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Abstract
We consider the problem of distributing “live” streaming media

content to a potentially large and highly dynamic population of hosts.
Peer-to-peer content distribution is attractive in this setting because
the bandwidth available to serve content scales with demand. A key
challenge, however, is making content distribution robust to peer
transience. Our approach to providing robustness is to introduce
redundancy, both in network paths and in data. We use multiple,
diverse distribution trees to provide redundancy in network paths and
multiple description coding (MDC) to provide redundancy in data.

We present a simple tree management algorithm that provides the
necessary path diversity and describe an adaptation framework for
MDC based on scalable receiver feedback. We evaluate these using
MDC applied to real video data coupled with real usage traces
from a major news site that experienced a large flash crowd for live
streaming content. Our results show very significant benefits in using
multiple distribution trees and MDC, with a 22 dB improvement in
PSNR in some cases.

I. I NTRODUCTION

We consider the problem of distributing “live” streaming
media content from a server to a potentially large and highly
dynamic population of interested clients. We use the term
“live” to refer to the simultaneous distribution of the same
content to all clients; the content itself may either be truly live
or a playback of a recording. Due to the lack of widespread
support for IP multicast (especially at the inter-domain level),
the server may resort to unicasting the stream to individual
clients. However, this approach only scales up to a point. A
surge in the client population, say due to a flash crowd, could
easily overwhelm the server’s bandwidth.

A range of solutions have been proposed in the literature
and employed in practice. The content provider could purchase
additional bandwidth and install a (possibly distributed) cluster
of servers. Alternatively, the services of a content distribution
network (CDN) such as Akamai could be used to achieve
the necessary scaling, thereby relieving the content provider
from the task of scaling their server site. However, these
approaches may not be cost effective, at least for small or
medium sized sites, because the normal traffic levels may not
be high enough to justify the cost of purchasing additional
bandwidth or subscribing to the services of a CDN. In fact, the
volume of traffic at a small site, even during a flash crowd, may
be too low to be of commercial interest to a CDN operator.
(Consider, for instance, a flash crowd that overwhelms a server
that is webcasting a high school football game.) Furthermore,

* Please visit the CoopNet project page at
http://www.research.microsoft.com/projects/CoopNet/ for additional
information, including a pointer to a more detailed paper [28].

there is some evidence that even large sites (e.g., CNN) are
moving away from CDNs to in-house server farms [23].

An alternative to these infrastructure-based solutions is
end-host-based or peer-to-peer content distribution.1 A P2P
approach is attractive in this setting because the bandwidth
available to serve content scales with demand (i.e., the number
of interested clients). This is the basis for the CoopNet system
presented in this paper. CoopNet makes selective use of P2P
networking, placing minimal demands on the peers. The goal
is only to help a server tide over crises such as flash crowds
rather than replace the server with a pure P2P system.

There are a few key issues that need to be addressed
in CoopNet. First, users may be wary of dedicating their
bandwidth to the common good, especially when ISPs charge
based on (upstream) bandwidth usage. We address this issue
in CoopNet by insisting that a node participate in and con-
tribute bandwidth for content distribution only so long as the
user is interested in the content. It stops forwarding traffic
when the user tunes out. This requirement makes CoopNet
fundamentally different from many other P2P systems (e.g.,
[12]) where nodes are expected to route traffic so long as
they are online, even if they are themselves not interested in
the corresponding content. We also insist that a node only
contribute as much upstream bandwidth as it consumes in
the downstream direction2. This creates a natural incentive
structure where a node may tune in to higher bandwidth (and
better quality) content if and only if it is also willing and
able to forward traffic at the higher rate. We do not, however,
consider the enforcement issue (e.g., blocking free-riders) in
this paper.

A second key issue is that the nodes in CoopNet are
inherently unreliable. The outgoing stream from a node may
be disrupted because the user tunes out, the node crashes or
loses connectivity, or simply because the upstream bandwidth
is temporarily used up by a higher-priority user task (e.g.,
sending out an email with large attachments)3. The traditional
approach to end-host-based application-level multicast, which
involves constructing a single distribution tree, is vulnerable
to such failures because the descendants of the failed nodes
might experience severe disruption until the tree is repaired
(or the failed nodes are revived). Parent-driven retransmission

1We use the terms end-host-based multicast and peer-to-peer multicast
synonymously in this paper.

2This restriction only applies to thetotal bandwidth in and out of a node
aggregated over all trees. Thus the individual trees will still be “bushy”, as
explained in Section II-B

3We term these as “failures” although the node may not have actually failed.



(ARQ) is not a good fit because we are concerned with the
failure of the parent node itself, not just network packet drops.
So we address the robustness issue in CoopNet by introducing
redundancy, both in network paths and in data. Multiple, di-
verse distribution trees spanning the set of participating nodes
are constructed, thus providing redundancy in network paths.
The streaming content is encoded using multiple description
coding (MDC) [19] and the descriptions are distributed over
different trees. As our experimental results show, this approach
significantly improves the quality of the received stream in the
face of a high level of node churn.

The use of multiple trees also enables us to achieve our
goal of making the total upstream and downstream bandwidth
consumptions equal at each node, while still maintaining a
significant fan-out at each node. We explain in Section II-B
and Figure 1 on how this is done.

In CoopNet, the server plays a central role in constructing
and managing the distribution trees. The availability of a
resourceful server that is likely to be far more robust than any
individual peer greatly simplifies the system design. Note that
in this “centralized” design, the most constrained resource, viz.
bandwidth for forwarding the data stream, is still contributed
by the distributed set of peers and scales with the population
size. In this respect, our design is akin to that of the erstwhile
Napster system. While the central server does constitute a
single point of failure, it is also the source of the data stream.
So failures of the server will disrupt the data stream regardless
of how tree management is done.

Here are the specific contributions of this paper:
1) A simple, centralized tree management algorithm to

construct and maintain a diverse set of trees.
2) A framework for adapting MDC based on scalable

receiver feedback.
3) Evaluation of tree management and MDC adaptation

using real video data coupled with real usage traces
derived from the access logs of the MSNBC news
site [2] that experienced a large flash crowd for live
streaming content on Sep 11, 2001. Our results show the
significant benefits of using multiple, diverse distribution
trees and MDC. The peak signal-to-noise ratio (PSNR)
of the received stream improves by up to 22 dB in some
cases. Our results also indicate that MDC outperforms
pure Forward Error Correction (FEC) in the face of wide
variation in loss rate across clients.

