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ABSTRACT To enable quality communication of 3D geometry from
Transmitting compactly represented geometry of a dynamiﬁender to receiver, however, we are faced with two practical
scene from a sender can enable a multitude of 3D imagingroblems. The first is that acquired depth maps from typi-
functionalities at a receiver, such as synthesis of virtmal ~ cal depth sensors are corrupted by non-negligible acaprisit
ages from freely chosen viewpoints via depth-image-baselmise. The second is that if the chosen representation of the
rendering (DIBR). While depth maps can now be readily cap3D geometry requires too many encoding bits (not compact),
tured using inexpensive depth sensors, they are often cdien the communication cost will be prohibitively high.
rupted by non-negligible acquisition noise. In this papes, In this paper, we address both aforementioned problems
derive 3D surfaces of a dynamic scene from noise-corruptegimultaneously by deriving a rate-distortion (RD) optir8al
depth maps in a rate-distortion (RD) optimal manner. Specifsurface of the dynamic scene given noise-corrupted depth
ically, unlike previous work that finds the most likely (g.g. Observations, one that is accurated requires few bits for
maximum likelihood) 3D surface from noisy observationsrepresentation in multiview depth maps. Specifically, we
regardless of representation size, we judiciously seasch f search for the “best fitting” 3D surface—one that maximizes
the best fitting (i.e., minimum distortion) 3D surface sub-the posterior probability of the chosen 3D surface given
ject to a bitrate constraint. Our RD-optimal solution reglsic  noise-corrupted observations—subject to a bitrate caimstr
to the maximum likelihood solution as the rate constraint iSOur RD-optimal solution reduces to the maximum likelihood
loosened. Using the MVC codec for compression of multi-(ML) solution (as commonly done in the computer vision lit-
view depth video and MPEG free viewpoint test sequencesrature [3, 4, 5] with no consideration for representatiag)s
as input, experimental results show that RD-optimized 3D reas the rate constraint is loosened. To solve this problem,
constructions computed by our algorithm outperform unprowe propose an optimization scheme that finds a locally op-
cessed depth maps by upZai2dB in PSNR of synthesized timal solution by iterating between two steps: i) align esige
virtual views at the decoder for the same bitrate. in depth maps of consecutive views to masctne structure
across views; and ii) smooth texture within depth edges to
matchscene texture across views. Using the MVC codec [6]
for compression of multi-view depth video and MPEG free
1. INTRODUCTION viewpoint (FTV) test sequences as input, experimentaltesu

. . . . show that RD-optimized 3D surfaces computed by our algo-
With the advent of depth capturing sensors [1] like Microsof rithm outperform unprocessed depth maps by up.4@dB

Kinect, depth images (per-pixel distances between objects ; Peak Signal-to-Noise Ratio (PSNR) of synthesized virtua

. . in
the 3D scene and capturing camera) can now be acquired .
cheaply from multiple F\)/iewp%ints. Ea)ch depth map co?wsti-wews at the_decoder for the s_ame bitrate. . .

The outline of the paper is as follows. We first discuss

tutes a projection of the 3D geometry in the scene to a 2D

. ) : . . related work in Section 2 and overview our system model in
image of fixed resolution. Thus, having acquired depth map ) .

. . . . ection 3. We present our problem formulation and corre-

from multiple viewpoint cameras, one can back-project them . Lo . . .

) . sponding optimization algorithm in Section 4 and 5, respec-

to the 3D space to (partially) recover the original 3D geome-. . . .

- ! tively. Finally, experimental results and conclusion are-p

try. If the multiview depth maps—a representation of the 3D . . ;

. - sented in Section 6 and 7, respectively.

geometry—are compressed and transmitted, then the receive

can perform a range of 3D imaging tasks, such as synthesis 2. RELATED WORK

of virtual images from freely chosen viewpoints using teX-The problem of finding the optimal 3D surface—one

ture and depth maps of neighboring camera views via depthr o+ is the most probable given noise-corrupted depth
image-based rendering (DIBR) [2].

