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ABSTRACT

Depth map compression is important for compact representat
3D visual data in “texture-plus-depth” format, where tertand
depth maps of multiple closely spaced viewpoints are ertaahe
transmitted. A decoder can then freely synthesize any chioser-
mediate view via depth-image-based rendering (DIBR) us#igh-
boring coded texture and depth maps as anchors. In this wak,
leverage on the observation that “pixels of similar deptetemilar
motion” to efficiently encode depth video. Specifically, weide a
depth block containing two zones of distinct values (e@edround
and background) into two sub-blocks along the dividing dolefere
performing separate motion prediction. While doing sudfitearily
shaped sub-block motion prediction can lead to very smeitlipr
tion residuals (resulting in few bits required to code theitripcurs
an overhead to losslessly encode dividing edges for sutkfdten-
tification. To minimize this overhead, we first devise an efdge
diction scheme based on linear regression to predict theetge
direction in a contiguous contour. From the predicted edigetion,
we assign probabilities to each possible edge directiargusie von
Mises distribution, which are subsequently inputted tordétional
arithmetic codec for entropy coding. Experimental ressittsw an
average overall bitrate reduction of up to 30% over cla$s$ic264
implementation.

very small prediction residuals (resulting in few bits rieqd to code
them), it incurs an overhead to losslessly encode the digidound-
ary for sub-block identification.

To minimize this overhead, in this paper we propose a lossles
arithmetic edge coding (AEC) scheme for arbitrarily shapat-
block motion prediction in depth video coding. We first deven
edge prediction scheme based on linear regression to ptedioext
edge direction in a contiguous contour based on past olssedges.
From the predicted edge direction, we assign probabiltbesach
possible edge direction using the von Mises distributiohe Tom-
puted probabilities are subsequently inputted to a caomii arith-
metic codec for entropy coding. Experimental results shovaa
erage overall bitrate reduction of up to 30% over classic26H
implementation.

The outline of the paper is as follows. We first discuss relate
work in Section 2. We then discuss the arbitrarily shapedidabk
MP scheme for depth video in Section 3. We discuss our prapose
arithmetic edge coding algorithm in Section 4. Experimergsults
and conclusions are presented in Section 5 and 6, resggctive

2. RELATED WORK

MP in H.264 [4] offers different block sizes (rectangulandits from
16 x 16 down to4 x 4) as different coding modes during video
encoding. However, to accurately track the motion of anteabi

Index Terms— Depth-image-based rendering, depth map cod-jy shaped object inside a code block, many small sub-bladtisg

ing, arithmetic coding, edge coding

1. INTRODUCTION

the object boundary are needed, resulting in a large codieg o
head. Further, searching for the most appropriate bloakssiwy
evaluating the rate-distortion (RD) costs of possible sgahodes is

Among many proposed formats for representing 3D visual @ata computationally expensive. Alternatively, line-basedrsentation

“texture-plus-depth” [1], where texture maps (e.g., RGBg®as) and
depth maps (per-pixel physical distances between cagteamera
and the captured objects in the 3D scene) of multiple closeced
viewpoints are encoded and transmitted. At the receiverdéroded

schemes [5, 6] divide a code block using an arbitrary lineresg
that cuts across the code block. There are two problemssaphi
proach: i) an object’'s boundary often is not a straight Inesulting
in shape-mismatch; and ii) it is still computationally erpize to

texture and depth maps, can then be used to freely synthasjze search for a RD-optimal dividing line segment. In our prappbe-

chosen intermediate view via a depth-image-based rerglézh-
nique like 3D warping [2]. Transmitting multiple large texé¢ and
depth maps from sender to receiver, however, incurs a hitytonie
transmission cost, which is not desirable. Thus, comprassi 3D
data in texture-plus-depth format is important. Compassif tex-
ture video is well studied during the past decades. We fatstead

cause the detected depth contour follows the object’s emyndve
can easily segment a code block along object boundary wiei-pi
level accuracy. Moreover, the depth edge can be acquiregpbhe
via simple edge detection techniques.

