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ABSTRACT
TCP incast congestion happens in high-bandwidth and low-
latency networks, when multiple synchronized servers send
data to a same receiver in parallel [15]. For many important
data center applications such as MapReduce[5] and Search,
this many-to-one traffic pattern is common. Hence TCP in-
cast congestion may severely degrade their performances,
e.g., by increasing response time.

In this paper, we study TCP incast in detail by focusing
on the relationship among TCP throughput, round trip time
(RTT) and receive window. Different from the previous ap-
proach to mitigate the impact of incast congestion by a fine
grained timeout value, our idea is to design an ICTCP (Incast
congestion Control for TCP) scheme at the receiver side. In
particular, our method adjusts TCP receive window proac-
tively before packet drops occur. The implementation and
experiments in our testbed demonstrate that we achieve al-
most zero timeout and high goodput for TCP incast.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Net-
work topology, Packet-switching networks

General Terms
Algorithms, Design
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As the de facto reliable transport layer protocol, TCP
(Transport Control Protocol) has been widely used in
the Internet and works well. However, recent stud-
ies [13, 15] showed that TCP does not work well for
many-to-one traffic pattern on high-bandwidth, low-
latency networks, where congestion happens whenmany
synchronized servers under a same Gigabit Ethernet
switch send data to one receiver in parallel. Those con-
nections are called as barrier synchronized since the fi-
nal performance is determined by the slowest TCP con-
nection that suffers timeout due to packet losses. The
performance collapse of those many-to-one TCP con-
nections is called TCP incast congestion.
The traffic and network condition in data center net-

works create the three preconditions for incast conges-
tion as summarized in [15]. First, data center networks
are well structured and layered to achieve high band-
width and low latency, and the buffer size of ToR (top-
of-rack) Ethernet switches is usually small. Second, re-
cent measurement study showed that barrier synchro-
nized many-to-one traffic pattern is common in data
center networks [9], mainly caused by MapReduce [5]
alike applications in data center. Third, the trans-
mission data volume for such traffic pattern is usually
small.
The root cause of TCP incast collapse is that the

highly bursty traffic of multiple TCP connections over-
flow the Ethernet switch buffer in a short period of time,
causing intense packet losses and thus TCP retransmis-
sion and timeout. Previous solutions, focused on either
reducing the waiting time for packet loss recovery by
faster retransmissions [15], or controlling switch buffer
occupation to avoid overflow by using ECN and modi-
fied TCP at both sender and receiver sides[2].
This paper focuses on avoiding packet losses before

incast congestion, which is more appealing than recov-
ering after loss. Of course, recovery schemes can be
complementary to congestion avoidance. The smaller
change we make to the existing system, the better. To
this end, a solution that modifies TCP receiver only
is preferred than solutions that require switches and



routers support (such as ECN) and modifications at
both TCP sender and receiver sides.
Our idea is to perform incast congestion avoidance at

receiver side by preventing incast congestion. Receiver
side is a natural choice since it knows the throughput
of all TCP connections and the available bandwidth.
The receiver side can adjust the receive window size of
each TCP connection, so the aggregate burstiness of all
the synchronized senders are under control. We call our
design ICTCP (Incast congestion Control for TCP).
But well controlling the receive window is challenging:

The receive window should be small enough to avoid
incast congestion, but also large enough for good per-
formance and other non-incast cases. A well performed
throttling rate for one incast scenario may not fit well
for other scenarios due to the dynamics of the number
of connections, traffic volumes, network conditions, etc.
This paper addresses the above challenges by a sys-

tematically designed ICTCP. We first perform conges-
tion avoidance at system level. We then use per-flow
state to fine-grained tune the receive window of each
connection at the receiver side. The technical novelties
of this work are as follows: 1) To perform congestion
control at receiver side, we use the available bandwidth
on the network interface as a quota to coordinate the
receive window increase of all incoming connections. 2)
Our per flow congestion control is performed indepen-
dently in slotted time of RTT (Round Trip Time) on
each connection, which is also the control latency in
its feedback loop. 3) Our receive window adjustment
is based on the ratio of difference of measured and ex-
pected throughput over expected one. This is to esti-
mate the throughput requirement from sender side and
adapt receiver window correspondingly. Besides, we
find live RTT is necessary for throughput estimation
as we observe that TCP RTT in high-bandwidth low-
latency network does increase with throughput, even if
link capacity is not reached.
We have developed and implemented ICTCP as a

Windows NDIS (Network Driver Interface Specification)
filter driver. Our implementation naturally support vir-
tual machines which are now widely used in data center.
In our implementation, ICTCP as a driver locates at hy-
pervisors below virtual machines. This choice removes
the difficulty on obtaining the real available bandwidth
after virtual interfaces’ multiplexing. It also provides
a common waist for various TCP stacks in virtual ma-
chines. We have built a testbed with 47 Dell servers and
a 48-port Gigabit Ethernet switch. Experiments in our
testbed demonstrated the effectiveness of our scheme.
The rest of the paper is organized as follows. Sec-

tion 2 discusses research background. Section3 describes
the design rationale of ICTCP. Section 4 presents ICTCP
algorithms. Section 5 shows the implementation of ICTCP
as a Windows driver. Sections 6 presents experimental

Internet

Data center

Agg. Router

Agg. Switch

ToR 

switch

1 U

1 U

1 U

1 U

1 U

Figure 1: A data center network and a detailed
illustration of a ToR (Top of Rack) switch con-
nected to multiple rack-mounted servers

results. Section 7 discusses the extension of ICTCP.
Section 8 presents related work. Finally, Section 9 con-
cludes the paper.

