thed®ange in its moving direction and speed. Such area is called

Xn+1:Xn+l/n

IV. NEXT CELL PREDICTION

sulting algorithm turns out to be very simple:

Prediction:

Xpi1/n = AXpjn + BUs (13)
Minimum Prediction MSE Matrix:
Mn+1/n = AKn/nAT +Q (14)
Kalman Gain Matrix:
Kn+1 = n+1/nHrj;+1
[Rn—i-l + Hn+1Mn+1/an+1] (15)
Correction:
Xn+1/n+1 = Xn+1/n + Kn-‘rl[Zn—i-l
(X nt1/n)] (16)
Deterministic input update:
A n .
Un =) Un(S)P(S}41/Znt1) (17)
=1

Correlation Area The cell-crossing probability given the dynamic
stateX,,, P(Cell;/X,,),i = 1,...,6 can thus be calculated based
on the position of the usd:(n), y(n)), moving directiond and
bearings of the cell verte&;, i = 1,...6, as shown in Figure 2.
Moving direction,f can be simply obtained from the velocity in
x andy direction,v,(n), v, (n). Defining f(X,,) as the probabil-
ity density function (pdf) of the dynamic staf€,, and f(6/X,,)

as the pdf of the moving direction giveX,, P(cell;/ X,,) can be
calculated by:

P(Cell;/X,,) = / o F(0/X,)d8  with
[4

i

1,2,...,6 6; =6,

Prediction of the next crossing cell becomes:
Next Cell/ X,, = argmax{P(Cell;/X,)} i=1,...,6

Calculation of P(Cell;/ X,,) is not trivial in general, sincé is
nonlinearly related to the dynamic statg,, i.e.,

_10y(n)

0 =g(V,) =tan

2s () (20)

whereV,, = [v,(n),v,(n)]T is the velocity vector. Sinc#), is
part of X,,, it also has Gaussian distribution with meay;,,) and



varianceXy. If py(,) & 0, this is the case when the speed of the WPz

mobile station is very slowf (#/ X [n]) becomes a simple uniform

distribution ovei0, 2), in this case, .

P(cell/X(m) = "2 =%, (21)

with i=1,...,6, 6; =06, ._Orossed Cel |

O—Uncrossed cell
In the general case, numerical method have to be used to cal-
culatef(8/X,). However, if the variance df is small, f(6/X,,) Fig. 3. A practical situation necessitates looking-ahead mode for UMP identifica-

can be approximated by a Gaussian distribution. We achieve thigion
by assuming that within the Correlation Area, there is only smalf Parameters | Comments |
change of velocity, then Eq.20 can be linearized as: T =055 Sampling interval
o2 = 0.5m/s> Variance of random acceleration
0~ g(V*)+ G(AV) (22) Amax = 10m?/s | Maximum acceleration
V € [30,60] miles/hr | Speed range
here 1/a = 10s Random acceleration constant
w o¢ = 5dB Standard deviation of random shadowing
po = 20w Base station transmission power
G = @ _ [ —vy(n) Va (1) (23) gy = 6dB Power gain of base station
oV ly_y- vz (n)+vg(n) vz(n)+vi(n) gm = 1dB Power gain of mobile station
B BN Wavelength of RF signal
R =2km Radiance of cell
AV =V(n+s)—V(n)
TABLE |
AV is the change of velocity between timg and,, s with SIMULATION PARAMETERS
s > 1. SinceAV has Gaussian distribution with meany and
covarianc&ay, f(0/X,) becomes:
V. SIMULATION AND RESULT
FO/X ()~ N(uo, o) 0 €lug—m,pp+7]  (24) SIMULATIO SuLTS
To illustrate and demonstrate the prediction performance of the

with adaptive optimum filter, three moving users are simulated in the

po =9V 4+ Huay; Sg=HSyHT conventional hexagon cell environment, who are able to move

