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ABSTRACT

Depth map compression is important for compact representation of
3D visual data in “texture-plus-depth” format, where texture and
depth maps of multiple closely spaced viewpoints are encoded and
transmitted. A decoder can then freely synthesize any chosen inter-
mediate view via depth-image-based rendering (DIBR) usingneigh-
boring coded texture and depth maps as anchors. In this work,we
leverage on the observation that “pixels of similar depth have similar
motion” to efficiently encode depth video. Specifically, we divide a
depth block containing two zones of distinct values (e.g., foreground
and background) into two sub-blocks along the dividing edgebefore
performing separate motion prediction. While doing such arbitrarily
shaped sub-block motion prediction can lead to very small predic-
tion residuals (resulting in few bits required to code them), it incurs
an overhead to losslessly encode dividing edges for sub-block iden-
tification. To minimize this overhead, we first devise an edgepre-
diction scheme based on linear regression to predict the next edge
direction in a contiguous contour. From the predicted edge direction,
we assign probabilities to each possible edge direction using the von
Mises distribution, which are subsequently inputted to a conditional
arithmetic codec for entropy coding. Experimental resultsshow an
average overall bitrate reduction of up to 30% over classical H.264
implementation.

Index Terms— Depth-image-based rendering, depth map cod-
ing, arithmetic coding, edge coding

1. INTRODUCTION

Among many proposed formats for representing 3D visual datais
“texture-plus-depth” [1], where texture maps (e.g., RGB images) and
depth maps (per-pixel physical distances between capturing camera
and the captured objects in the 3D scene) of multiple closelyspaced
viewpoints are encoded and transmitted. At the receiver, the decoded
texture and depth maps, can then be used to freely synthesizeany
chosen intermediate view via a depth-image-based rendering tech-
nique like 3D warping [2]. Transmitting multiple large texture and
depth maps from sender to receiver, however, incurs a high network
transmission cost, which is not desirable. Thus, compression of 3D
data in texture-plus-depth format is important. Compression of tex-
ture video is well studied during the past decades. We focus instead
on compression of depth video in this paper. Towards the goalof
efficient depth video coding, one can first observe that in general
captured video, pixels of similar depth tend to belong to thesame
physical object and hence have similar motion [3]. In depth video
coding, by definition per-pixel depth information is available. Thus,
for a given code block, one can divide a code block containingtwo
zones of distinct values (e.g., foreground and background)into two
sub-blocks along the dividing boundary, before performingmotion
prediction (MP) separately for each of the sub-blocks. While do-
ing such arbitrarily shaped sub-block motion prediction can lead to

very small prediction residuals (resulting in few bits required to code
them), it incurs an overhead to losslessly encode the dividing bound-
ary for sub-block identification.

To minimize this overhead, in this paper we propose a lossless
arithmetic edge coding (AEC) scheme for arbitrarily shapedsub-
block motion prediction in depth video coding. We first devise an
edge prediction scheme based on linear regression to predict the next
edge direction in a contiguous contour based on past observed edges.
From the predicted edge direction, we assign probabilitiesto each
possible edge direction using the von Mises distribution. The com-
puted probabilities are subsequently inputted to a conditional arith-
metic codec for entropy coding. Experimental results show an av-
erage overall bitrate reduction of up to 30% over classical H.264
implementation.

The outline of the paper is as follows. We first discuss related
work in Section 2. We then discuss the arbitrarily shaped sub-block
MP scheme for depth video in Section 3. We discuss our proposed
arithmetic edge coding algorithm in Section 4. Experimental results
and conclusions are presented in Section 5 and 6, respectively.

2. RELATED WORK

MP in H.264 [4] offers different block sizes (rectangular blocks from
16 × 16 down to 4 × 4) as different coding modes during video
encoding. However, to accurately track the motion of an arbitrar-
ily shaped object inside a code block, many small sub-blocksalong
the object boundary are needed, resulting in a large coding over-
head. Further, searching for the most appropriate block sizes by
evaluating the rate-distortion (RD) costs of possible coding modes is
computationally expensive. Alternatively, line-based segmentation
schemes [5, 6] divide a code block using an arbitrary line segment
that cuts across the code block. There are two problems to this ap-
proach: i) an object’s boundary often is not a straight line,resulting
in shape-mismatch; and ii) it is still computationally expensive to
search for a RD-optimal dividing line segment. In our proposal, be-
cause the detected depth contour follows the object’s boundary, we
can easily segment a code block along object boundary with pixel-
level accuracy. Moreover, the depth edge can be acquired cheaply
via simple edge detection techniques.