2. BACKGROUND AND MOTIVATION
TCP incast has been identified and described by Na-

gle et al. [12] in distributed storage clusters. In dis-
tributed file systems, files are stored at multiple servers.
TCP incast congestion occurs when multiple blocks of
a file are fetched from multiple servers. Several applica-
tion specific solutions have been proposed in the context
of parallel file system. With recent progresses on data
center networking, TCP incast problem in data cen-
ter networks has become a practical issue. Since there
are various data center applications, a transport layer
solution can free application from building their own
solutions and is therefore preferred.
In this Section, we first briefly introduce the TCP

incast problem, we then illustrate our observations for
TCP characteristics on high-bandwidth, low-latency net-
work, and also the root cause of packet loss of incast
congestion. After observing TCP receive window is a
right controller to avoid congestion, we seek for a gen-
eral TCP receive window adjustment algorithm.

2.1 TCP incast congestion
In Figure 1, we show a typical data center network

structure. There are three layers of switches/routers:
ToR (Top of Rack) switch, Aggregate switch and Ag-
gregate router. We also show a detailed case for a ToR
connected to dozens of servers. In a typical setup, the
number of servers under the same ToR is from 44 to 48,
and the ToR switch is a 48-port Gigabit switch with
one or multiple 10 Gigabit uplinks.
Incast congestion happens when multiple sending servers

under the same ToR switch send data to one receiver
server simultaneously. The amount of data transmitted
by each connection is relatively small, e.g, 64kbytes. In
Figure 2, we show the goodput achieved on those mul-
tiple connections versus the number sending servers.
Note that we use term goodput as it is obtained and
observed at application layer. The results are mea-
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Figure 2: The total goodput of multiple barrier
synchronized TCP connections versus the num-
ber of senders, where the data traffic volume per
sender is a fixed amount

sured on a testbed with 47 Dell servers connected to one
Quanta LB4G 48-port Gigabit switch. Those multiple
connections are barrier synchronized. We observe sim-
ilar goodput trends for three different traffic amounts
per server, but with slightly different transition points.
Note that in our setup each connection has a same traf-
fic amount with the number of senders increasing, which
is used in [13]. [15] uses another setup that the total
traffic amount of all senders is a fixed one. Here we just
illustrate the problem and will show the results for both
setups in Section 6.
TCP throughput is severely degraded on incast con-

gestion, since one ore more TCP connections experience
timeout caused by packet drops. TCP incast scenario
is common for data center applications. For example,
for search indexing we need to count the frequency of
a specific word in multiple documents. This job is dis-
tributed to multiple servers and each server is respon-
sible for some documents on its local disk. Only after
all servers return their counters to the receiving server,
the final result can be generated.

2.2 TCP goodput, receive window and RTT
TCP receive window is introduced for TCP flow con-

trol, i.e., preventing faster sender from overflowing slow
receiver’s buffer. The receive window size determines
the maximal number of bytes that the sender can trans-
mit without receiving receiver’s ACK. Previous study
[10] mentioned that a small static TCP receive buffer
may throttle TCP throughput and thus prevent TCP
incast congestion collapse. However, a static buffer
can’t work for changed number of connections and can’t
handle the dynamics on applications’ requirements.
As TCP receive window has the ability to control

TCP throughput and thus prevent TCP incast collapse,
we consider how to dynamically adjust it to the proper
value. We start from window based congestion control
used in TCP. As we know, TCP uses slow start and
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Figure 3: The goodput and RTT of one TCP
connection over Gigabit Ethernet versus the re-
ceive window size

congestion avoidance to adjust congestion window at
sender side. Directly applying such technique to TCP
receive window adjustment certainly won’t help as it
still requires either losses or ECN marks to trigger win-
dow decrease, otherwise the window keeps increasing.
Different from TCP’s congestion avoidance, TCP Ve-

gas adjusts its window according to changes of RTT.
TCP Vegas makes the assumption that TCP RTT is
stable before it reaches network available bandwidth.
That is to say, the increase of RTT is only caused by
packet queueing at bottleneck buffer. TCP Vegas then
adjusts window to keep TCP throughput close to the
available bandwidth, by keeping the RTT in a reason-
able range. Unfortunately, we find that the increase
of TCP RTT in high-bandwidth, low-latency network
does not follow such assumption.
In Figure 3, we show the throughput and RTT of one

TCP connection between two servers under the same
ToR Gigabit switch. The connection lasts for 10 sec-
onds. We define the base RTT for a connection as the
observed RTT when there is no other traffic and TCP
receive window is one MSS (Maximum Segment Size).
In our testbed, the base RTT is around 100 microsec-
onds, which is much smaller than RTT observed in In-
ternet. From Figure 3, we observe that RTT increases
as the TCP receive window increases, when throughput
is smaller than the available bandwidth (link capacity
in this case). Therefore, in data center network, even
if there is no cross traffic, an increase on RTT can’t be
regarded as a signal for TCP throughput reaching avail-
able bandwidth. For example, the base RTT is around
100us, and the RTT increases to 460us with maximal
throughput at 906Mbps.
Given that the base RTT is near 100us and a full

bandwidth of Gigabit Ethernet, the base BDP (Band-
width Delay Product) without queue is around 12.5k
bytes (100us*1Gbps). For an incast scenario, multiple
TCP connections share this small pipe, i.e., the base



BDP and queue are shared by those connections. The
small base BDP but high bandwidth for multiple TCP
connections is the reason that the switch buffer easily
goes to overflow. Meanwhile, we also observe that the
receive window size should be controlled since the to-
tal receive window size of all connections should be no
greater than base BDP plus the queue size. Otherwise
packets may get dropped.