Index Terms— 3D reconstruction, depth image, rate-
distortion optimization

observations—has been studied extensively in the computer
This work was supported by Microsoft Research CORE program. vision literature [3, 4, 5]. The optimally constructed 3Dr-su




face, however, may require a large encoding overhead. OrI®) and lowercase letter (e.gl), and a scalar will be denoted
naive approach to find a good rate-constrained 3D surfad®gy an italic upper or lowercase letter (e.g.or N).
is to separate the problem into two steps: i) first find the Suppose one or more objects move in 3D space and are
most likely 3D surface (establishing ground truth) fromssi  captured at each time instanby a set of/V depth cameras
corrupted observation regardless of representation aizé; from different viewpoints, producing at each instant a gect
then ii) perform conventional RD optimization as done inof observed depth maps = [y!, ...,y}]. Lets denote the
standard video codec like H.264 [7] given ground truth surunderlying (i.e., not directly observed) surface of thesgbpt
face as input. We argue this is a sub-optimal approach; thiastantt. One can think o’ as a 2D manifold in 3D, which
problem of finding an RD-optimal 3D surface from noise- evolves over time. Our objective is to estimate the sequehce
corrupted observations is inherentlypeobabilistic one—  surfacess = {s',..., s’} from the corresponding sequence
identifying the most likely 3D surfaceithin the search space of observed depth maps= {y',...,y’}. Lets denote the
of surfaces with representation size no larger than a bit budestimation, oreconstruction, of s.
get. By first establishing a ground truth signal and convert- Unlike previous work on 3D reconstruction from multi-
ing the problem to aeterministic one during RD optimiza- view depth data[3, 4, 5], we takeate-distortion approachto
tion, the problem becomes finding the least distorted signaletermine the reconstructién That is, we formulate our ob-
compared to the ground truth signal in the rate-constraineggctive as finding the reconstructiérthat minimizes a distor-
search space, which i®t equivalent to the originally posed tion D(y, §) between the observatiogsand the reconstruc-
probabilistic problem. We will demonstrate empiricallyath tion § subject to a constraint on the number of B&&) used
our computed RD-optimized 3D surfaces outperform surfacet® encode a representationfofit can be shown [10] that this
generated from this separation approach in Section 6. is equivalent to finding th& that minimizesD(y, §) + \R(S)
In previous multiview depth map compression work, itfor some Lagrange multipliex > 0.
has been observed that inconsistency among input depth maps Note that we have chosen to define our distortion measure
of different views due to acquisition noise incurs expeasiv betweeny ands rather than betweemands (since we have
coding overhead, but does not lead to better synthesized vieno direct observation &) or betweery andy (since we wish
quality. Thus, denoising methods to improve inter-view-con to reconstruct the underlying surfageather than the noisy
sistency have been proposed [8, 9]. Our work is fundamersbservationsy). We can only hope to find a reconstructi®on
tally different in that we seek aoptimal 3D surface in a  that is somehow close to (i.e., explains) the observatjons
search space of rate-constrained surfaces, where thenchod#fe call this arobservation-surface distortion measure. In the
surface is then projected to a number of camera viewpoints fmext sections, we define the distortion term probabilifitica
compact representation as compressed multiview deptbvideusing the maximum likelihood (ML) formulation and an as-
Hence, not only that by construction our input depth maps teumed noise model. We then specify the rate term using a
a multiview codec are always inter-view consistent, theo§et proxy that approximates the coding rates of a typical multi-
generated consistent depth maps represents not just any 32w codec like MVC [6].
surface, but one that is RD-optimal.
4.1. Distortion Term

3. SYSTEM OVERVIEW We model the physics of the depth sensors and acquisition
We first overview our system model. We assume an arr&y of process using a conditional probability distributiéy|s),
time-synchronized depth sensors capture depth images of ths follows. At each instartt, first the underlying surface’
same dynamic 3D scene periodically framdifferent view-  is projected (with hidden surface removal) onto each of the
points. The captured depth observations are corrupted-by ag’ views producing ideal depth magds, ..., d! . From these
quisition noise, modeled as multivariate Gaussian. Gifen o ideal depth maps, the observed depth mgps ..yt are
served depth data, the encoder first identifies an RD-optim@enerated probabilistically according to a zero-mean Gaus
3D surface of the scene, for a given bit budget. The chosjan noise with conditional probability density:
sen 3D surface is then re-projected back to the camera views,
which are subsequently encoded as multiview depth videog(y}|d}) = % exp (—l(yf -d)"'Q Nyl — dﬁ)) ,
as a representation of the chosen 3D surface, using a known (2m)"271Q 2 A
mulm_new video cod|_ng scheme like MVC. [6]. The challenge whereQ is a covariance matrix for thé/ x N depth map
is to find the RD-optimal 3D surface for given observed dept o .