The observation that pixels of similar depth have similar mo-
tion has been made previously [3], where unlikely coding modes are
eliminateda priori for faster H.264 encoding. We focus instead on
MP of arbitrarily shaped sub-blocks in depth maps for efficient depth
video coding.

In our previous work [7], in order to efficiently perform MP in
texture maps, we proposed to use available depth edges (detected
in corresponding encoded depth maps of the same viewpoint) for
sub-block partition and MP. While the notion of arbitrarilyshaped
sub-block MP is the same, our current work is more challenging,
since the overhead in depth edge coding has to be accounted for dur-
ing depth video coding. Further, our proposed edge coding scheme,
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Fig. 1. Motion compensation of sub-blocks in depth map divided
using detected edges.

which shows significant compression performance gain compared
to existing schemes, can be used directly in recent popular im-
age / video coding schemes based on edge-adaptive wavelets [8],
graph-based transform [9] and graph-based wavelets [10], where
edge coding is paramount in determining the overall compression
performance.

3. SUB-BLOCK MOTION PREDICTION

We now overviewz-mode, the arbitrarily shaped sub-block MP
scheme we introduced in [7], as an additional MP mode in a H.264-
like codec. The main idea behindz-mode is to partition a16 × 16
coding block (macroblock or MB) into two arbitrarily shapedre-
gions for separate motion estimation and compensation as illustrated
in Fig. 1. This new coding mode involves the following steps:

1. Partition the current MB into two sub-blocks using a chosen
edge detection scheme.

2. Compute a predicted motion vector (PMV) for each sub-
block using MVs of neighboring blocks in current frame.

3. For each sub-block, perform motion estimation; i.e., findthe
best-matched sub-block in reference frame to the current tar-
get sub-block.

4. Compute prediction residuals for the current MB given the
two motion-compensated sub-blocks for residual encoding.

We briefly describe step 1 and 2 next. Step 3 and 4 are similar
to standard MP performed in H.264.

3.1. Macroblock Partitioning

Fig. 2. Example ofz-mode MBs forBallet sequence: segmenta-
tion of depth MBs (left) around the boundary of dancer (right).

A given target depth code block is first partitioned using a sim-
ple edge detection technique: we first compute the arithmetic mean
depth value of the block, and divide the block into sub-blocks with
depth values above and below the mean. This statistical approach
requires no thresholding (like the well used Canny edge detector), is

robust, and has very low complexity. See Fig. 2 for an exampleof
boundaries detected by our method inz-mode blocks (left), which
matches well the actual object boundary (right).

3.2. Motion Vector Prediction

Leveraging again on the observation that pixels with similar depth
have similar motion, we next compute the predicted motion vector of
a sub-block using motion vectors of neighboring (sub-)blocks with
similar depth values that have already been encoded. Specifically,
PMV is the weighted sum of surrounding causal coded blocks’ MVs,
where the weights are computed using a Laplacian distribution, with
argument being the difference in mean depth values between the tar-
get and predictor blocks.

We note that the encoded bitstream can only be correctly de-
coded if both encoder and decoder have the same block partition
information. In the case of texture coding, we proposed to use the
encoded depth information to divide a given MB, assuming that the
depth data is first encoded and transmitted, so that the depth-based
partitioning information is available to both encoder and decoder [7].
When encoding depth video, however, the block partition informa-
tion has to be explicitly encoded. In the following we propose an
arithmetic edge encoding scheme for this purpose.

4. ARITHMETIC EDGE CODING

In this section, we address the problem of losslessly encoding the
boundary that separates az-mode MB1 into two sub-blocks. The
overall coding scheme can be summarized in the following steps:

1. Given a depth MB with discontinuities (i.e. high block-wise
depth variance), represent the two partitions by their common
boundary (a series of between-pixel edges).