3. DESIGN RATIONALE
Our goal is to improve TCP performance for incast

congestion, instead of introducing a new transport layer
protocol. Although we focus on TCP in data center
network, we still require no new TCP option or modifi-
cation to TCP header. This is to keep backward com-
patibility, and to make our scheme general enough to
handle the incast congestion in future high-bandwidth,
low-latency network.
Previous work focused on how to reduce the impact

of timeout, which is caused by large number of packet
losses on incast congestion. We’ve shown that the basic
RTT in data center network is hundreds of microsec-
onds, and the bandwidth is Gigabit and 10 Gigabit
in near future. Given such high-bandwidth and low-
latency, we focus on how to perform congestion avoid-
ance to prevent switch buffer overflow. Avoiding unnec-
essary buffer overflow significantly reduces TCP time-
outs and saves unnecessary retransmissions.
We focus on the classical incast scenario where dozens

of servers connected by a Gigabit Ethernet switch. In
this scenario, the congestion point happens right before
the receiver. This is to say, the switch port in congestion
is actually the last-hop of all TCP connections at the
incast receiver. Recent measurement study[9] showed
that this scenario exists in data center networks, and
the traffic between servers under the same ToR switch
is actually one of the most significant traffic pattern
in data center, as locality has been considered in job
distribution. Whether incast exists in more advanced
data center topology like recent proposals DCell[7], Fat-
tree[1] and BCube[6] is not the focus of this paper.
From Figure 3, we observe that TCP receive window

can be used to throttle the TCP throughput, which can
be leveraged to handle incast congestion although the
receive window is originally designed for flow control.
In short, our incast quenching scheme is to design a
window based congestion control algorithm at TCP re-
ceiver side, given the incast scenario we have described,
and the requirements we made. The benefit of an in-
cast congestion control scheme at receiver is that the
receiver knows how much throughput it has achieved
and how much available bandwidth left. While the dif-
ficulty and also the challenge at receiver side is that
an overly controlled window may constrain TCP per-
formance while less controlled window may not prevent

incast congestion.
As the base RTT is at hundreds of microseconds in

data center [2], our algorithm is restricted to adjust re-
ceive window only for TCP flows with RTT less than
2ms. This constraint is designed to focus on low-latency
flows. In particular, if a server in a data center commu-
nicates with servers within this data center and servers
in the Internet simultaneously, our RTT constraint leaves
those long RTT (and low throughput) TCP flows un-
touched. It also implies that some incoming flows may
not follow our congestion control. We will show the ro-
bustness of our algorithm with background (even UDP)
traffic in Section 6.
We summarize the following three observations which

form the base for ICTCP.
First, the available bandwidth at receiver side is the

signal for receiver to do congestion control. As incast
congestion happens at the last-hop, the incast receiver
should detect such receiving throughput burstiness and
control the throughput to avoid potential incast con-
gestion. If the TCP receiver needs to increase the TCP
receive window, it should also predict whether there
is enough available bandwidth to support the increase.
Furthermore, the receive window increase of all connec-
tions should be jointly considered.
Second, the frequency of receive window based con-

gestion control should be made according to the per-
flow feedback-loop delay independently. In principle,
the congestion control dynamics of one TCP connection
can be regarded as a control system, where the feedback
delay is the RTT of that TCP connection. When the re-
ceive window is adjusted, it takes at least one RTT time
before the data packets following the newly adjusted re-
ceive window arrive. Thus, the control interval should
be larger than one RTT time, which changes dynami-
cally according to the queueing delay and also system
overhead.
Third, a receive window based scheme should ad-

just the window according to both link congestion sta-
tus and also application requirement. The receive win-
dow should not restrict TCP throughput when there is
available bandwidth, and should throttle TCP through-
put before incast congestion happens. Consider a sce-
nario where a TCP receive window is increased to a
large value but is not decreased after application re-
quirement is gone, then if the application resumes, con-
gestion may happen with traffic surge on such a large
receive window. Therefore, the receiver should differ-
entiate whether a TCP receive window over-satisfies
the achieved throughput on a TCP connection, and de-
crease its receive window if so.
With these three observations, our receive window

based incast congestion control intends to set a proper
receive window to all TCP connections sharing the same
last-hop. Considering that there are many TCP con-



nections sharing the bottlenecked last-hop before in-
cast congestion, we adjust TCP receive window to make
those connections share the bandwidth fairly. This is
because in data center, those parallel TCP connections
may belong to the same job and the last finished one
determines the final performance. Note that the fair-
ness controller between TCP flows is independent of
receive window adjustment for incast congestion avoid-
ance, so that any other fairness category can be de-
ployed if needed.

4. ICTCP ALGORITHM
ICTCP provides a receive window based congestion

control algorithm for TCP at end-system. The receive
window of all low-RTT TCP connections are jointly ad-
justed to control throughput on incast congestion. Our
ICTCP algorithm closely follow the design points made
in Section 3. In this Section, we describe how to set the
receive window of a TCP connection, and we discuss
how to implement our algorithm at next Section.

4.1 Control trigger: available bandwidth
Without loss of generality, we assume there is one

interface on a receiver server, and define symbols cor-
responding to that interface. Our algorithm can be ap-
plied for the scenario that the receiver has multiple in-
terfaces, while the connections on each interface should
perform our algorithm independently.
Assume the link capacity of the interface on receiver

server is C. Define the bandwidth of total incoming
traffic observed on that interface as BWT , which in-
cludes all types of packets, i.e., broadcast, multicast,
unicast of UDP or TCP, etc. Then we define the avail-
able bandwidth BWA on that interface as,

BWA = max(0, α ∗ C −BWT ) (1)

where α ∈ [0, 1] is a parameter to absorb potential
oversubscribed bandwidth during window adjustment.
In all our implementation and experiment, we have a
fixed setting with α = 0.9.
In ICTCP, we use available bandwidth BWA as the

quota of all incoming connections to increase receive
window for higher throughput. Each flow should esti-
mate the potential throughput increase before its re-
ceive window should be increased. Only when there is
enough quota (BWA), the receive window can be in-
creased, and the corresponding quota is consumed to
prevent bandwidth oversubscription.
To estimate the available bandwidth on the interface

and provide a quota for later receive window increase,
we divide time into slots. Each slot consists of two
sub-slots with the same length T . For each network
interface, we measure all the traffic received in the first
sub-slot, and use it to calculate the available bandwidth
as quota for window increase on the second sub-slot.