rom camera at instant, and may depend ant, and even on

data. We discuss the formulation of this problem next the signald!. It is assumed that the sensors are independent
4. PROBLEM FORMULATION from each other and that the measurements are independent
across time. This model can reasonably accommodate depth
We now present our formulation of the RD-optimized 3D re-sensors based on stereo, structured light, or time-oftfligh
construction problem. As a convention, a matrix and a vectoaccurately modeling the covariance matrix [11, 1]. However
will be denoted respectively by boldface uppercase lettgy, ( for the results in this paper, for simplicity we assume that t



noise is uncorrelated and identically distributed fromgbbo ~ 4.2.3. Spatial Smoothness Proxy

pixel, i.e.,Q = o°I for some variance?.

We define as our observation-surface distortion measuren either mode, a block requires more coding bits if it is not
spatially smooth, as its high-frequency components are gen

. vV . T~ 1t . erally unpredictable and hence carry over to the block’s pre
D(y,8) = Z(Yi —d;)" Q" (yi — dy), (2)  diction residual. The last proxi, accounts for this:
=1
E(di(p)) = |L di(p)|? 5
wheredi,...,d} are the ideal (i.e., noiseless) depth maps (di(p)) = IIL d;(p)] ®)

obtained by projecting the surfagento each of thé views. ~ whereL is a Laplacian matrix with respect to the connectivity
Note that the surface* that minimizes (2) also maximizes between pixels in the block.
the likelihoodP(y|s) = [ f(y!|d!); hences* is termed the

maximum likelihood (ML) surface.

We now combine the three defined proxies into a single rate
4.2. Rate Term term. For a given block, MVC selects the prediction mode
The rate ternR(8) is the number of bits needed to signal to (between MC and DC) with the smaller cost. In either mode,
the decoder which surfadsit should reproduce. In practice, spatial high frequencies can contribute to a higher ratesTh
we will use a decoder based on an existing multiview codetve define the rate terrﬁ( ) as follows:
such as MVC, combined with a post-processing step to turn ¢
its decoded depth maps into a consistent surface. This comb| Z Z )+ ap min{Fi(di(p), vi(p)),
nation determines the set of all possible valid bit stringd a E(dt ¢
the set of corresponding reproductions surfaces, andftivere o(di(p), ui(p))}) 6
also determine® (s). However, for the purpose of efficiently ©)
optimizing the encoder, we approximaés) based onasim- Where a;, denotes the relative importance between spatial
ple model of the codec. In this model, a set of depth mapsmoothness and prediction cost, afids the set of coordi-
d,...,d! is encoded in blocks using either motion com-nates for blocks in each/ x N depth map.
pensated or disparity compensated prediction for eactkbloc
As proxies for the bit rate needed to code each block, we use

4.2.4, Combining Proxiesto Rate Term

i=1 peB

4.3. Optimization Problem

the following cost functionals for each coding mode. To find the rate-distortion optimal surfagédor a given), it
. . suffices to find for each instanta set of depth mapd! and
4.2.1. Motion Compensation Proxy associated MVs and DVe!(p) andul(p) that minimize the
If a block is predicted from a previous frame of the same viewRD cost subject to a consistency constraint:
via motion compensation (MC), we write the cd&tas: minimize  D(y*,§!) + AR(s!) @)
di,vi(p)ui(p
E(d(p).v!(p) =](p) ~ d (b + vi(p))| Tt he @
+ar Y Ivie) - vilP @