In a previous workshop paper [29], we sketched the basic
idea of CoopNet (viz., combining multiple distribution trees
with MDC) and presented some preliminary analysis. This
paper is substantially different in many respects, both in terms
of algorithms and in terms of evaluation. The tree management
algorithm significantly improves over our previous algorithm.
The adaptation framework for MDC based on scalable receiver
feedback, the application of MDC to real video data for
performance evaluation, and the comparative evaluation of
FEC and MDC are new in this paper.

There are some important issues that we do not discuss
in this paper. First, we do not discuss the bandwidth hetero-

geneity issue here. Our longer technical report [28] presents
a framework for accomodating bandwidth heterogeneity and
congestion control based on our recent work on layered
MDC [14]. Second, we do not discuss security issues such
as assuring content integrity, maintaining user privacy, and
preventing free-riders.

The rest of this paper is organized as follows. In Section II,
we present the centralized tree management approach used in
CoopNet. We discuss our MDC construction in Section III and
the adaptation framework based on scalable receiver feedback
in Section IV. We then present a performance evaluation of
these in Section V using real video data and the flash crowd
traces from MSNBC. We discuss related work in Section VI,
and we conclude in Section VII with a summary of our
contributions and an outline of our ongoing work.

II. T REE MANAGEMENT

We now discuss the problem of constructing and maintain-
ing the distribution trees. The key challenge is to keep up with
the frequent node arrivals and departures that may be typical
of flash crowd scenarios. As noted in Section I, we assume
that nodes participate and contribute bandwidth resources only
for as long as they are interested in receiving content, so they
may depart or fail with little notice.

A. Goals and Design Rationale

There are many and sometimes conflicting goals for the tree
management algorithm:

1) Short trees: The trees should be as short as possible,
i.e., have a minimal number of intermediate end-hosts
between the root and the leaves. Shortness would mini-
mize the probability of disruption due to the departure,
failure, or congestion at an ancestor node. For it to be
short, each tree should be balanced and as “bushy” as
possible, i.e., the out-degree of each node should be as
much as its bandwidth will allow. However, making the
out-degree large (and thus consuming more bandwidth)
may increase the likelihood of disruption in the CoopNet
stream due to competing traffic from other applications.

2) Tree diversity versus efficiency:The distribution trees
should be diverse, i.e., the set of ancestors of a node
in each tree should be as disjoint as possible. The
effectiveness of the MDC-based distribution scheme de-
pends critically on the diversity of the distribution trees.
However, striving for diversity may interfere with the
goal of having efficient trees, i.e., ones whose structure
closely matches the underlying network topology. For
instance, if we wish to connect three nodes, one each
located in New York (NY), San Francisco (SF), and
Los Angeles (LA), the structure NY→SF→LA would
likely be far more efficient than SF→NY→LA, where→
denotes a parent-child relationship. Note that shortness
could make a tree more efficient but not necessarily so.

3) Quick join and leave: The processing of node joins and
leaves should be quick to ensure that an interested node
starts receiving streaming content as soon as possible



after it joins (or migrates to a new parent, as discussed
below) and with minimal interruption (in case one or
more ancestors depart or fail). In particular, the number
of network round-trips needed for the joins and leaves
to complete should be minimal.

4) Scalability: The tree management algorithm should
scale to a large number of nodes, with a correspondingly
high rate of node arrivals and departures. For instance,
in the extreme case of the flash crowd at MSNBC on
September 11, the average rate of node arrivals and
departures was 180 per second while the peak rate was
about 1000 per second (both aggregated over a cluster of
streaming servers). While a distributed algorithm might
scale better than a centralized one, it is generally at
the cost of longer join and leave processing time (i.e.,
more network round-trips are needed compared to the
one needed with centralized tree management).

Some of these goals (appear to) conflict with each other,
so we prioritize them as follows. Since resilience is our main
objective, we choose to focus on building short and diverse
trees with short join and leave times.

We prioritize shortness and diversity over efficiency because
in the CoopNet setting, the peer nodes and their often con-
strained last-hop links are likely to be the causes of disruption.
So it makes sense to try to minimize the number of ancestors
that a node has and maximize their diversity. And since the
live streaming application we consider is non-interactive, a
modest delay (from the root to a node) of a few seconds
may be acceptable. That said, having efficient trees would
likely benefit the network as a whole by reducing bandwidth
consumption on the backbone links. So we include efficiency
as a secondary goal.

To enable quick joins and leaves, we use a centralized
tree management scheme, where a central node (possibly the
streaming server) coordinates tree construction and mainte-
nance. We refer to this node as the “root” to connote the
probability that it is (or is collocated with) the root of the
distribution trees in practice. The root (e.g., the MSNBC
server cluster) is often more resourceful and available than
the individual clients, so leveraging it greatly simplifies tree
management and consequently makes joins and leaves quick.
A join or leave operation only requires one or two network
round trips — one to the root and possibly one to the new
parent.

The dependence on the root means that the system is not
self-scaling, but only so with respect to control traffic pertain-
ing to tree management; it is still self-scaling with respect to
(the more expensive) data traffic. Thus the load imposed on
the server is still greatly reduced compared to the situation
today in a client-server setting. Our prototype implementation
can keep up with about 400 joins and leaves per second on
a laptop with a 2 GHz Mobile Pentium 4 processor. The tree
management task is CPU-bound (the memory and network
bandwidth requirements are quite low) and should scale with
CPU speed. Should the tree management processing on one
root node become a bottleneck, it would be easy to scale up

using a (possibly distributed) cluster of roots and directing
each client to one of the roots, say at random. A client would
retain its association with the assigned root until it departs
the system. If in addition the aggregate bandwidth of the root
nodes (i.e., the source nodes of the data stream) is scaled up,
it would result in shorter, and hence better, trees.

Another criticism of centralized tree management might be
that the root is a single point of failure. Nonetheless, this may
be a moot point in our setting because the root (or a node
collocated with it) is also the source of the data stream. So
the failure or disconnection of the root is also likely to disrupt
the data stream4.

