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Abstract

We describe a novel technique for multi-sensory speech pro-
cessing for enhancing noisy speech and for improved noise-
robust speech recognition. Both air- and bone-conductive
microphones are used to capture speech data where the
bone sensor contains virtually noise-free hidden dynamic
information of clean speech in the form of formant trajecto-
ries. The distortion in the bone-sensor signal such as teeth-
clacking and noise leakage can be effectively removed by
making use of the automatically extracted formant informa-
tion from the bone-sensor signal. This paper reports an im-
proved technique for synthesizing speech waveforms based
on the LPC cepstra computed analytically from the formant
trajectories. When this new signal stream is fused with the
other available speech data streams, we achieved improved
performance for noisy speech recognition.

1. INTRODUCTION

Noise robustness is one of the major obstacles to main-
stream adoption of speech processing systems. The pres-
ence of noise not only renders speech unintelligible but also
results in poor performance of automatic speech recognition
engines [8]. In [4, 5], a novel hardware solution was devel-
oped and described to combat against highly nonstationary
acoustic noise such as background interfering speech. The
device makes use of an inexpensive bone-conductive micro-
phone in addition to the regular air-conductive microphone.
The signal captured by the latter is corrupted by environ-
metal conditions, whereas the former is robust (to a large
extent) to environmental noise. The bone sensor mostly
captures the speech sounds uttered by the speaker but trans-
mitted via the bone and tissues in the speaker’s head. High
frequency components (> 4 Khz at 16 Khz sampling) are
absent in the bone sensor signal.

The presence of two information streams requires the de-
velopment of intelligent fusion techniques. The goal of
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this fusion process is to improve the overall intelligibility of
speech, and recognition accuracy of ASR systems in noisy
enviroments. In [4], we proposed an algorithm based on the
SPLICE technique to learn the mapping between the two
streams and the clean speech signal. One drawback of this
approach is that it requires prior training of models of the
signals in the two sensors. In [1], we proposed an algorithm
that does not require proir training in order to estimate the
clean speech signal. In [2], a fusion technique based on
combining three streams, namely the air-conductive chan-
nel, the bone-conductive channel and a synthesized bone
signal was developed. The work was based on the em-
pirical observation that the underlying hidden dynamics of
speech in the form of vocal tract resonances (VTRs) ex-
tracted from the bone-sensor signal and from the full-band
clean speech signal are relatively invariant. Though this ap-
proach resulted in moderate gains in recognition accuracy
with appropriate scaling of a confidence measure, a num-
ber of additional artifacts (not present in the original signal)
were introduced into the synthesized bone signal.

One of the problems associated with the bone sensor signal
in noisy environments is that a small amount of the noise
leaks into the bone sensor. In [1], we proposed an algorithm
to remove this leakage by estimating the transfer function
between the two sensors during regions of non-speech ac-
tivity. Another artifact that occur in the bone sensor are
teethclacks. They are caused when the users’ upper and
lower jaws unconsiously come in contact with each other.
They are characterized by high energy in the medium and
high frequency bands. For detailed discussion of how teeth
clacks effect the estimation of clean speech signal and and
an algorithm for their removal, the reader is referred to [1].
In this paper we propose an alternative technique to remove
both leakage noise and teethclacks. We track the hidden
dynamics of the bone sensor and hence synthesize the clean
bone sensor signal. This nonlinear procedure is capable of
eliminating both leakage noise and teethclacks because the
automatically tracked hidden dynamic variables with a fixed



number are typically associated with high-energy regions of
speech spectra, and the energy levels of the leakage noise
and teethclacks are typically of lower energies. We also dis-
cuss an alternative technique to model the channel distortion
from the close-talking channel to the synthezied bone chan-
nel.

This paper is organized as follows: We outline, in Section
2, the algorithm for automatically tracking the dynamics of
low-frequency VTRs from the bone-sensor signal and syn-
thesis of bone sensor signal using the VTRs. The details
of the fusion algorithm are given in section 3, followed by
experimental setups in section 4 and results in section 5.

2. BONE CHANNEL SYNTHESIS

2.1. Extracting VTR’s from Bone Sensor

In [2], it was shown that the hidden dynamics of speech
extracted from the bone sensor and those from the clean
speech (generally unobserved in practice) are very close to
each other!. This provides the incentive for using the bone-
sensor data to infer such invariant clean speech’s proper-
ties. In order to track the hidden dynamics of speech and
extract VTRs, we make use of the recently developed adap-
tive Kalman filtering algorithm, reported separately in [6].