The consistency constraii. < 7 ensures that the depth
. . . maps are projections of a single 3D surface, and is given as a
wherev(p) is the motion vector (MV) for bloclp of view  constraint on the cost. of the differences between the depth

i and instant, and\;, is a set of spatial neighboring blocks’ maps when they are re-projected into other views:
positions causal tp (e g., left, top, and top-right). In words,

(3) computes two terms: i) motion prediction residual, @pd i " )12
the difference between MVs for current blopkand causal Ee = Z Z 1di = @541 ©)
neighboring blocks—itself a proxy for the cost of encoding
MV vi(p). a; determines the relative importance betweenwhereg; ;(d) is a mapping function that maps pixelsdrof
energy of prediction residual and cost of encoding MVp).  View j to pixels in view: if they are not occluded by other
pixels, andN (i) is the set of neighboring view indices of
view i. For simplicity, in this paper we assume the cameras

If a block is predicted from a frame of a neighboring view of are sequential (left to right) and the neighboring view set i
the same instant via disparity compensation (DC), we writdestricted to be neighboring left and right views- 1 and

qaeNp

i=1 jEN(3)

4.2.2. Disparity Compensation Proxy

the costE,, similar to E; in (3), as: i+ 1, if they exist. The consistency constraint is most easily
) ) . . ) ) incorporated by adding the cost (9) to the objective funrctio
Ey(d;(p), u;(p)) =[di(p) — di- 1(p+u'( NI with a large multipliera.., which leads to the following un-
+ar Y [ul(p) — ul(q)l? (4)  constrained problem:
acNp mlr(nr)mz(e )D(y 8 + AR(8") + acE..  (10)
dt t P

whereu!(p) is the disparity vector (DV) for bloc.



5. OPTIMIZATION ALGORITHM E

We now describe our proposed algorithm to solve our formu- Ry
lated optimization problem (10). Since the rate term in (&0) I Background
expressed in terms of individual blocks, we can rewrite (10) -
so that both the distortion and consistency terms are also ex [

pressed in terms of blocks. Then, assuming the covariance |8 Fég
matrix Q is diagonal, it suffices to find for each block at lo-
cationp the optimal depth mag!(p), associated M\ (p),
and DV u!(p) that minimize objective (10).

Because of the non-convex mapping functign,(-) in
the consistency term (9), finding a globally optimal solntio
to (10) is difficult. Instead, we propose an alternating two-amount. We repeat this process until there are no more depth
step optimization scheme that finds a locally optimal soluvalue reassignment of candidate pixels that can induce-a fur
tion. The two steps are: i) align edges in depth maps ofher decrease in objective value.
consecutive views to mataeene structure across views; and Note that the above edge realignment procedure is per-
i) smooth texture within depth edges to mastene texture  formed on aarget depth map in a single view givenrafer-
across views. An overview of this algorithm is shown below. ence depth map of a neighboring view is fixed and used for
computation of (9). To ensure the role of target and refezenc
can be reversed for each pair of neighboring views, we per-

Fig. 1. Left: block in current view. Right: corresponding
blocks in reference view.

Algorithm 1 Alternating Two-step Algorithm

1: Initialize o, = 1. form both a forward and a backward pass through the views.

2: repeat The complete algorithm is shown below.

3. Step A: Matchscene structure by edge realignment. . -

4:  Step B: Matchscene texture by texture smoothing. Algorithm 2 Step A: edge realignment

5. Increasey.. 1. fori=2toVori=V —1toldo

6: until «. sufficiently large. 2:  Detect edges and identify candidate pixels.

3 repeat
: . 4: repeat
We describe the two steps in order. 5 Test opposite depth assignment on candidates.