B. Centralized Tree Management

The root coordinates all tree management functions. When
a node wishes to join, it contacts the root, which responds with
a designated parent node in each tree. The new node then con-
tacts the parents to have the flow of data started. (Alternatively,
the root could directly notify the parent nodes concurrently
with its message to the new node, thereby reducing the join
time by about an RTT.) When a node leaves gracefully, it
informs the root. The root then finds a new parent for the
children of the departed node (in each tree) and notifies the
children of the identities of their new parents.

In addition, there is the problem of ungraceful leaves where
a node departs because of a network disconnection, host crash,
or another reason that gives it no opportunity to notify the
root or its own children. To accommodate such ungraceful
leaves (and general variability in network quality), each node
monitors the packet loss rate of the incoming stream on each
tree. Losses are deduced from gaps in the packet sequence
number, or a stoppage in the packet stream (for instance,
because the parent got disconnected).

If the loss rate on a tree exceeds a threshold, the node checks
with its parent to see if the parent too is experiencing a high
loss rate on that tree. (The network round trip needed for this
check can possibly be saved by having the parent piggyback
its packet loss rate information on the data stream it forwards
to its children.) If the parent is also experiencing a high loss
rate, then the cause of the problem is probably upstream of
the parent. So the node holds off for a while before checking
with its parent again, hoping that the parent (or one of its
ancestors) will resolve the problem in the meantime.

If the parent is not experiencing the problem or it fails to
respond or resolve the problem, the node contacts the root to
request a new parent for itself in the affected tree. In addition
to returning a new parent to the requesting node, the root also
records the “complaint” against the old parent. Such complaint
information could be used to guide future parent selection and
possibly scale back the level of participation of the suspect
parent, but we do not consider this issue further here. Note that
with this protocol,only the root of the affected subtree would

4This statement is not strictly true because Internet connectivity is not
always transitive [4]. A node may lose direct connectivity to the root and
hence be unable to exchange tree management messages with it but yet be
able to receive the data stream routed via its ancestors (i.e., an overlay path).



contact the server, so there isnot an implosion of requests at
the tree management server.

We now consider the question of how exactly the root
chooses the set of parents for a node. We discuss two tree
construction algorithms — randomized and deterministic.

1) Randomized Tree Construction:This algorithm was pre-
sented in our previous workshop paper [29]. The motivation
is simple: since we would like the trees to be diverse, we ran-
domize the process of tree construction within the constraints
imposed by node bandwidth and the desire for short trees. The
algorithm proceeds as follows. For each tree, we start at the
root (i.e., the source of the data stream) and search down the
tree until we get to a level that has one or more nodes with
spare bandwidth to support a new child. (Note that this search
is performed in the local data structures maintained at the root
and does not involve any network communication.) We then
randomly pick one of these nodes with “room” as the parent
of the new node in that tree. To further increase diversity, we
could randomly pick the parent from among nodes withinK
levels of the first level that has room.K would typically be
set to a small value such as 1 or 2 to avoid sacrificing too
much in terms of the shortness of the tree.

While the total upstream bandwidth consumption at a node
aggregated over all trees is equal to the total downstream band-
width consumption, the upstream and downstream bandwidths
on the individual trees may not be equal. A node may have
multiple children on one tree and none in others. So the trees
will be somewhat bushy.

2) Deterministic Tree Construction:While randomization
would result in a degree of tree diversity, the question is
whether we can do better. We leverage the insightful obser-
vation made in the recent work on SplitStream [11] that the
outgoing bandwidth constraint of nodes can be honored by
making each node an interior node in just one tree. (That
said, there are some crucial differences between SplitStream
approach and ours, which are discussed in Section VI-A.)
In our setting, the centralization of tree construction makes
it relatively easy to honor the bandwidth constraints of each
node. But we can use the idea of making each node an interior
node in exactly one tree to make the trees more bushy and
henceshorter. Figure 1 illustrates a simple example where
doing so results in shorter trees than if tree construction where
randomized.

Making the set of interior nodes in each tree disjoint also
contributes to tree diversity and hence robustness. The failure
of a single node would only disrupt one tree. However, in
the MSNBC scenario considered in Section V, multiple nodes
can fail concurrently, so it is not clear to what extent the
disjointness of the interior nodes helps.

The deterministic algorithm proceeds as follows. When a
new node joins, we first decide the tree in which it is going
to be fertile (i.e., be an interior node that can have children);
the node will besterile (i.e., a leaf node) in all the remaining
trees. We keep track of the number of fertile nodes in each tree,
and (deterministically) pick the tree with the least number of
fertile nodes as the one in which the new node will be fertile
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Fig. 1. The (total) out-degree limit for the root (R) is 4 while the limit for
the other nodes is 2. By concentrating the out-degree of each node in one
tree (its “fertile tree”), deterministic tree construction (case (b)) yields more
bushy and hence shorter trees than randomized tree construction (case (a)).

(we term this the “fertile tree” of the node, the rest being its
“sterile trees”). The goal is to roughly balance the number of
fertile nodes in each tree.

To insert the new node into its fertile tree, we start at the
root and proceed down until we reach a level that either has
a node with room (i.e., with spare bandwidth) or a node with
a sterile child. If a node with room is found at that level, we
designate it as the parent. Otherwise, we designate a node with
a sterile child as the parent of the new node and find a new
parent for the sterile child, as discussed below. (The idea is to
have the upper levels of the tree populated by fertile nodes,
which can support children.) In both cases, the parent is chosen
deterministically (say the first node meeting these criteria that
is encountered in the search through our data structures). The
disjointness of the interior (i.e., fertile) nodes across the trees
makes randomization unnecessary.

To insert the new node into one of its sterile trees, we use a
similar procedure as above except that we only consider nodes
with spare bandwidth when searching for a parent. Since the
new node is sterile in this tree, there is nothing to be gained
from substituting an existing sterile node in the upper levels
of the tree with the new node.

With this deterministic algorithm, it is possible (although
quite unlikely in practice) that a tree runs out of capacity to
support new nodes. This can happen, for instance, if a large
number of departing nodes all happen to have been fertile in
the same tree. When a tree runs out of capacity, we pick a
fertile node from the tree with the largest number of fertile
nodes and “migrate” it to the tree that is starved of capacity.
Migration involves changing the designation of the node from
fertile to sterile in one tree (and finding new parents for each
of its children in that tree) and designating it as fertile in the
starved tree.

Clearly, it would be desirable for both the deterministic and
the randomized tree construction algorithms to be network
topology-aware. We discuss this issue next.