Global

Connection i

Connection j

Time

First 

subslot

Second 

subslot

First 

subslot

Second 

subslot

Slot

T T

BWA estimated

Window increase in second subslot

RTTj
Potential window increase time 

per connection independantly

RTTi

Two or more RTTi

Figure 4: slotted time on global (all connections
on that interface) and two arbitrary TCP con-
nections i/j are independent

In Figure 4, the arrowed line marked as “Global” de-
notes the slot allocation for available bandwidth estima-
tion on a network interface. The first sub-slot is marked
in gray color. In the time of first sub-slot, all connec-
tions’ receive window can’t be increased (but can be
decreased if needed). The second sub-slot is marked in
white in Figure 4. In the second sub-slot, the receive
window of any TCP connection can be increased, but
the total estimated increased throughput of all connec-
tions in the second sub-slot must be less than the avail-
able bandwidth observed in the first sub-slot. Note that
a decrease of any receive window does not increase the
quota, as the quota will only be reset by incoming traf-
fic in the next first sub-slot. We discuss how to choose
T and its relationship with per flow control interval in
the next subsection.

4.2 Per connection control interval: 2*RTT
In ICTCP, each connection only adjusts its receive

window when there is an ACK sending out on that con-
nection. No additional TCP ACK packets are gener-
ated only for window adjustment, so that no traffic is
wasted. For a TCP connection, after an ACK is sent
out, the data packet corresponding to that ACK arrives
one RTT later. As a control system, the latency on the
feedback-loop is one RTT time of each TCP connection.
Meanwhile, to estimate the throughput of a TCP

connection for receive window adjustment, the shortest
time scale is an RTT for that connection. Therefore,
the control interval for a TCP connection is 2*RTT in
ICTCP, as we need one RTT latency for that adjusted
window to take effect, and one additional RTT to mea-
sure the achieved throughput with that newly adjusted
window. Note that the window adjustment interval is
performed per connection. We use Connection i and
j to represent two arbitrary TCP connections in Fig-
ure 4, to show that one connection’s receive windows
adjustment is independent with the other.
The relationship of sub-slot length T and any flow’s



control interval is as follows. Since the major purpose
of available bandwidth estimation on the first sub-slot
is to provide a quota for window adjustment on the
second sub-slot, the length T should be determined
by the control intervals of all connections. We use a
weighted averaged RTT of all TCP connections as T ,
i.e., T =

∑
i wiRTTi. The weight wi is the normalized

traffic volume of connection i over all traffic.
In Figure 4, we illustrate the relationship of two arbi-

trary TCP connections i/j with RTTi/j and the system
estimation sub-interval T . Each connection adjust its
receive window based on its observed RTT. The time for
a connection to increase its receive window is marked
with an up arrow in Figure 4. For any TCP connec-
tion, if now time is in the second global sub-slot and it
observes that the past time is larger than 2*RTT since
its last receive window adjustment, it may increase its
window based on newly observed TCP throughput and
current available bandwidth. Note the RTT of each
TCP connection is drawn as a fixed interval in Figure
4. This is just for illustration. We discuss how to obtain
accurate and live RTT at receiver side in Section 5.

4.3 Window adjustment on single connection
For any ICTCP connection, the receive window is ad-

justed based on its incoming measured throughput (de-
noted as bm) and its expected throughput (denoted as
be). The measured throughput represents the achieved
throughput on a TCP connection, also implies the cur-
rent requirement of the application over that TCP con-
nection. The expected throughput represents our ex-
pectation of the throughput on that TCP connection if
the throughput is only constrained by receive window.
Our idea on receive window adjustment is to increase

window when the difference ratio of measured and ex-
pected throughput is small, while decrease window when
the difference ratio is large. Similar concept is intro-
duced in TCP Vegas [3] before but it uses throughput
difference instead of difference ratio, and it’s designed
for congestion window at sender side to pursue avail-
able bandwidth. ICTCP window adjustment is to set
the receive window of a TCP connection to a value
that represents its current application’s requirement.
Oversized receive window is a hidden problem as the
throughput of that connection may reach the expected
one at any time, and the traffic surge may overflow the
switch buffer, which is hard to predict and avoid.
The measured throughput bmi is obtained and up-

dated for every RTT on connection i. For every RTT on
connection i, we obtain a sample of current throughput,
denoted as bsi , calculated as total number of received
bytes divided by the time interval RTTi. We smooth
measured throughput using exponential filter as,

bmi,new = max(bsi , β ∗ bmi,old + (1− β) ∗ bsi ) (2)

Note that the max procedure here is to make bmi up-
dated quickly if receive window is increased, especially
when window is doubled. The expected throughput of
connection i is obtained as,

bei = max(bmi , rwndi/RTTi) (3)

where rwndi and RTTi are the receive window and RTT
for connection i respectively. We have the max proce-
dure to ensure bmi ≤ bei .
We define the ratio of throughput difference dbi as the

ratio of throughput difference of measured and expected
throughput over the expected one for connection i.

dbi = (bei − bmi )/bei (4)

By definition, we have bmi ≤ bei , thus d
b
i ∈ [0, 1].