2. Map the boundary into a directional 4-connected chain code,
also known as Freeman chain [11].

3. Given a window of consecutive previous edges, predict the
next edge by assigning probabilities to possible edge direc-
tions.

4. Encode each edge in the boundary by inputting the assigned
direction probabilities to a conditional arithmetic coder.

We discuss these steps in order next.

4.1. Differential Chain Code

A MB boundary divides pixels in the MB into two sub-blocks.
Note that the boundary existsin-between pixels, noton pixels. See
Fig. 3(a) for an illustration of a boundary in a4 × 4 block. As
shown, the set of edges composing the boundary is a4-connected
chain code; i.e., next edgeet+1 starts at the location where cur-
rent edgeet terminates, andet+1 can only take on three possible
directions: forward (continue the same direction as previouset),
left, andright (as compared to previouset’s direction). This bound-
ary representation is also known asdifferential chain code (DCC),
which belongs to the family of chain coding schemes pioneered by
Freeman [11].

4.2. Edge Prediction

Given the definition of DCC, edgeset’s can be entropy-encoded con-
secutively, where each edge has an alphabet of three symbolsrepre-
senting the three possible edge directions. There are many options
for entropy coding. One notable example isprediction by partial

1By z-mode MB, we mean a MB that has been encoded in the aforemen-
tionedz-mode.
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Fig. 3. Detected edges in a4 × 4 depth pixel block and linear pre-
diction using previous three edges.

matching (PPM) [12], which predicts the next symbol given obser-
vations of the previous ones in the symbol stream. PPM model is
typically designed based on statistics of previous symbols.

In our case, unlike a generic text message, a boundary often fol-
lows the contour of a physical object in the 3D scene, and hence
possesses geometrical structures that can be exploited to more accu-
rately predict the most likely direction for the next edge. Based on
this observation, we propose a geometrical prediction model to esti-
mate probabilities of the three possible directions for thenext edge,
given observation of a window of previous edges. The estimated di-
rection probabilities are subsequently inputted into an adaptive arith-
metic coder for entropy coding.

4.2.1. Linear prediction

We predict the direction of the next edgeet+1 by first constructing a
line-of-best-fit using a window of previous edges vialinear regres-
sion. Specifically, given end pointspt−K , . . . , pt of a window ofK
previous edgeset−K+1, . . . , et, we construct a linel that minimizes
the sum of squared errors

∑k

i=t−K
ǫ2i , whereǫi is the minimum

distance between linel and end pointpi. See Fig. 3(b) for an illus-
tration where a line-of-best-fit is drawn to minimize squared error
sum

∑3
i=0 ǫ

2
i given window of edges{e1, e2, e3}.

The constructed linel provides apredicted direction ~v. Given
the three possible edge directions{~va, ~vb, ~vc} of edgeet+1, we can
compute angles between~v and each possible direction:{αa, αb, αc}.
We next derive a procedure to assign direction probabilities to each
of {~va, ~vb, ~vc} using computed{αa, αb, αc}.

4.2.2. Adaptive statistical model

To derive a procedure to assign probabilities to edge directions
{~va, ~vb, ~vc}, we first consider the following. Intuitively, a closer
edge direction to the predicted one (smaller angleαi) should be
assigned a higher probability than a further edge direction(larger
angle). To accomplish that, we use the von Mises probabilitydistri-
bution, defined below, to assign probability to angleα:

p (α|µ, κ) =
1

2π · I0 (κ)
· eκ cos (α−µ) (1)

whereI0 (.) is the modified Bessel function of order 0. The parame-
tersµ and1/κ are respectively the mean and variance in the circular
normal distribution; we setµ = 0 in our case. The von Mises distri-
bution is the natural Gaussian distribution for angular measurements.
We argue this is an appropriate choice because: i) it maximizes the
probability when the edge direction is the same as predicteddirection
(αi = 0), and ii) it decreases symmetrically in left / right directions
as the edge direction deviates from the predicted direction.
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Fig. 4. Example of arithmetic edge coding, where the first two sym-
bols to be encoded areb anda.