3) Tree Efficiency/Topology Awareness:As noted in Section
II-A, making the trees efficient is a (secondary) goal. The
idea is to make the tree structure match the underlying
network topology to the extent possible, thereby minimizing
duplication of traffic on network links as well as the number of
underlying IP hops traversed. Thus, given a choice of parents



(subject to the diversity and shortness goals discussed above),
we would like to pick a parent that is close in terms of
network distance (and perhaps even on the same ISP network
to conserve expensive egress bandwidth), where possible. Note
that such proximity to parent nodes (in all trees) does not
necessarily compromise tree diversity or robustness in the
CoopNet setting. Given the high rate of node churn, departures
or failures of end-nodes and/or their network links are more
likely causes of disruption than failures in the interior of the
network. So a set of distinct but nearby parents is still diverse
under this failure model.

What we need is an efficient way to pick a proximate
parent for a node without requiring extensive P2P network
measurements. We use the simple delay-coordinates based
“GeoPing” technique proposed in [27] for a somewhat differ-
ent application (viz., determining the geographic location of
Internet hosts). Each node maintains its “delay coordinates”
of (average) ping times to a small set of landmark hosts (say
10 hosts). The pings are repeated at a low frequency and the
averages recomputed to keep the coordinates up-to-date. When
a node wishes to join the distribution trees, it reports its delay
coordinates to the root. Once the root has identified a set of
candidate parents in a tree (subject to the bandwidth and tree
level considerations discussed above), it picks the one whose
delay coordinates are closest to that of the new node (in terms
of Euclidean distance).

We have conducted a separate study to evaluate the efficacy
of the delay coordinates-based approach in finding proximate
peers [21]. The results are encouraging — the latency to
the peer selected based on delay coordinates is within 31%
(1.31X) of the optimal 50% of the time and within 74%
(1.74X) of the optimal 90% of the time. The choice based on
delay coordinates is far better than that resulting from random
selection. However, since we do not have delay coordinates
information for the clients in the MSNBC trace, we do not
consider proximity in the evaluation presented in this paper.

III. M ULTIPLE DESCRIPTIONCODING

A. MDC Overview

Multiple description coding (MDC) is a method of encoding
an audio and/or video signal intoM > 1 separate streams, or
descriptions, such that any subset of these descriptions can
be received and decoded. The distortion with respect to the
original signal is commensurate with the number of descrip-
tions received; i.e., the more descriptions received, the lower
the distortion and the higher the quality of the reconstructed
signal. This differs from layered coding5 in that in MDC every
subset of descriptions must be decodable, whereas in layered
coding only a nested sequence of subsets must be decodable.
For this extra flexibility, MDC incurs a modest performance
penalty relative to layered coding (Section III-D), which in
turn incurs a slight performance penalty relative to single
description coding.

5Layered coding is also known as embedded, progressive, or scalable
coding.
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Many multiple description coding schemes have been inves-
tigated over the years. For an overview see [19]. A particularly
efficient and practical system is based on layered audio or
video coding [30], [24], Reed-Solomon coding [36], priority
encoded transmission [3], and optimized bit allocation [17],
[33], [26]. In such a system the audio and/or video signal is
partitioned into groups of frames (GOFs), each group having
a duration ofT = 1 second or so, for example. Each GOF
is then independently encoded, error protected, and packetized
into M packets, as shown in Figure 2. Both layered coding and
Forward Error Correction (FEC) are building blocks for MDC.
Layered coding is used by MDC to prioritize the streaming
data. The bits from a GOF are sorted in a decreasing order
of importance (where importance is quantified as the bit’s
contribution towards reducing signal distortion) to form an
embedded bit stream. For example, bits betweenR0 and R1

are more important than the subsequent bits in the embedded
stream in Figure 2. Forward Error Correction (FEC), such as
Reed-Solomon encoding, is then used to protect data units to
different extents depending on their importance.

M descriptions can accommodate up toM priority levels
for a GOF. If anym ≤ M packets are received, then the initial
Rm bits of the bit stream for the GOF can be recovered, result-
ing in distortionD(Rm), where0 = R0 ≤ R1 ≤ · · · ≤ RM

and consequentlyD(R0) ≥ D(R1) ≥ · · · ≥ D(RM ). Thus all
M packets are equally important; only the number of received
packets determines the reconstruction quality of the GOF.
Further, the expected distortion is

∑M
m=0 p(m)D(Rm), where

p(m) is the probability thatm out of M packets are received.
Givenp(m) and the operational rate-distortion functionD(R),
this expected distortion can be minimized using a simple
procedure that adjusts the rate pointsR1, . . . , RM subject to a
constraint on the packet length [17], [33], [26]6. By assigning
themth packet in each GOF to themth description, the entire
audio and/or video signal is represented byM descriptions,
where each description is a sequence of packets transmitted

6The “optimizer” in our system (Figure 3) performs this function.
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at the rate of 1 packet per GOF. It is simple to generate these
optimizedM descriptions on the fly [35], assuming that the
signal is already coded with a layered codec.

Pure FEC is actually a special case of MDC where all the
streaming data is accorded the same priority. Hence, it is much
less flexible in adapting to wide variation in packet loss rates
across clients, as is likely in the CoopNet setting. We compare
MDC and FEC using real video data and real flash crowd
traces in Section V-G.

In summary, the independence and priority encoding of the
MDC descriptions offers efficient data redundancy needed for
robust peer-to-peer media streaming.

B. CoopNet MDC System Architecture

In this section, we present the CoopNet MDC system
architecture. Figure 3 shows the architecture we have imple-
mented. The input stream is from a layered codec; in our
implementation, we use a variant of the PFGS codec (also
known as the SMART codec) reported in [37]. The sequence
of operations is as follows:

1) Frames in a GOF are partitioned into a set of data
units that carry rate-distortion information. The prior-
itizer prioritizes and sorts these data units according to
their contribution towards reducing signal distortion. The
larger the reduction per byte a data unit offers, the higher
its priority and the greater the protection it is given using
FEC encoding. The prioritizer produces anembedded bit
stream (i.e., the data units sorted by importance), and
rate-distortion information (RD Curve). The latter is fed
into the optimizer.

2) The tree manager computes thep(m) distribution (i.e.,
the probability distribution of the number of descriptions
received by clients) based on the scalable feedback
received from clients (Section IV) and feeds this into
the optimizer.