5.1. Step A: Match scene structure by edge realignment 6 Pick winner, update edge and candidate pixels.

We observe that typical depth maps are piecewise smooth/" until No objective-decreasing candidates.
Hence large inconsistencies across views usually means & until All blocks are processed.

pixel in a closer depth region (foreground) in one view is_% end for

mapped to a pixel in a further away depth region (background)

in a neighboring view (or vice versa), resulting in a large in 5.2. Step B: Match scene texture by texture smoothing
crease in the consistency term (9). Fig. 1 illustrates examp

blocks with foreground and background regions and distinc{';?ven depth edges (structu_re) (_)f neig_hboring views are now
edges between them. aligned, we now match the interior regions (texture) of heig

To correct for these large consistency errors, we attemgtoing views. For a single block at positigs, assuming
to align the boundaries of regions across views; i.e., wemat =t < v for the rate term (6), we can take the partial deriva-

the scene structure across views. Specifically, we firsttetelVe Of objective (10) to get:

depth edges in a block using a simple thresholding method: o .

we declare an edge between two neighboring pixels if theq?(p) ~ 2(Qe)(di(p) —yi(p))

depth values between them is larger than a threshold boN ot T\ gt
Pixels on either side of a declared edge are labededi- 20 jg\;(i) (di(P) — #s(d;)(P) + 2A(LLT)di(p)

date pixels. At each iteration, we test the reassignment of op-

t t—1 t H
posite depth values at each candidate pixel (from foregtoun +2)ay { Egggpg B g% Ep i zigpgg gwigtlgrr;tmr?]%%e
to background or vice versa), and note the potential deereas L -1\P T LD party (11)

in objective (10). The candidate pixel with the largest de-
crease in objective is chosen for depth value reassignmenthereQ; is the covariance matrix for a given block. Assum-
The depth value reassignment induces a change in the setiofj the mode decision and M/ (p) and DVu! (p) are fixed,
detected edges and candidates pixels, so both are updated awe can set (11) to zero and solve fti(p) in closed form.
respondingly. To make the reassignment operation robust to Because the optimal M\W!(p) and DV u!(p) depend
noise, the depth value of a candidate pixel will be reassigneon d!(p), they are interdependent. To resolve the inter-
only if the resulting consistency,. decreases by a significant dependency, we alternately optimize either depth biti¢k)



-
N

or vectorsv!(p) andul(p) at a time, until convergence. The K

—o—RD-optimized
—=—Unprocessed :

= = —e—RD-optimi ||
algorithm is summarized below. £1 .
Algorithm 3 Step B: surface smoothing ? 8 ?4
= 6 =l
1:fori=1toV —1lori=Vto2do 24 23
2:  repeat o o
3 repeat T e 0 i 2
. ; . . ; .
4. g!vend%(p),flnc? ?ptlm?l‘g(P)t_andlgg(p)' Fig. 2. Distortion-rate curve of the RD-optimized surface
5 '|venvl-(p) andu;(p), find optimald; (p). and the unprocessed surface comparing against ML surface fo
6 until MV and DV converge. Lovebi r d1 (left) andBal | oons (right).
7 until All blocks p are processed.
8: end for

and Bal | oons, for the relative observation-surface dis-
tortion measure (12). The RD curve foinpr ocessed
6. EXPERIMENTATION was generated by varying the MVC quantization parameters
To test the performance of our proposed algorithm, we us€QPS), while the RD curve fdRD- opt i m zed is the lower
texture and depth maps from twi®24 x 768 MPEG FTV  convex hull of all RD pairs generated by varying both the
multiview test sequencesovebi rdl andBal | oons, at QPs and\ € {0,0.01,0.1,1,10,100}. One can see that
camera captured viewss 6, 8 and1, 3, 5, respectively. RD- opt i m zed outperformsUnpr ocessed by a signif-
The test sequences are pre-processed with one of thré&&nt amount, demonstrating that pre-processing of the ac-
methods before being compressed with the MVC codec [6)auired noise-corrupted depth maps essential inimproving
In the first methodUnpr ocessed, the raw acquired depth RD performance.
mapsy are fed into the MVC codec. This is the conven-

tional method. In the second methd®D)- opt i m zed, our
algorithm is used to produce a surfagg that minimizes
D(y,8) + AR(8) for a selected value ok. The surface
S, is projected onto thé” views, and the resulting depth
maps are fed into the MVC codec. In the third method,
M- sol ut i on, our algorithm is used witth = 0 to pro-
duce the ML surfacsy. The surface is projected onto the
V views and the resulting depth maps are fed into the codec.
After encoding and decoding the set of depth maps using
the MVC codec, the decoded depth maps may no longer be
consistent. To ensure inter-view consistency at the decode
we apply an averaging procedure, similar to one in [9], which
projects all views to the center view, averages the projecte

depth values for each pixel, and then re-projects the centgfig. 3: Comparing unprocessed with ML depth maps for

view back to the other views. These re-projected depth mapsovebi r d1 (for clarity in visual presentation, all pixel values are

represent the decoded surface. increased by 80). From top to bottom: unprocessed depth ataps
We evaluate the quality of the decoded surface using twaeiews 4,6,8; ML solution at views 4, 6, 8.