We have two thresholds γ1 and γ2 (γ2 > γ1) to dif-
ferentiate three cases for receive window adjustment:
1) dbi ≤ γ1 or dbi ≤ MSSi/rwndi

1, increase receive
window if it’s now in global second sub-slot and there
is enough quota of available bandwidth on the network
interface. Decrease the quota correspondingly if the
receive window is increased.
2) dbi > γ2, decrease receive window by one MSS2

if this condition holds for three continuous RTT. The
minimal receive window is 2*MSS.
3) Otherwise, keep current receive window.
In all of our experiments, we have γ1 = 0.1 and

γ2 = 0.5. Similar to TCP’s congestion window increase
at sender, the increase of the receive window on any
ICTCP connection consists of two phases: slow start
and congestion avoidance. If there is enough quota, in
slow start phase, the receive window is doubled, while it
is enlarged by at most one MSS in congestion avoidance
phase. A newly established or long time idle connection
is initiated in slow start phase, whenever the above sec-
ond and third case is met, or the first case is met but
there is not enough quota on receiver side, the connec-
tion goes into congestion avoidance phase.

4.4 Fairness controller for multiple connections
When the receiver detects that the available band-

width BWA becomes smaller than a threshold, ICTCP
starts to decrease the receiver window of some selected
connections to prevent congestion. Considering that
multiple active TCP connections at the same time typi-
cally works for the same job in data center, we seek for a
method that can achieve fair sharing for all connections
without sacrificing throughput. Note that ICTCP does
not adjust receive window for flows with RTT larger

1This means the throughput difference is less than one MSS
with current receive window. It’s designed to speed up in-
crease step when receive window is relatively small.
2,3The decrease of only one MSS is to follow TCP’s design
that the right-edge of sender’s buffer never left shifted when
receive window shrinks. Note we decrease receive window
by an outgoing ACK that acknowledges an MSS data.



than 2ms, so fairness is only considered among low-
latency flows.
In our experiment, we decrease window for fairness

when BWA < 0.2C. This condition is designed for
high bandwidth network, where link capacity is under-
utilized for most of time. If there is still enough avail-
able bandwidth, the requirement of better fairness is
not strong as potential impact on achieved throughput.
We adjust receive window to achieve fairness for in-

coming TCP connections with low-latency on two folds:
1) For window decrease, we cut the receive window by
one MSS3, for some selected TCP connections. We se-
lect those connections that have receive window larger
than the average window value of all connections. 2)
For window increase, this is automatically achieved by
our window adjustment described in Section 4.3, as the
receive window is only increased by one MSS on con-
gestion avoidance.

5. IMPLEMENTATION

5.1 Software stack
Ideally, ICTCP should be integrated into existing

TCP stack, as it is an approach for TCP receive window
optimization to achieve better performance.
Although the implementation of ICTCP in TCP stack

is natural, this paper chooses a different approach – de-
velop ICTCP as a NDIS driver on Windows OS. The
software stack is shown in Figure 5. The NDIS ICTCP
driver is implemented inWindows kernel, between TCP/
IP and NIC (Network Interface Card) driver, known as a
Windows filter driver. Our NDIS driver intercepts TCP
packets and modifies the receive window size if needed.
The final solution for ICTCP should be in TCP mod-
ule, while our implementation of ICTCP in driver is to
demonstrate its feasibility and performance.
There are several benefits that can be achieved when

ICTCP is implemented in a driver: 1) It naturally sup-
ports the case for virtual machine, which is widely used
in data center. We discuss this point in detail in next
subsection. 2) ICTCP needs the incoming throughput
in very short time scale (comparable to RTT at hun-
dreds of microseconds) to estimate available bandwidth,
and at a driver these information can be easily obtained.
Note that the incoming traffic include all types of traf-
fic arrived on that interface, besides TCP. 3) It does
not touch TCP/IP implementation in Windows kernel.
As a quick and dirty solution, it supports all OS ver-
sions, instead of patching one by one to get deployed
in a large data center network with various TCP imple-
mentations.
As shown in Figure 5, ICTCP driver implementa-

tion contains 3 software modules: packet header parser/
modifier, flow table and ICTCP algorithm. The parser/
modifer implements the functions both to check packet

TCP/IP
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Applications

NIC driver

kernel

user

ICTCP NDIS driver

NIC driver in Virtual machine host 

Host 

space

Virtual 

machine 
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ICTCP driver in Virtual machine host
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Machine
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Figure 5: Modules in ICTCP driver and soft-
ware stack for virtual machine support

header and modify receive window on TCP header. Flow
table maintains the key data structure in the ICTCP
driver. A flow is identified by a 5-tuple: source /desti-
nation IP address, source/destination port and proto-
col. The flow table stores per flow information for all
the active flows. For a TCP flow, its entry is removed
from the table if a FIN/RST packet is observed, or no
packets parsed for 15 minutes. The algorithm part im-
plements all the algorithms described in Section 4.
The work flow of an ICTCP driver is as follows. 1)

When the intermediate driver captures packets through
either NDIS sending or receiving entry, it will redirect
the packet to header parser module; 2) Packet header
is parsed and corresponding information is updated on
flow table; 3) ICTCP algorithm module is responsible
for receive window calculation. 4) If a TCP ACK packet
is sent out, the header modifier may change the receive
window field in TCP header if needed.
Our ICTCP driver does not introduce extra CPU

overhead for packet checksum when the receive window
is modified, as the checksum calculation is loaded to
NIC on hardware, which is a normal setup in data cen-
ter. Besides, there is no packet reordered in our driver.
Although it’s not the focus of this paper, we measured
the CPU overhead introduced by our filter driver on a
Dell server PowerEdge R200, Xeon (4CPU)@2.8GhHz,
8G Memory, and compared with the case that our driver
is not installed. The overhead is around 5-6% for 1Gbps
throughput, and less than 1% for 100Mbps throughput.