The observation that pixels of similar depth have similar mo
tion has been made previously [3], where unlikely coding esoare

on compression of depth video in this paper. Towards the gbal eliminateda priori for faster H.264 encoding. We focus instead on

efficient depth video coding, one can first observe that iregen
captured video, pixels of similar depth tend to belong toghme
physical object and hence have similar motion [3]. In deptlee
coding, by definition per-pixel depth information is avaie Thus,
for a given code block, one can divide a code block contaihivy
zones of distinct values (e.g., foreground and backgrourtd)two
sub-blocks along the dividing boundary, before perfornmimation
prediction (MP) separately for each of the sub-blocks. Wihib-
ing such arbitrarily shaped sub-block motion prediction tzad to

MP of arbitrarily shaped sub-blocks in depth maps for effitdepth
video coding.

In our previous work [7], in order to efficiently perform MP in
texture maps, we proposed to use available depth edges (detected
in corresponding encoded depth maps of the same viewpant) f
sub-block partition and MP. While the notion of arbitrarghaped
sub-block MP is the same, our current work is more challemgin
since the overhead in depth edge coding has to be accoumteédlrfo
ing depth video coding. Further, our proposed edge codihgrae,
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Fig. 1. Motion compensation of sub-blocks in depth map divided
using detected edges.

which shows significant compression performance gain coedpa
to existing schemes, can be used directly in recent poputar i
age / video coding schemes based on edge-adaptive wav@lets [
graph-based transform [9] and graph-based wavelets [1b&rev
edge coding is paramount in determining the overall congiwas
performance.

3. SUB-BLOCK MOTION PREDICTION

We now overviewz-mode, the arbitrarily shaped sub-block MP
scheme we introduced in [7], as an additional MP mode in a44.26
like codec. The main idea behirzinode is to partition al6 x 16
coding block (macroblock or MB) into two arbitrarily shapeg
gions for separate motion estimation and compensatiofuatrédted
in Fig. 1. This new coding mode involves the following steps:

1. Partition the current MB into two sub-blocks using a clmse

edge detection scheme.

. Compute a predicted motion vector (PMV) for each sub-
block using MVs of neighboring blocks in current frame.

. For each sub-block, perform motion estimation; i.e., fimsl
best-matched sub-block in reference frame to the current ta
get sub-block.

. Compute prediction residuals for the current MB given the
two motion-compensated sub-blocks for residual encoding.

We briefly describe step 1 and 2 next. Step 3 and 4 are similar

to standard MP performed in H.264.

3.1. Macroblock Partitioning

Fig. 2. Example ofz-mode MBs forBal | et sequence: segmenta-
tion of depth MBs (left) around the boundary of dancer (fight

A given target depth code block is first partitioned usingma-si
ple edge detection technique: we first compute the aritttnmegian
depth value of the block, and divide the block into sub-btoulith
depth values above and below the mean. This statisticabapbr
requires no thresholding (like the well used Canny edgectiate is

robust, and has very low complexity. See Fig. 2 for an exaraple
boundaries detected by our methodzimode blocks (left), which
matches well the actual object boundary (right).

3.2. Motion Vector Prediction

Leveraging again on the observation that pixels with sindiegpth
have similar motion, we next compute the predicted motiarioreof
a sub-block using motion vectors of neighboring (sub-)kéowith
similar depth values that have already been encoded. Syadyifi
PMV is the weighted sum of surrounding causal coded blocRésM
where the weights are computed using a Laplacian distabiriith
argument being the difference in mean depth values betvieetar-
get and predictor blocks.

We note that the encoded bitstream can only be correctly de-
coded if both encoder and decoder have the same block partiti
information. In the case of texture coding, we proposed tothe
encoded depth information to divide a given MB, assuming tie
depth data is first encoded and transmitted, so that the -dheystid
partitioning information is available to both encoder aedatler [7].
When encoding depth video, however, the block partitionrimia-
tion has to be explicitly encoded. In the following we propan
arithmetic edge encoding scheme for this purpose.

4. ARITHMETIC EDGE CODING

In this section, we address the problem of losslessly engottie
boundary that separateszanode MB? into two sub-blocks. The
overall coding scheme can be summarized in the followingsste

1. Given a depth MB with discontinuities (i.e. high blocksei
depth variance), represent the two partitions by their comm
boundary (a series of between-pixel edges).

2. Map the boundary into a directional 4-connected chairecod

also known as Freeman chain [11].

3. Given a window of consecutive previous edges, predict the
next edge by assigning probabilities to possible edge direc

tions.

4. Encode each edge in the boundary by inputting the assigned

direction probabilities to a conditional arithmetic cader
We discuss these steps in order next.