3) Using the number of descriptions (M ), the packet size
(P ), the p(m) distribution, and the RD curve (received
from the prioritizer), the optimizer produces a priority
encoding profile (FEC profile),R1, . . . , RM , for opti-
mal packetization (Figure 2). Thus,MDC continuously
adapts to the incidence of packet loss in the network,
with more redundancy added when packet loss is fre-
quent and vice versa.

4) The packetizer FEC-encodes the embedded stream that
is produced by the prioritizer according to the FEC

profile from the optimizer, and producesM packets,
each with the GOF number (n) recorded in its header
(Figure 2). The streaming server distributes these packets
over its trees.

5) The M packets traverse multiple CoopNet trees and
may experience different amounts of delay in reaching a
client. The packets received at a client are synchronized
using the GOF number (n) contained in their headers.
Due to network congestion or disruption caused by node
departures, some packets may be lost, and only a subset
of theM packets (descriptions) corresponding to a GOF
may be received by a client.

6) Upon receiving a subset of theM packets in a GOF,
the de-packetizer at a client FEC-decodes the received
packets, and assembles an embedded stream that is a
prefix of the original embedded stream generated at the
server.

7) The de-prioritizer retrieves the individual data units from
the embedded stream and sorts them by their media
decode time. The quality of this reconstructed GOF
depends on the number of descriptions received.

8) Finally, a media player decodes the GOF and renders it
at the client.

C. Configuring MDC

A number of parameters affect the MDC construction: the
stream bit rateR, the GOF durationG, the total number
of descriptionsM , the packet sizeP , and the probability
distribution p(m). We fix P to be 1250 bytes, leaving about
250 bytes (in a 1500-byte network packet) for headers and
auxiliary information as necessary. Given a desired stream
bit rate R and packet sizeP , M and G are related by
M = GR/P . For example, for a stream bit rateR = 160
Kbps, packet sizeP = 1250 bytes and a GOF durationG = 1
second,M = 16 descriptions are generated. However, this
does not necessarily mean that 16 distribution trees are needed.
When the number of treesT is less thanM , M

T descriptions
are distributed over each tree; e.g., withT = 8 trees, 2
descriptions are distributed over each tree.

D. MDC Tuning and Evaluation

We did a preliminary evaluation to tune some MDC param-
eters. Due to space limitations, we only summarize our main
findings here; details are contained in our technical report [28].

• The amount of FEC redundancy needed decreases as the
number of trees grows, because it becomes less probable
that a large fraction of descriptions will be lost. For
instance, when the (independent) failure probability of
each tree is 2%, 8 trees result in 30% redundancy and
16 trees in 20% redundancy. However, tree management
overhead grows with the number of trees, so we settled
on 8 trees for our experiments.

• A GOF size of 1 second offers a good compromise of
both low coding delay and the ability to accomodate
variations in the bit rate across frames in the GOF.



• The computational complexity of our MDC implemen-
tation is low. The processing time for a 1-second GOF
on a 1.7 GHz P4 desktop PC is as follows: 8-11 ms
for prioritization and optimization, and 4-6 ms each for
packetization and de-packetization. (The ranges reflect
variation across different video clips.)

IV. SCALABLE CLIENT FEEDBACK

The streaming server periodically gathers client reception
information to derivep(m), the probability distribution of re-
ceivingm descriptions. This information is fed into the MDC
optimizer (Figure 3), allowing adaptation to dynamic network
conditions and client population. Thep(m) distribution reflects
packet loss both due to client churn and network congestion.

Having reports sent directly from the clients to the server
would not scale to large numbers of clients. Instead, we use a
subset of the distribution trees for propagating and aggregating
client reports from the leaves to the root (i.e., the server). (Note
that the client reports flow in the direction opposite to the flow
of data down the trees.) The use of more than one distribution
tree makes the feedback process resilient to packet loss.

In more detail, during each report interval, a clientC records
a histogram of the number of descriptions received for each
GOF. At the end of the report interval,C adds to this histogram
the histograms reported by each of its children and sends
the accumulated histogram in one report to its parent. This
report thus contains a histogram of the number of descriptions
received by all clients in the subtree rooted atC. This happens
recursively from the leaves to the server (i.e., the root). Finally,
the server normalizes the histogram to generatep(m) and
feeds it to the MDC optimizer (Figure 3).

With this scalable protocol,the server only receives feed-
back from its immediate childrenon the one or more trees
used to carry feedback information. So there isno implosion
of feedback messages at the server.

V. PERFORMANCEEVALUATION

We now present our performance evaluation of CoopNet.
We first describe the data sets and the experimental method-
ology used for the evaluation, and then discuss the individual
experiments.

A. Methodology and Data Sets

We used our implementations of the tree manager (Section
II-B) and the MDC pipeline (Section III-B) to do the per-
formance evaluation. A simulated stream of client joins and
leaves based on the MSNBC flash crowd traces is fed into the
tree manager. In most of our experiments, packet loss results
only from node departures, which impact the descendent nodes
for a duration equal to therepair interval. In Section V-F, we
also consider the impact of network packet drops simulated at
the outgoing links of the nodes. For each GOF interval, the
tree manager computes thep(m) distribution (Section III-A)
corresponding to the number of descriptions received over all
clients. This information is then fed into the MDC pipeline,
where it is combined with rate-distortion information from

real video sequences to continuously reoptimze the MDC
construction (Section III-B). We report the average quality of
the received stream at the clients, quantified using the Peak
Signal-to-Noise Ratio (PSNR) metric, which is computed from
the luminance distortionD: PSNR = 10Log10(2552/D). To
give the reader an intuitive feel for PSNR, Figure 4 compares
image quality at various PSNR values with the original image.

In our trace-driven evaluation, we have ignored network
topology considerations since we have little information be-
sides the IP addresses of clients (in particular, we do not have
the “delay coordinates” of the clients (Section II-B.3)). We
have conducted a separate study to evaluate the efficacy of the
delay coordinates-based approach in finding proximate peers
[21].

1) Flash Crowd Trace:In our study, we use a trace of the
flash crowd that occurred at MSNBC on Sep 11, 2001. The
1700-second long trace records accesses made by clients to a
live 100 Kbps Windows Media stream. The individual clients
are identified using a unique “player ID” reported by the
Windows Media player. (This helps get around the ambiguity
introduced by NATs in IP address-based client identification.)
The trace reports the time and duration for which each client
was tuned in.