_ _ to any cell in the network along unknown trajectories with non-
Notice that for smallZy, we assumef (/X [n]) ~ 0, if § € constant speed. On-line mobility related information are signal-
(1o — 7, pe + ], then the cell crossing probability can be represtrength measurement to neighboring base stations. Parameters

sented by &)-function, i.e., involved in the simulation are summarized in Table | . In order
; ; to cover the range of dynamic acceleratiend, oz, Amaz], five
. _ . 2
P(Cell/x,) = @ | Pt Me] 0 { ; Me] (25) levels 0,£2.5,£7.5)m/s” are selected as the states of the deter-
Y Yo ministic driving input.
with i=1,...,6, 6;=06; The result of trajectory tracking is shown in figure 4, with the

dashed curves as the actual trajectories, and solid curves indicating
#; can be easily calculated from cell geometry. For example: the predicted trajectories. Figure 5 demonstrates the result of time-
varying velocity prediction. As we can see the proposed algorithm
6, = tan' (RCOS 30° — (y(n) — b)) (26) demonstrates a good estimation performance. The initial value of
R/2 — (z(n) —a) the dynamic state is estimated from the averaB€@ value with
position error up to 1000 and speed error up torb/s. Because
WhereR is cell radius(z(n),y(n)) is the position of mobile sta- of the strong “Pull in” power of the filter, it turns out that the adap-
tion, (a, b) is the location of the base station of current cell. tive filter is relatively insensitive to the initial conditions. The re-
Prediction of the next crossing cell can be combined with Ussult of prediction of the next crossing cell is summarized in the
Mobility Pattern (UMP) to predict the remaining cell sequence ifable Il with prediction ratio =75%, 80%, 100% for User 1, 2 and
her current journey[1]. The significance of trajectory tracking respectively. Here, the prediction ratio is defined as the ratio of
based next cell prediction is that a kind of looking-ahead motige number of cells correctly predicted to the total number of cells
can be enabled in UMP classification. In this mode, the decisineed to be predicted in the path.
about the matched UMP is postponed until we look ahead at théDn analyzing the prediction result together with users' trajec-
prediction of subsequent cell based on trajectory tracking. Agaay tracking, we find that a high degree of prediction accuracy
result, UMP classification error can be greatly reduced, especiafiyachieved once the Kalman filter becomes stable, and the error
in the cell where there are multiple possible leaving UMPs and tbaused by the initial instability is limited to the prediction of the
crossed cell sequence is not enough to identify current UMP, fost-crossing cell at the beginning of the journey, as in the case of
example, as shown in Figure 3. User 1. In the stable state, the prediction accuracy is related to the




Y-direction [meter]
[
T

0.5-

(1]

—05 . . . . . . . .
—2000 0] 2000 4000 6000 8000 10000 12000 14000 16000 18000 [2]
X~—direction [meter]

Fig. 4. Actual and predicted user trajectory (3]
(4]

25

2ol | G

(6]

-
o
I

[71
:ACtl:la| Speed

1 ] s

N
o

Speed - meter/second

Predicted Speed

0 Il Il Il L M Lo i L L
o 500 1000 1500 2000 2500 3000 3500 4000 4500
Time - second
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geometric relation of user trajectory and cell boundary. For exam-
ple, if a user runs along cell boundary, the uncertainty will be high
as to which is the next cell. In this case, cell geographic limitation
and User Mobility Pattern may be used to help choose the next
most probable cell. In addition to this special case, the tracking-
based prediction doesn't assume any prior knowledge of the users'
mobility — which is especially valuable for UMP identification and
prediction in the case of random movement.

VI. CONCLUSION

In this paper, we recognize the fact that the dynamic states and
trajectory of a mobile user play an important role in the prediction

Userl | Current Cell 1 2131412
Predicted Cell 6 |3 (4] 20
User2 | Current Cell 1 6 |58 ]9 19
Predicted Cell 6 |57 9 19
user3 | Current Cell 1 6 |7 12| 14
Predicted Cell 6 |7 12| 14
TABLE Il

PREDICTIONRESULT OFNEXT CELL CROSSING

55X10" of the next cell crossing and in the identification of the user's cur-
rent movement pattern. With this as motivation, we propose a hew
approach for user mobility modeling, in which we apply classi-
cal statistical signal processing techniques to extract user mobility
information from noisy measurement. Analysis and simulation re-
sults prove that with such a system in place, the cellular network
can obtain a high degree of prediction accuracy even in the ab-
sence of any prior information about the user's mobility history -
which in turn can lead to significant improvement in the network's
connection quality.
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