4.1. Differential Chain Code

A MB boundary divides pixels in the MB into two sub-blocks.
Note that the boundary exisits-between pixels, noton pixels. See
Fig. 3(a) for an illustration of a boundary in4ax 4 block. As
shown, the set of edges composing the boundary4s@nnected
chain code; i.e., next edgee:+:1 Starts at the location where cur-
rent edgee; terminates, and:; can only take on three possible
directions: forward (continue the same direction as previaus3,
left, andright (as compared to previous'’s direction). This bound-
ary representation is also known differential chain code (DCC),
which belongs to the family of chain coding schemes piorttbese
Freeman [11].

4.2. Edge Prediction

Given the definition of DCC, edges’s can be entropy-encoded con-
secutively, where each edge has an alphabet of three synepots
senting the three possible edge directions. There are natigne
for entropy coding. One notable examplepigdiction by partial

1By zmode MB, we mean a MB that has been encoded in the aforemen-
tionedz-mode.
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Fig. 3. Detected edges in4x 4 depth pixel block and linear pre-
diction using previous three edges.

matching (PPM) [12], which predicts the next symbol given obser-

vations of the previous ones in the symbol stream. PPM madel i,

typically designed based on statistics of previous symbols
In our case, unlike a generic text message, a boundary aften f

lows the contour of a physical object in the 3D scene, and denc

possesses geometrical structures that can be exploitedreoancu-
rately predict the most likely direction for the next edgeasBd on
this observation, we propose a geometrical prediction rirtodesti-
mate probabilities of the three possible directions forrteet edge,
given observation of a window of previous edges. The estthdi-
rection probabilities are subsequently inputted into aapéde arith-
metic coder for entropy coding.

4.2.1. Linear prediction

We predict the direction of the next edgg-1 by first constructing a
line-of-best-fit using a window of previous edges lilaear regres-
sion. Specifically, given end poing%_, . . . , p+ of a window of K
previous edges;_ k11, . . ., e, We construct a linéthat minimizes
the sum of squared errofs"_, , ¢Z, wheree; is the minimum
distance between lineand end poinp;. See Fig. 3(b) for an illus-
tration where a line-of-best-fit is drawn to minimize squhssror
sumy_"?_ ¢Z given window of edgege, e2, es }.

The constructed liné provides apredicted direction 4. Given
the three possible edge directiofi,, o, . } of edgee:+1, we can
compute angles betweerand each possible directiofiv,, as, cc }.
We next derive a procedure to assign direction probalslitieeach
of {¥a, Uy, U} Using computed a, ap, acc }.

4.2.2. Adaptive statistical model

To derive a procedure to assign probabilities to edge dest
{¥a, Ub, U}, we first consider the following. Intuitively, a closer
edge direction to the predicted one (smaller anglg should be
assigned a higher probability than a further edge directiarger
angle). To accomplish that, we use the von Mises probalulliiri-
bution, defined below, to assign probability to angte
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Fig. 4. Example of arithmetic edge coding, where the first two sym-
bols to be encoded ateanda.

1

The parametex can be interpreted as a confidence measuig:
larger when the predicted direction is considered moreviiarshy.
To quantify the confidence of a predicted direction, we fiedirte
the minimum angle:

)

= 0 corresponds to the case when the predicted direction falls
exactly on the grid, whilex = = /4 corresponds to the case when
the predicted direction falls in-between two edge direwio

To assign appropriate value ef we made the following design
choice: defines as function ofa,

& = min (g, ap, )

@)

where the parameteris the maximum amplitude at angle The
intuition behind our design choice is that the predicte@dction is
likely more accurate when it is more aligned with the axeshef t
grid. When the predicted direction falls in-between two edfr
rections, which of the two edge directions is more likely drees
ambiguous.

Kk = p-cos(2&)

4.3. Adaptive Arithmetic Coding

Having estimated direction probabilities for each edge,emeode
each edge using adaptive arithmetic coding. One importaitife
of arithmetic coding is that the actual encoding and modebinthe
source can be completed separately. Thus, we can desigmour o
statistical model that fits our particular application asd arithmetic
coding in a straight-forward manner.