Figure 5 shows the number of clients that simultaneously
tuned in to the live stream as a function of time. The peak
number of simultaneous clients exceeded 17,000. (The dip
around the 1000-second mark is apparently due to a restart
of the serving process.) The average rate of node arrivals
and departures was 180 per second while the peak rate was
about 1000 per second. Over 70% of the clients tuned in to
the live stream for less than a minute. We suspect that the
short lifetimes were because users were frustrated by the poor
quality the video stream received during the flash crowd. If the
quality were improved (say using a CoopNet-like approach to
relieve the server), client lifetimes may well been longer. This
reduction in the churn rate would, in turn, have improved the
quality of the stream delivered by CoopNet.

In our simulations, we assume that clients stop participating

Fig. 4. PSNR vs. Perceived Quality: original, 30dB, 25dB, and 23dB.
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Sequence Motion-characteristics Texture-characteristics

Akiyo Static background, talking
head

Easy texture

Foreman High motion in the first
half, almost static in the
latter

Relatively easy texture in
the first half, relatively de-
tailed in the latter

Stefan High motion Detailed texture

TABLE I

CHARACTERISTICS OF THETHREE MPEG TEST SEQUENCES

Parameter Value
Root bandwidth 20 Mbps
Peer bandwidth 160 Kbps
Stream bandwidth 160 Kbps
Packet size 1250 bytes
GOF duration 1 second
# descriptions 16
# trees 1, 2, 4, 8, 16
Reporting interval 1 second
Repair interval 1, 5, 10 seconds

TABLE II

SIMULATION PARAMETERS

in CoopNet, and stop forwarding traffic, the moment they
depart. The departure may have been caused by a machine
crash or network disconnection, or a shift in the user’s focus
to a different stream or a different application that immediately
starts consuming the client’s limited bandwidth.

2) Video Data: We do not have a recording of the actual
video data that was streamed out by MSNBC on Sep 11. In
its place, we use three different 10-second QCIF (176x144)
standard MPEG test sequences, each encoded at 10 frames per
second. Table I lists the characteristics of these video clips.

For our trace-driven evaluation, we continuously replay a
clip to decouple variations in quality inherent in the video
from variations due to CoopNet dynamics.

3) Parameter Settings:The parameters for our simulation
experiments are set as listed in Table II. The stream bandwidth
and the outgoing bandwidth available at each node are each set
to 160 Kbps. The bandwidth of the root is set to 20 Mbps. With
T trees, the stream bandwidth per tree is160

T Kbps. So the
total out-degree of a peer node (i.e., the maximum aggregate
number of children it can have across all trees) isT and that
of the root is125T .

The reporting interval is the frequency at which each node
feeds back packet loss information (p(m)) to its parent, using
the scalable feedback protocol discussed in Section IV. In our
experiments, we set the reporting interval to 1 second, which
is reasonable because the feedback packet is less than 100
bytes in size.

The repair interval is the time it takes for the tree to be
repaired after the departure of a node. By default, we set this
to 1 second, but we also consider larger settings (5 and 10
seconds) in Section V-E.

Unless indicated otherwise, the results presented are for
the Akiyo (news reader) clip with our new deterministic tree
construction algorithm (Section II-B.2). We do present some
results for the other clips and for the old randomized tree

construction algorithm (Section II-B.1).

B. Impact of Number of Distribution Trees

We first consider the benefits of having multiple, diverse
distribution trees in the context of the deterministic tree
construction algorithm. Figure 6 shows the PSNR (calculated
from the distortion averaged across all clients) as a function of
time for the cases of 1, 2, 4, 8, and 16 trees. We see that PSNR
improves as the number of trees increases. The jump is most
significant when we go from 1 tree (i.e., no path diversity) to
multiple trees.

The PSNR curves dip around the 800 second point for both
the 1-tree and 2-tree cases (and less noticeably for the other
cases). This corresponds to the peak in client population (Fig-
ure 5) and a high churn rate. A large client population means
deeper trees, which increases the likelihood of disruption due
to the departure of a node’s ancestor(s). Soon after that, PSNR
spikes up as the client population drops, to the point where
almost all nodes can directly become children of the root and
hence experience little disruption.

PSNR Vs. Time (Deterministic Algorithm)
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Fig. 6. PSNR (averaged across all clients) versus time for the deterministic
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Figure 7 presents an alternative view of the same data.
For each GOF, we compute the distortion averaged across all
clients, and calculate the corresponding PSNR. We then plot
the PDF of these per-GOF PSNR values (recall from Table
II that the GOF size is set to 1 second, so there are 1700
GOFs during the 1700-second period). As the number of trees
increases, the peak of the PDF grows taller and moves to the
right, indicating an improvement in PSNR. We also note that
8 trees perform almost as well as 16 trees.



With 8 or 16 trees, almost all the clients receive most or all
of the descriptions, thereby achieving high quality. Thus the
multiple diverse trees not only improve the average quality
across clients but also ensure that few clients experience poor
quality.

C. Comparison of the 3 Video Clips

Figure 8 shows a comparison of PSNRs of the three MPEG
test sequence video clips across 1700 seconds of the trace.
The wide gaps in PSNR across the clips in the 8-tree case
result from the different levels of movement in the clips. For
a given bit rate, the clips with fast changing scenes that are
hard to compress suffer more in quality. The Stefan sequence
with 8 trees is barely viewable, while the Akiyo sequence
has significantly sharper images. Nevertheless, the important
point here is that for all three clips, CoopNet with 8 trees does
significantly better than the single tree case, where the video
often just freezes.

PSNR Comparison for 3 MPEG Test Sequence Video Clips
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D. Randomized versus Deterministic Tree Construction

Next, we compare the performance of our old randomized
tree construction algorithm (Section II-B.1) and the new
deterministic algorithm (Section II-B.2). Figure 9 shows the
PDF of the per-GOF PSNR values for the two algorithms when
the number of trees is 8. The deterministic algorithm performs
significantly better because it is able to construct shorter and
also more diverse trees.

Comparison of Tree Algorithms
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Fig. 9. A comparison of different tree construction algorithms for the case
of 8 trees. The “perfect” tree construction algorithm refers to the ideal but
impractical case where the trees are constructed afresh from scratch (using
the deterministic algorithm) every second.