5.2 Support for Virtual Machines
Virtual machine is widely used in data centers. When

virtual machine is used, the physical NIC capacity on
the host server is shared by multiple virtual NICs in
the virtual machines. The link capacity of a virtual
NIC has to be configured, and usually as a static value
in practice. However, to achieve better performance
in multiplexing, the total capacity of virtual NICs is
typically configured higher than physical NIC capacity
as most virtual machines won’t be busy at the same
time. Therefore, it brings a challenge to ICTCP in vir-
tual machine, as the observed virtual link capacity and
available bandwidth does not represent the real value.



One solution is to change the settings of virtual ma-
chine NICs, and make the total capacity of all vir-
tual NICs equal to that physical NIC. An alternative
solution is to deploy a ICTCP driver on virtual ma-
chine host server. The reason for such deployment is to
achieve high performance on virtual machine multiplex-
ing. This is a special design for virtual machine case,
and won’t get conflict even if ICTCP has already been
integrated into TCP in virtual machines. The software
stack of ICTCP in virtual machine host is illustrated in
the right side of Figure 5, where all connections passing
the physical NIC are jointly adjusted.

5.3 Obtain fine-grained RTT at receiver
ICTCP is deployed at the TCP receiver side, and it

requires to obtain TCP RTT to adjust receive window.
From the discussion in Section 2.2, we need a live RTT
as it changes with throughput.
We define the reverse RTT as the RTT after a expo-

nential filter at the TCP receiver side. By definition,
the reverse RTT is close to the RTT exponentially fil-
tered at the TCP sender side. The reverse RTT can be
obtained if there is data traffic on both directions. Con-
sidering the data traffic on reverse direction may not be
enough to keep obtaining live reverse RTT, we use TCP
timestamp to obtain the RTT on reverse direction.
Unfortunately, the RTT implementation in existing

TCP module uses a clock on milliseconds granularity.
To obtain an accurate RTT for ICTCP in data cen-
ter network, the granularity should be at microseconds.
Therefore, we modify the timestamp counter into 100ns
granularity to obtain live and accurate RTT. Note that
this does not introduce extra overhead as such granu-
larity time is available on Windows kernel. We believe
similar approach can be taken in other OS. Our change
of time granularity on TCP timestamp follows the re-
quirements by RFC1323[8].

6. EXPERIMENTAL RESULTS
We deployed a testbed with 47 servers and one Quanta

LB4G 48-port Gigabit Ethernet switch. The topology
of our testbed is the same as the one shown in the right
side of Figure 1, where 47 servers connects to the 48-
port Gigabit Ethernet switch with a Gigabit Ethernet
interface respectively. The hardware profile of a server
is with 2.2G Intel Xeon CPUs E5520 (two cores), 32G
RAM, 1T hard disk, and one Broadcom BCM5709C
NetXtreme II Gigabit Ethernet NIC (Network Interface
Card). The OS of each server is Windows Server 2008
R2 Enterprise 64-bit version. The CPU, Memory and
hard disk were never a bottleneck in any of our exper-
iments. We use iperf to construct the incast scenario
where multiple sending servers generate TCP traffic to
a receiving server under the same switch. The servers
in our testbed have their own background TCP con-

nections for various services, but the background traffic
amount is very small compared to our generated traf-
fic. The testbed is in an enterprise network with normal
background broadcast traffic.
All comparisons are between a full implementation

of ICTCP described in Section 5 and a state-of-the-art
TCP New Reno with SACK implementation on Win-
dows Server. The default timeout value of TCP on
Windows server is 300 milliseconds (ms). Note that
all the TCP stacks are the same in our experiments, as
ICTCP is implemented in a filter driver at receiver side.

6.1 Fixed traffic volume per server with the
number of senders increasing

The first incast scenario we consider is that a number
of senders generate the same amount of TCP traffic to
a specific receiver under the same switch. Same as the
setup in [13] and [4], we fix the traffic amount generated
per sending server.
The TCP connections are barrier synchronized per

round, i.e., each round finishes only after all TCP con-
nections in it have finished. The goodput shown is the
averaged value of 100 experimental rounds. We ob-
serve the incast congestion: with the number of send-
ing servers increasing, the goodput per round actually
drops due to TCP timeout on some connections. The
smallest number of sending servers to trigger incast con-
gestion varies with the traffic amount generated per
server: larger data amount, smaller number of sending
servers to trigger incast congestion.

6.1.1 ICTCP with minimal receive window at 2MSS
Under the same setup, the performance of ICTCP is

shown in Figure 6. We observe that ICTCP achieves
smooth and increasing goodput with the number of
sending servers increasing. Larger data amount per
sending server results in slightly higher goodput achieved.
The averaged goodput of ICTCP shows that incast con-
gestion is effectively throttled. And the goodput of
ICTCP with various number of sending servers and traf-
fic amount per sending servers show that our algorithm
adapts well to different traffic requirements.
We observe that the goodput of TCP before incast

congestion is actually higher than that of ICTCP. For
example, TCP achieves 879Mbps while ICTCP achieves
607Mbps with 4 sending servers at 256kbytes per server.
There are two reasons: 1) During connection initia-
tion phase (slow-start), ICTCP increases window slower
than TCP. Actually, ICTCP increases receive window
to double for at least every two RTTs while TCP in-
crease its sending window to double for every RTT.
Besides, ICTCP increases receive window by one MSS
when available bandwidth is low. 2) The traffic amount
per sending server is very small, and thus the time
taken in “slow-start” dominates the transmission time
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Figure 6: The total goodput of multiple bar-
rier synchronized ICTCP/TCP connections ver-
sus the number of senders, where the data traffic
volume per sender is a fixed amount

if incast congestion does not happen. Note that low
throughput of ICTCP during initiation phase does not
affect its throughput during stable phase in larger time
scale, e.g., hundreds of milliseconds, which will be eval-
uated in Section 6.4.
To evaluate the effectiveness of ICTCP on avoiding