In particular, for our application of lossless edge coding
compute the direction probabilities, (¢ + 1),ps(t + 1), pe(t +
1) of next edgee:+1 given observation of previoudsX edges
et,...,et—k+1, as discussed previously, and encode the true di-
rection ofe;y1 by sub-partitioning into the corresponding interval,
as shown in Fig. 4. Note that the derivation of direction jataib-
ties for edgee;+1 can be mimicked at decoder, and hence no extra
information needs to be sent for correct decoding.

5. EXPERIMENTATION

The performance of the proposed framework was evaluated tise
multiview depth video sequencd®al | et and Br eakdancers
(1024x 768 @15 Hz) provided by Microsoft at the camera position
4. The depth video provided for each camera was estimated via
color-based segmentation algorithm.

wherel, (.) is the modified Bessel function of order 0. The parame-5-1. Edge Coding Performance
tersu andl/x are respectively the mean and variance in the circulaiThere have been various proposals on shape coding in MPEG-

normal distribution; we set = 0 in our case. The von Mises distri-
bution is the natural Gaussian distribution for angular sneaments.
We argue this is an appropriate choice because: i) it magisrize
probability when the edge direction is the same as predditedtion
(i = 0), and ii) it decreases symmetrically in left / right dir@cts
as the edge direction deviates from the predicted direction

4 standard [13]. A notable lossless coding approach thasrel
on the boundary representation is the chain-code-baseqit sha
coders [14]. Experiments conducted in MPEG-4 working group
confirmed that DCC has higher efficiency lossless coding shaor-
mal chain coding, with an average of 1.2 bits/boundary pdlh#a
bits/boundary pel for a 4- and 8-connected chain, respagtjt3].



Table 1. Average edge rate in bits/boundary pel (bpp)
MPEG-4 DCC iid AEC non-iid AEC

1.2 bpp 1.49bpp 0.29 bpp
1.2 bpp 1.57bpp 0.34bpp

Ballet
Breakdancers

Ballet

6. CONCLUSION

In this paper we proposed a lossless arithmetic edge codhase
for arbitrarily shaped sub-block motion prediction in depideo
coding.
overlapping, arbitrarily shaped sub-blocks for separab¢ion pre-
diction. The overhead from the boundary representationés@ed

We first partition a given depth block into two non-

through a new arithmetic edge coding scheme. We designeat a st

tistical model that captures the geometric correlatiorhim ¢dges.
The computed edge direction probabilities are inputtechtadep-
tive arithmetic coder. Experimental results show an oVdigdate
reduction of up to 30% over classical H.264 implementation.

PSNR (dB)
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Fig. 5. Objective PSNR results of depth coding.
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1000 1200 [3]
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In what follows, we compare our proposed AEC with the clas-
sical DCC utilized in MPEG-4 that can be considered as theeatir
state-of-the-art for lossless boundary coding. In addjtivse com-
pare our AEC implementation with the iid and non-iid assuompt
of the source. With the iid case, one pmf is computed for @l th 6]
edges and transmitted as overhead to the decoder. Non-icAE
responds to the scheme proposed in this paper. Entire qonteu
frame was encoded, which was not a significant loss of codfirg e
ciency since ouz-mode was very often selected as the optimal mode [7]
for MB encoding at the boundary of objects.

As shown in Table 1 our scheme clearly outperformed the cur-
rent state-of-the-art MPEG-4 DCC by a factor of 4. In additio
the comparison with the assumption of an iid model confirnted t
benefit of our proposed statistical model used in adaptitleraetic
coding. In this work, the spatio-temporal correlation cf #tarting
point of each chain code has not been taken into consideratial
hence more gains can expected in the future.

(5]

(8]

[9]

(10]
5.2. Depth Video Coding Performance

The comparison of objective compression performanceustithted
in the rate-distortion (RD) curves plotted in Fig. 5, whelie peak
signal-to-noise ratio (PSNR) of the coded depth video wattqd
against bitrate (kbits/s) over 100 frames. The RD resultsespond
to four Q P quantization parameters: 27, 32, 37 and 42.

We implemented the proposedmode in JM 18.0. In motion
estimation, only luminance component was considered. Téd-m
mum amplitude parameterin our statistical model, as defined in
(3), was set to 8. We see that the addition of etmode in H.264
resulted in significant compression gain. Specifically,\@@rage bi-
trate reduction of up to 30% and 20% for the depth video serpien
Bal | et andBr eakdancer s, respectively, was observed.

(11]

[12]

(13]

(14]
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