To quantify the penalty incurred due toevolutionary tree
construction (i.e., incremental updates as nodes join and leave),

we also consider the case where trees are constructed afresh
from scratch (using the deterministic algorithm) every second.
This is labelled as “perfect” tree construction in Figure 9.
Clearly, perfect tree construction is impractical because of the
overhead and disruption it would result in, but it provides a
useful basis for comparison. From Figure 9, we observe that
evolutionary tree construction does incur a significant penalty.
The reason is that a skewed sequence of joins and leaves
can result in unbalanced trees that are deeper than ideal. In
future work, we plan to consider augmenting evolutionary tree
construction with selective re-balancing to correct significant
skews in the trees, if and when they occur.

E. Impact of Repair Interval

Thus far we have assumed that it takes 1 second for a tree
to be repaired following the departure of a node. This may
be reasonable for graceful leaves, where the departing node
has the opportunity to notify the root of its intention to leave.
In this case, the entire repair process takes only 1-2 network
round-trips (Section II-B).

However, in the case of an ungraceful leave (say due to a
node or network failure), the departing node is unable to notify
the root or its own children. The children of the departing
node need to infer the departure of their parent based on an
upswing in the packet loss rate or a complete stoppage of
the packet stream. With our settings of 16 descriptions, GOF
duration of 1 second, and 8 trees, only 2 packets are sent
down each tree every second. So 1 second is likely too short
a duration in which to make a reliable determination of the
parent’s departure.

Impact of Repair Interval
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Therefore, we experiment with longer repair intervals — 5
seconds and 10 seconds — that provide a greater opportunity
for failure detection. Figure 10 shows that when all leaves are
ungraceful, with a repair interval of 5 or 10 seconds, quality
suffers significantly compared to the case where repairs only
take 1 second. The reason for this degradation is that the longer
the repair interval, the larger the number of concurrent failures
and so the higher the likelihood of disruption to the stream
received by a client.

It might, however, be reasonable to consider the case where
the majority of leaves are graceful (with a repair interval of 1



second) and only a minority are ungraceful, with a longer 5
or 10 second repair interval. Figure 10 shows that when only
10% of the leaves are ungraceful, the quality is almost as good
as when all the leaves are graceful. The diversity provided by
the 8 distribution trees makes it unlikely for a client to suffer
from ungraceful leaves of its ancestors in all trees.

One might wonder why graceful leaves must result in any
disruption at all. The point is that graceful leaves may yet be
immediate. For instance, the leave may be triggered by the
user switching to a new stream/channel (e.g., channel surfing
during a major news event) or launching another, higher-
priority application that immediately starts consuming most or
all of a client’s bandwidth. Thus while the gracefully departing
node might have the opportunity to send a short notification
message to the root, it would not, in general, be able to
continue forwarding traffic from the old stream.

F. The Impact of Network Packet Loss

Thus far we have only considered distruption caused by
client departures and failures. We now evaluate the impact
of network packet loss by introducing packet loss at the
bandwidth-constrained outgoing links of clients. We exper-
imented with three scenarios: (1) a loss rate of 0.01 on
the outgoing links of all clients; (2) a loss rate of 0.1 on
the outgoing links of all clients; (3) a loss rate of 0.1 on
the outgoing links of 10% of the clients chosen at random.
Figure 11 shows the results. While cases (1) and (3) have the
same average loss rate over all outgoing links, case (3) has
a better PSNR because tree diversity is more effective when
losses are concentrated on a few links. As expected, with a
high loss rate of 0.1 on all the outgoing links, PSNR degrades
significantly.
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Fig. 11. Impact of Network Packet Loss

G. MDC versus FEC

Pure FEC is a special case of MDC where all data units
in a GOF are accorded the same priority. FEC is ideal when
all clients experience similar loss rates, but adapts poorly to
wide variations in loss rate across clients. We compare FEC
to MDC with our trace using 8 trees and the deterministic tree
construction algorithm. For each GOF, we measure the amount
of redundancy introduced by our adaptive MDC protocol,
and use roughly the same amount of redundancy for FEC.
For example, if the redundancy of MDC (i.e., the ratio of

source bytes plus parity bytes to source bytes) isr , then
the number of redundancy packets for pure FEC is set to
f = round(M − M

r ). The FEC configuration is optimal when
the loss rate experienced byall clients is f

M . When the actual
loss rate is lower than this threshold, there is unnecessary FEC
redundancy that could have been used for more source bytes
to improve the streaming quality. When the loss rate is higher,
no source bytes can be recovered. MDC exactly addresses
this inflexibility by using priority encoding based on a loss
distribution rather than a single loss rate. From Figure 12, we
can see that MDC yields significantly better PSNR values and
is more robust in the face of high client churn.

MDC Vs. FEC

10

15

20

25

30

35

0 500 1000 1500

Time (Second)

P
S

N
R

 (
d

B
)

MDC
FEC

Fig. 12. MDC Vs. FEC

VI. RELATED WORK

The literature relevant to our work spans multiple areas. We
discuss work on application-level multicast and that on source
coding and path diversity in turn.

A. Application-level Multicast

The deployment of IP multicast [18], especially at the inter-
domain level, has been slow due to technical and opera-
tional concerns [16]. This has spurred the development of
application-level multicast schemes where end-hosts (clients
and/or servers) perform the role of “routers”.

Narada [16] and Scattercast [13] build application-level
meshes formed by connections among a subset of node pairs.
The links in the mesh are monitored periodically to improve
the quality of the mesh. An efficient application-level multicast
tree is formed by running a reverse path forwarding algorithm
on the mesh. The choice of link metrics depends on the
application. For instance, [15] proposes a combination of
bandwidth and latency metrics for a conferencing application.

It is interesting to note that the set of links spanned by
the multiple trees in CoopNet can also be viewed as a
mesh (although not as carefully optimized as in Narada or
Scattercast). However, unlike CoopNet, Narada and Scattercast
use a single optimized tree (per source), so the benefits of
path diversity are not (fully) realized. Also, these protocols are
clearly not designed for large groups (for instance, node arrival
and departure information is disseminated to all members of
the mesh). However, these could be used in the context of
CoopNet for communication among a small, stable set of
distributed servers.



An alternative approach is NICE [7], which uses a hierarchy
to scale better than a mesh-based protocol. However, NICE is
not optimized for a high rate of node churn. Joins require
O(log(N)) network round-trips, whereN is the size of the
tree, and disruptions in the tree due to node failures can take
up to 30 seconds to heal. In contrast, CoopNet exploits the
availability of a stable and resourceful server to optimize these
operations.