timeout, we use the ratio of the number of experimen-
tal rounds experiencing at least one timeout4 over the
total number of rounds. The ratio of rounds with at
least one timeout is shown in Figure 7. We observe
that TCP quickly suffer for at least one timeout when
incast congestion happens, while the highest ratio for
ICTCP experience timeout is 6%. Note that the results
in Figure 7 shows that ICTCP is better than DCTCP[2],
as DCTCP quickly downgrades to the same as TCP
when the number of sending servers is over 35 for static
buffer case. The reason for ICTCP to effectively reduce
the possibility on timeout is that ICTCP does conges-
tion avoidance and it increases receive window only if
there is enough available bandwidth on receiving server.
DCTCP relies on ECN to detect congestion, so larger
(dynamic) buffer is required to avoid buffer overflow
during control latency, i.e., the time before control takes
effect.

6.1.2 ICTCP with minimal receive window at 1MSS
ICTCP has some possibility (although very small) to

timeout, since we have a 2MSS minimal receive window.
In principle, with the number of connections become
larger, the receive window for each connection should
become smaller proportionately. This is because the
total BDP including the buffer size is actually shared
by those connections, and the minimal receive window
of those connections determines whether such sharing

4Multiple senders experiencing timeout in the same barrier
does not degrade performance proportionately, as the con-
nections are delivered in parallel.
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may cause buffer overflow when the total BDP is not
enough to support those connections.
The performance of ICTCP with minimal receive win-

dow at 1MSS is shown in Figure 8. We observe that
timeout probability is 0, while the averaged throughput
is lower than those with 2MSS minimal receive window.
For example, for 40 sending servers with 64kbytes per
server, the goodput is 741Mbps for 2MSS as shown in
Figure 6, while 564Mbps for 1MSS as shown in Figure
8. Therefore, the minimal receive window is a trade-
off between higher averaged incast goodput and lower
timeout possibility. Note that the goodput here is only
for very short time, 40*64k*8/564Mbps =36ms. For
larger request data size and longer connection duration,
ICTCP actually achieves goodput closely to link capac-
ity, which is shown in detail in Section 6.4.

6.2 Fixed total traffic volume with the num-
ber of senders increasing

The second scenario we consider is with the one dis-
cussed in [15, 2], where the total data volume of all
servers is fixed and the number of sending servers varies.
We show the goodput and timeout ratio for both TCP

and ICTCP under a fixed total traffic amount in Figure
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9 and 10. From Figure 9 we observe that the number
of sending servers to trigger incast congestion is close
for 2M and 8M bytes total traffic respectively. ICTCP
greatly improves the goodput and controls timeout well.
Note that we show the case for ICTCP with minimal
receive window at 2MSS and skip the case with 1MSS,
as the timeout ratio is again 0% for 1MSS.

6.3 Incast with high throughput background
traffic

In previous experiments, we do not explicit generate
long term background traffic for incast experiments. In
the third scenario, we generate a long term TCP connec-
tion as background traffic to the same receiving server,
and it occupies 900Mbps before incast traffic starts.
The goodput and timeout ratio of TCP and ICTCP

are shown in Figure 11 and 12. Compared Figure 11
with Figure 2, the throughput achieved by TCP before
incast congestion is slightly lower. ICTCP also achieves
slightly lower throughput when the number of sending
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serves is small. Comparing Figure 12 with Figure 7,
the timeout ratio with ICTCP becomes slightly higher
when there is a high throughput background connec-
tion ongoing. This is because the available bandwidth
becomes smaller and thus the initiation of new connec-
tions is affected. We also obtain the experimental re-
sults for a background UDP connection at 200Mbps,
and ICTCP also performs well. We skip the results un-
der background UDP for space limitation.

6.4 Fairness and long term performance of ICTCP
To evaluate the fairness of ICTCP on multiple con-

nections, we generate 5 ICTCP flows to the same receiv-
ing server under the same switch. The flows are started
sequentially with 20s interval and 100s duration. The
achieved goodput of those 5 ICTCP flows are shown in
Figure 13. We observe that the fairness of ICTCP on
multiple connections is very good, and the total good-
put of multiple connections is close to link capacity at
1Gbps. Note that the goodput here is much larger than
that shown in Figure 6, since the traffic volume is much
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larger and thus slightly longer time cost on slow start
phase is not an issue. We also run the same experi-
ments for TCP. TCP achieves same performance before
5 servers and degrades with more connections.

7. DISCUSSIONS
In this section, we discuss three issues related to fur-

ther extension of ICTCP. The first issue is about the
scalability of ICTCP, in particular, how to handle incast
congestion with extremely large number of connections.
Paper [2] shows that the number of concurrent connec-
tions to a receiver on 50ms duration is less than 100 for
90th percentile in a real data center. ICTCP can eas-
ily handle the case for 100 concurrent connections with
1MSS as minimal receive window. In principle, if the
number of concurrent connections becomes extremely
large, then we require to have much smaller minimal
receive window to prevent buffer overflow. However,
directly using smaller receive window less than MSS
may degrade performance greatly. We propose an alter-
native solution: switching the receive window between
several values to achieve effective smaller receive win-
dow averaged for multiple RTTs time. For example,
1MSS window for one RTT and 0 window for another
RTT could achieve 0.5MSS window in average for 2RTT
time. Note that it still needs coordination between mul-
tiplexed flows at receiver side to prevent concurrent con-
nections overflow buffer.
The second issue we consider is how to extend ICTCP

to handle congestion in general cases where sender and
receiver are not under the same switch, and the bot-
tleneck link is not the last-hop to receiver. We con-
sider that ECN can be leveraged to obtain such conges-
tion information. While different from original ECN to
only echo congestion signal at receiver side, ICTCP can
throttle receive window considering the aggregation of
multiple connections.