metrics. The first metric is our observation-surface dt&iar

measure (2) relative to the minimum possible value of the dis

tortion for the given observations '
DI(:Y: é) = D(y7 é) - D(y7 éO): (12)

wheres, is the_ML surface, Which minin‘_ﬂze@(y, 8)- The_ Fig. 4: RD-optimized depth map with = 1,100, respectively.
second metric is the PSNR of a virtual view (between neighy et two: Lovebi r d1 at view 8. Right two:Bal | oons at view 5.
boring camera views) synthesized from decoded texture and

depth maps, via depth-image-based-rendering (DIBR) [2]. Figures 3 shows unprocessed and ML depth maps from
For this metric, the ground truth is taken to be the virtuelwi  jigtarent views forLovebi r di Compared to the unpro-

synthesized from the uncompressed texture maps and UNCOMsaqaq depth maps, the ML depth maps show a visually sig-

preﬁ&grgef&fhg@g@%&%ﬂ@%[@g&}bg%%ﬁ@g& sed nificantimprovementin inter-view consistency.

and RD- opt i m zed for the two sequencesovebi rdil Figure 4 shows RD-optimized depth maps in the center




view for A = 0.01,1,100. As X increases, the rate term be- 7. CONCLUSION
comes a heavier penalty, resulting in a larger distortioe. Wgijyen noise-corrupted depth observations from multiple
observe that the depth map far= 100 has smeared edges yjewpoints, in this paper we propose to derive an RD-optimal
between foreground and background; without sharp edges,gp surface of a dynamic scene subject to a representatien siz
3D surface becomes easier to code. constraint. Unlike previous work that finds the most likely
We now compare the performance of the different meth3D surface given noisy observations regardless of represen
ods using the second quality metric—PSNR of synthetation size, our identified 3D surface optimally trades b# t
sized virtual views. We use widely adopted DIBR soft- posterior probability with representation size. We prapas
ware, VSRS version 3.5, to generate the virtual viewsiterative algorithm that alternately optimizes the scetmnecs
Fig. 5 shows the PSNR-rate curve. Using the Bjonteture (depth edges) and the scene texture (depth texture) un-
gaard metric to compute PSNR gain, foovebirdl, til convergence. Experimental results show that using pro-
RD- opt i mi zed has average gains af74dB and2.42dB  jections of our RD-optimized 3D reconstruction to multiple
overM_- sol ut i on andUnpr ocessed, respectively. For depth maps for multiview depth video coding can outperform
Bal | oons, RD- opti ni zed has average gains 6f87dB  unprocessed depth maps by u2té2dB in PSNR of synthe-
and1.28dB overM.- sol uti on andUnpr ocessed, re- sized virtual views at the decoder for the same bitrate.
spectively. As expected, as rate increases, 3D surfaces
computed byRD- opt i m zed approach those computed by
M.- sol uti on, thus achieving the same RD performance. [1] S.B.Gokturk, H. Yalcin, and C. Bamii, “A time-of-flightepth

Cropped images at virtual views of the two sequences are ~ S€nsor system_ description, issues and solutions, C\ViRR
shown in Fig. 6. Improvements indicated by arrows can be  \orkshop, Washington, DC, June 2004.
clearly observed. [2] D. Tian, P.-L. Lai, P. Lopez, and C. Gomila, “View synties
techniques for 3D video,” iv\pp. of Digital Image Processing
XXXII, Proceedings of the SPIE, 2009, vol. 7443 (2009), pp.
74430T-74430T-11.
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