In ALMI [31] and Overcast [20], a central node coordinates
tree management, as in CoopNet. ALMI tries to construct a
degree-bounded minimum spanning tree while Overcast seeks
a deep tree that maximizes bandwidth to the root. The trees
so constructed do not conform to CoopNet’s goals of low tree
depth and high tree diversity.

Recent work has leveraged the scalable routing substrate
provided by distributed hash tables (DHTs) to build efficient
multicast trees (e.g., Bayeux [38], Scribe [12]). It is unclear
how well these perform in the face of a high rate of node churn,
especially since the data structures needed for efficient routing
are updated lazily. Furthermore, a fundamental difference
compared to CoopNet is that in these systems nodes can be
called on to forward traffic even if they are not themselves
interested in the data.

All of the above pieces of work differ from CoopNet in that
they seek to build a single distribution tree, so issues such as
tree diversity are not a consideration.

Snoeren et al. [34] propose a mesh-based content routing
scheme using XML. The mesh is constructed to ensuren
(overlay) router disjoint paths from the source to each receiver.
Duplicate data packets are then sent over these paths, and the
receiver discards all but the first copy. Clearly, such duplication
would not be feasible when bandwidth is scarce.

SplitStream [11], like CoopNet, advocates the use of mul-
tiple distribution trees. The key goal is to evenly distribute
forwarding load across the nodes by making a node a leaf in all
but one tree. We leverage this idea of interior-node-disjointness
in our new, deterministic CoopNet tree construction algorithm
(in contrast to our earlier randomized algorithm [29]) but for a
different reason — to make the trees as short as possible. Split-
Stream and CoopNet differ in a fundamental way. SplitStream
is built on top of the distributed Scribe protocol [12], which
assumes that uninterested nodes will be available to forward
traffic. In fact, whether a node is called upon to forward traffic
depends only on its node ID and the multicast group ID. It is
possible that a node may be assigned more children than it can
handle, trying to avoid which may require sacrificing interior-
node-disjointness. In contrast, centralized tree management in
CoopNet makes it easy to guarantee even load distribution and
interior-node-disjointness7.

Banerjee et al. [8] suggest that any traditional single-tree-
based multicast scheme can be made resilient by duplicating
packets along a small number of randomly chosen additional

7In CoopNet, even load distribution (i.e., the in and out bandwidth usage of
nodes being equal) is guaranteed whether the trees are interior-node-disjoint
or not. Interior-node-distjointness is desirable because it results in the shortest
possible trees.

overlay links. It is unclear how this resilience mechanism
can be made adaptive to the incidence of packet loss in the
network. Nevertheless, it would be interesting to compare the
resilience of this scheme with that of the multiple-tree plus
MDC approach in CoopNet.

B. Source Coding and Path Diversity

Several researchers have advocated the use of source coding,
possibly in conjunction with path diversity, to make data
transfer robust to packet loss.

Digital Fountain [10] uses Tornado codes (a form of erasure
coding) coupled with multiple multicast groups to distribute
files scalably to a heterogeneous population of clients. The
source transmits the coded blocks repeatedly and clients tune
in until they have received a sufficient number of blocks
for decoding. Such repeated transmissions, however, are not
feasible in our live streaming context.

Byers et al. [9] use the Digital Fountain erasure coding
technique and parallel downloads to take advantage of lateral
bandwidth between peers (like P2P file sharing systems like
KaZaa [1] do). The use of multiple trees in CoopNet also
results in a form of parallel download, but the goal is to gain
robustness rather than speed and the focus is on live streaming
content rather than files. Also, as discussed in Section V-
G, MDC offers the advantage of more graceful degradation
compared to FEC.

The use of multiple description coding in conjunction with
multipath routing in (telephone) networks dates back to the late
1970s [19]. The application of this approach in the context
of the Internet has received increasing attention in recent
years. Apostopolous et al. [5][6] advocate the use of MDC
and path diversity for on-demand streaming from a content
distribution network. The idea is for the client to request
distinct descriptions from two or more server nodes (akin to
parallel downloads). However, path diversity and MDC are
of limited help if the last hop to the client rather than the
server’s network connection is the bottleneck. In contrast, in a
P2P setting like CoopNet, the constrained upstream bandwidth
at peers and the transience of the peers makes path diversity
and MDC advantageous.

Lee et al. [22] present a framework where feedback from an
AIMD congestion control protocol (in the form of transmission
rate and packet loss profile) is used to optimize an MDC coder.
This is related to the MDC adaptation in CoopNet. However,
CoopNet focuses on a multicast setting rather than unicast,
with a fixed transmission rate (for each layer). In a different
paper [32], the same authors present some preliminary ideas on
applying MDC in a multicast setting. Their proposal is to have
application-level proxies re-encode the stream at bottleneck
links. However, such an optimal placement of proxies may be
infeasible when the last-hop links to the clients are the bot-
tlenecks. Still, an interesting question for future investigation
is how an approach based on re-encoding streams to match
the bandwidth of a client group compares with the layered
approach advocated by McCanne et al. [25].



VII. C ONCLUSION

In this paper, we have considered the problem of support-
ing resilient live streaming using application-layer multicast
over an inherently unreliable set of peers. Our motivation is
alleviating flash crowds at live streaming servers by recruiting
clients to help forward traffic. We make minimal assumptions
about the willingness of clients to contribute bandwidth. In
particular, we assume that a client will only help forward a
stream while it is interested in receiving the stream.

Our solution, CoopNet, provides resilience by introducing
redundancy both in network paths (via multiple, diverse dis-
tribution trees) and in data (using MDC). A centralized tree
management protocol is used to construct short and diverse
trees and support quick joins and leaves. A scalable feedback
mechanism is used to drive an adaptive MDC optimization
algorithm. We have evaluated CoopNet using flash crowd
traces from a busy news site couple with real video data.
Our results indicate that multiple trees provide a significant
improvement in the video quality received by clients (an
improvement of up to 22 dB in PSNR in some cases). We
also found that MDC outperforms FEC in the face of wide
variation in loss rate across clients.

In ongoing work, we are working on a novel parent- and
child-driven congestion control scheme that takes advantage
of a layered MDC construction we have developed [14] and
the tree diversity inherent in CoopNet.
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