The third issue is whether ICTCP works for future
high-bandwidth low-latency network. We consider a
big challenge for ICTCP is that bandwidth may reach
100Gbps, but the RTT may not decrease much. In this
case, the BDP is enlarged and the receive window on in-
cast connections also become larger. While in ICTCP,
we constrain that only 1MSS reduction is used for win-
dow adjustment, which requires longer time to converge
if window is larger. To make ICTCP work for 100Gbps
or higher bandwidth network, we consider the following
solutions: 1) the switch buffer should be enlarged corre-
spondingly. Or 2) the MSS should be enlarged so that
window size in number of MSS does not enlarge greatly.
This is reasonable as 9kbytes MSS has been available
for Gigabit Ethernet.

8. RELATED WORK
TCP has been widely used in Internet and works

well for decades. With the advances of new network
technologies and emergences of new scenarios, TCP has
been improved continuously over the years. In this Sec-
tion, we first review TCP incast related work, then we
discuss previous work using TCP receive window.
Nagle el al. [12] describe TCP incast in the scenar-

ios of distributed storage cluster. TCP incast occurs
when a client requests multiple pieces of data blocks
from multiple storage servers in parallel. In [10], sev-
eral application-level approaches have been discussed.
Among those approaches, they mentioned that a smaller
TCP receiver buffer can be used to throttle data trans-
fer, which is also suggested in [12]. Unfortunately, this
type of static setting on TCP receiver buffer size is at
application-level and faces the same challenge on how
to set the receiver buffer to an appropriate value for
general cases.
TCP incast congestion in data center networks has

become a practical issue [15]. Since a data center needs
to support a large number of applications, a solution at
transport layer is preferred. In [13], several approaches
at TCP-level have been discussed, focusing on TCP
timeout which dominates the performance degradation.
They show that several techniques including, alterna-
tive TCP implementations like SACK, reduced dupli-
cate ACK threshold, and disabling TCP slow-start can’t
eliminate TCP incast congestion collapse. Paper [15]
presents a practical and effective solution to reduce the
impact caused by incast congestion. Their method is to
enable a microsecond-granularity TCP timeouts. Faster
retransmission is reasonable since the base TCP RTT
in data center network is only hundreds of microsec-
onds (Figure 3). Compared with existing widely used
milliseconds-granularity TCP timeouts, the interaction
of fine granularity timeout and other TCP schemes are
still under investigation [4]. The major difference of our
work with theirs is that our target is to avoid packet



loss, while they focus on how to mitigate the impact
of packet loss, either less frequent timeouts or faster
retransmission on timeouts. This makes our work com-
plementary to previous work.
Motivated by the interaction between short flows that

require short-latency and long background throughput-
oriented flows, DCTCP [2] focuses on reducing the Eth-
ernet switch buffer occupation. In DCTCP, ECN with
thresholds modified is used for congestion notification,
while both TCP sender and receiver are slightly mod-
ified for a novel fine grained congestion window ad-
justment. Reduced switch buffer occupation can ef-
fectively mitigate potential overflow caused by incast.
Their experimental results show that DCTCP outper-
forms TCP for TCP incast, but eventually converges to
equivalent performance as incast degree increases, e.g.,
over 35 senders. The difference between ICTCP and
DCTCP is that ICTCP only touches TCP receiver, and
ICTCP uses the throughput increase estimation to pre-
dict whether available bandwidth is enough for receive
window increase, and avoids congestion effectively.
To avoid congestion, TCP Vegas[3] has been pro-

posed. In TCP Vegas, sender adjusts congestion win-
dow based on the difference of expected throughput
and actual throughput. However, there are several is-
sues to apply TCP Vegas directly to a receiver window
based congestion control in high-bandwidth low-latency
network: 1) As we have shown in Figure 3, the RTT
is only hundreds of microseconds, and RTT increases
before available bandwidth is reached. The window
adjustment in Vegas is based on a stable base RTT,
which makes Vegas may over-estimate throughput. 2)
In Vegas, the absolute difference of expected and actual
throughput is used. While it changes greatly, as queue-
ing latency (also at hundreds of microseconds scale)
greatly affects the sample of RTT. This makes the abso-
lute difference defined in Vegas hard to use for window
adjustment, and also this is the reason we use the ratio
of throughput difference over expected throughput.
TCP receiver buffer [14], receive window and also de-

layed ACK [11] are used to control the bandwidth shar-
ing between multiple TCP flows at receive side. In the
previous work, they focus on the ratio of achieved band-
width of those multiple independent TCP flows. While
our focus is congestion avoidance to prevent packet loss
in incast, which is not considered in previous work.
Meanwhile, ICTCP adjusts receive window for better
fairness among multiple TCP flows only when available
bandwidth is small.

9. CONCLUSIONS
In this paper, we have presented the design, imple-

mentation, and evaluation of ICTCP, to improve TCP
performance for TCP incast in data center networks.
Different from previous approaches by using a fine tuned

timer for faster retransmission, we focus on receiver
based congestion control algorithm to prevent packet
loss. ICTCP adaptively adjusts TCP receive window
based on the ratio of difference of achieved and expected
per connection throughputs over expected ones, as well
as the last-hop available bandwidth to the receiver.
We have developed a light-weighted, high performance

Window NDIS filter driver to implement ICTCP. Com-
pared with directly implementing ICTCP as part of the
TCP stack, our driver implementation can directly sup-
port virtual machines, which are becoming prevail in
data centers. We have built a testbed with 47 servers
together with a 48-port Ethernet Gigabit switch. Our
experimental results demonstrate that ICTCP is effec-
tive to avoid congestion by achieving almost zero time-
out for TCP incast, and it provides high performance
and fairness among competing flows.
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