To enable VTR estimation, a state-space formulation of
the speech dynamic model is first constructed. The state
equation of which is given by

z(t+1) = Px(t) + [I — Plu + w(t), (D

where x(t) is the hidden dynamic vector of the VTR se-
quence:

w:(f7 b)/:(f17f2a"'7fP7b17"'7b3,bP)/7 (2)

consisting of resonance frequencies and bandwidths corre-
sponding to the lowest P poles in the all-pole speech model.
& is the system matrix, and u is the averaged VTR target
vector, providing the constraint on the (phone-independent)
mean VTR values.
The observation equation of the speech dynamic model
is
o(t) = Cle(t)] + p+v(t), ©)

where o(t) is the observation sequence from the bone sen-
sor in the form of LPC cepstra. The nonlinear function
C[x(t)] has the following explicit form:

Cli) = Z %e_”% cos(Qﬂ'i%), i=1,..,1 (4
p=1 )

IThe correlation coefficient between the two sensors for the first four
formants was found to be 0.98.

where f; is the sampling frequency, 7 is the order of the
cepstrum up to the highest order of I = 15, and p is the
pole order of the VTR up to the highest order of P = 4.
To account for the modeling error due to the missing zeros
and additional poles beyond P (i.e., source as well as filter
modeling errors), we introduce the (trainable) residual vec-
tor p in addition to the use of the zero-mean noise v(t) in
Eq. 3.

To construct the adaptive Kalman filtering algorithm for
optimal estimation of the VTR sequence x(¢) from the cep-
stral sequence o(t), we perform adaptive piecewise lin-
earization on the nonlinear observation equation (3). In the
mean time, the residual mean vector p and variances in v ()
are adaptively trained in an iterative manner as detailed in

[6].

2.2. Synthesizing spectra and waveforms from the ex-
tracted hidden dynamics

In order to syntheize the bone channel we first use Eq. 4
to generate a linear cepstral sequence using the extracted
VTR sequence, which is then used to compute the magni-
tude spectrum for the given frame. In order to generate the
waveform we make use of the phase of the noisy bone signal
with the magnitude spectral features generated above. The
complex spectrum of the synthesized bone signal is gener-
ated using

B = B\/M*le(C*(Bm*Bm)) (5)

where, M and C' are the mel and dct filters repectively, B
and B are the complex spectra of the original bone and syn-
thesized bone signals respectively, B,,, and Bm are the mel-
cepstrum of the bone and synthesized bone channels respec-
tively. The synthesized bone channel waveform may then
be obtained from B using the overlap and add technique.

3. INFORMATION FUSION

The synthesized complex spectral sequence derived from
the bone sensor, B(t, k) is combined with the two directly
measured complex spectra, Y (¢, k), the close-talk signal
and B(t, k), the bone sensor, where (t, k), represents the
kth frequency bin at time ¢. The fusion rule to estimate
the complex spectrum X (¢, k) of the clean speech signal is
based on the following filtering model:

Y(tk) = X(tk)+N(007) (6)
B(t,k) = H(k)X(tk)+N(0,03) (7)
B(tvk) = G(k)X(tvk) +N(Oa0—§)v 3
where H (k) represents the bone microphone’s channel dis-

tortion, and G(k) represents the overall channel distortion



from clean signal to the synthesized speech in the bone

channel, and 6%, 03, o3 are the variances of the zero mean
gaussian noise in the close-talk, bone and synthesized bone
channels respectively. Under this model, an optimal (maxi-
mum likelihood) fusion rule can be shown to be

R(k) = 0203Y (t, k) + 0302 H*(k)B(t, k) + 0303G* (k) B(t, k)
T 0303 + ot oR|H(K)|? + o303|G(k)|?

where H is the estimated channel distortion function for
the bone sensor [7]. There are two approaches that may be
used to estimate G, (a). to model it as the distortion between
the close-talking channel and the extracted hidden dynam-
ics and estimate G in a way similar to H or (b). to model
the distortion between the bone channel and extracted hid-
den dynamics as say G, and then set G = HG; Hence-
forth we refer to these two approaches as 2; and 25 re-
spectively. The channel distortion estimation technique as-
sumes a linear relationsip between the two sensors. This
assumption holds in a more stronger sense when modeling
the distortion between the synthesized bone and bone chan-
nels, rather than the close-talking and the synthesized bone
channels.

4. EXPERIMENTAL SETUPS

The test data was collected with two streams using the
air- and bone-conductive microphone. One female speaker
wears the headset and utters 42 sentences from the Wall
Street Journal corpus in a cafeteria (ambient nosie level was
85 dbc) and in an office with a loud interfering speaker in
the background. Henceforth we shall refer to these setups as
test set wy and wo respectively. It should be noted here that
the noisy utterances are not obtained by artificially corrupt-
ing the clean utterances, but are real-world noise corrupted.

In order to estimate the clean speech signal given the
noisy utterance, we make use of the fusion rule discussed
in section 3. The variances of the noise in the close-talking
and the bone channel are estimated from the frames where
speech activity is absent (for details related to the speech
detector refer [4]). During our experiments, we found that
the variance of the synthesized bone channel is zero for all
practical purposes, which is a result of the noise removal
by the synthesis algorithm. This (zero variance) is however,
not desirable as it would cause the weights of both close-
talking and bone channels to be zero. To avoid this condi-
tion we set the variance of the synthesized bone channel to
be equal to the variance of the bone channel.

For all speech recognition experiments in this paper, we
make use of Microsoft’s internal large vocabulary HMM
system, trained with a large amount of relatively clean
speech data with a single stream. It should be noted here
that the speech recognizer was not trained on any bone sen-
sor data.

Setup WER (w1) | WER (w2)
Y 45.00 38.15
Y +B 29.61 24.21
Y +B+B() | 2841 22.59
Y +B+B(Q,) | 2889 22.88

Table 1. Noisy speech recognition performance measured
by percentage word error rate on a Wall Street Journal task:
Y = close-talking channel, B = bone channel, and B= syn-
thesized bone channel.

The bone-sensor data is then used to track VTRs. Dur-
ing our experiments we found that temporal smoothing of
the VTRs improved performance from both perception and
recognition aspects. Thus we smooth the VTRs using a
1 — 2 — 1 kernel across time in the magnitude spectral do-
main and then synthesize speech waveforms (as explained
in section 2). This synthetic data stream, together with the
two original data streams, are fused to estimate the clean
speech waveform. This is then fed to the HMM system for
recognition.

5. RESULTS

Figures 1(a) and (b) shows the spectrogram of the origi-
nal close-talking sensor and bone sensor data repectively
for a particular utterance in the Wall Street Journal cor-
pus. As it can be seen some of the background noise leaks
into the bone sensor. Also some spikes corresponding to
teethclacks may be observed in the spectrogram of the bone
channel. Note that this artifact is not present in the close-
talking channel. Figure 1(c) shows the synthesized bone
sensor data obtained using [2]. Figure 1(d) shows the syn-
thesized bone sensor data obtained using the approach de-
tailed in section 2. It may be observed that the the spectrum
in figure 1(d) gets rid of the leakage noise and also removes
artifacts such as teeth clacks.

The results of our recognition experiments are shown in
table 1. There is a significant improvement in performance
as a result of the fusion of the close-talking and bone sen-
sors (compare rows Y and Y + B). The best performance
is achieved by fusing all three channels (i.e. close-talking,
bone and synthesized bone), resulting in 4% and 6.69%
relative improvement over the two channel case in case of
cafeteria and office background noise types respectively. It
should be noted here that these results were achieved with-
out modifying any scale parameters in the fusion rule of
section 3 (compare with [2]).



6. CONCLUSIONS AND FUTURE WORK

The results show that the hidden dynamics of speech for
both the close-talking and the bone microphones are rel-
atively invariant (in the lower frequency regions). In this
paper, we have shown one of the means in which this sim-
ilarity may be exploited to improve system performance.
Also the new technique for synthesis does not introduce
any artifacts into the signal and is sucessful in getting rid
of leakage noise. A comparison of the results of ©2; and Q5
illustrates that modeling the relationship between the close-
talking and synthesized bone channels as a convolution (£22)
does not result in any improvement in recognition accuracy.

In our future research, we plan to collect a large amount
of simulataneous air- and bone-conductive microphone data
so that, the recongizer can be trained on both the close talk-
ing and bone sensor data. In this way the recognizer can
learn the mapping between the streams.
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Fig. 1. llustrations of five spectrograms (sequentially from
top to bottom): a) the original close-talking sensor data;
b) the original bone sensor signal; c) the synthesized bone
sensor signal using [2]; d) the synthesized bone sensor sig-
nal from the new proposed algorithm and e) estimate of the
clean signal (Y + B + B).
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