The parameterκ can be interpreted as a confidence measure:κ is
larger when the predicted direction is considered more trustworthy.
To quantify the confidence of a predicted direction, we first define
the minimum anglêα:

α̂ = min (αa, αb, αc) (2)

α̂ = 0 corresponds to the case when the predicted direction falls
exactly on the grid, whilêα = π/4 corresponds to the case when
the predicted direction falls in-between two edge directions.

To assign appropriate value ofκ, we made the following design
choice: defineκ as function of̂α,

κ = ρ · cos (2α̂) (3)

where the parameterρ is the maximum amplitude at angle0. The
intuition behind our design choice is that the predicted direction is
likely more accurate when it is more aligned with the axes of the
grid. When the predicted direction falls in-between two edge di-
rections, which of the two edge directions is more likely becomes
ambiguous.

4.3. Adaptive Arithmetic Coding

Having estimated direction probabilities for each edge, weencode
each edge using adaptive arithmetic coding. One important feature
of arithmetic coding is that the actual encoding and modeling of the
source can be completed separately. Thus, we can design our own
statistical model that fits our particular application and use arithmetic
coding in a straight-forward manner.

In particular, for our application of lossless edge coding,we
compute the direction probabilitiespa(t + 1), pb(t + 1), pc(t +
1) of next edgeet+1 given observation of previousK edges
et, . . . , et−K+1, as discussed previously, and encode the true di-
rection ofet+1 by sub-partitioning into the corresponding interval,
as shown in Fig. 4. Note that the derivation of direction probabili-
ties for edgeet+1 can be mimicked at decoder, and hence no extra
information needs to be sent for correct decoding.

5. EXPERIMENTATION

The performance of the proposed framework was evaluated using the
multiview depth video sequencesBallet and Breakdancers
(1024×768 @15 Hz) provided by Microsoft at the camera position
4. The depth video provided for each camera was estimated viaa
color-based segmentation algorithm.

5.1. Edge Coding Performance
There have been various proposals on shape coding in MPEG-
4 standard [13]. A notable lossless coding approach that relies
on the boundary representation is the chain-code-based shape en-
coders [14]. Experiments conducted in MPEG-4 working group
confirmed that DCC has higher efficiency lossless coding thana nor-
mal chain coding, with an average of 1.2 bits/boundary pel and 1.4
bits/boundary pel for a 4- and 8-connected chain, respectively [13].



Table 1. Average edge rate in bits/boundary pel (bpp)

MPEG-4 DCC iid AEC non-iid AEC

Ballet 1.2 bpp 1.49 bpp 0.29 bpp

Breakdancers 1.2 bpp 1.57 bpp 0.34 bpp
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Fig. 5. Objective PSNR results of depth coding.

In what follows, we compare our proposed AEC with the clas-
sical DCC utilized in MPEG-4 that can be considered as the current
state-of-the-art for lossless boundary coding. In addition, we com-
pare our AEC implementation with the iid and non-iid assumption
of the source. With the iid case, one pmf is computed for all the
edges and transmitted as overhead to the decoder. Non-iid AEC cor-
responds to the scheme proposed in this paper. Entire contour in a
frame was encoded, which was not a significant loss of coding effi-
ciency since ourz-mode was very often selected as the optimal mode
for MB encoding at the boundary of objects.

As shown in Table 1 our scheme clearly outperformed the cur-
rent state-of-the-art MPEG-4 DCC by a factor of 4. In addition,
the comparison with the assumption of an iid model confirmed the
benefit of our proposed statistical model used in adaptive arithmetic
coding. In this work, the spatio-temporal correlation of the starting
point of each chain code has not been taken into consideration, and
hence more gains can expected in the future.

5.2. Depth Video Coding Performance

The comparison of objective compression performance is illustrated
in the rate-distortion (RD) curves plotted in Fig. 5, where the peak
signal-to-noise ratio (PSNR) of the coded depth video was plotted
against bitrate (kbits/s) over 100 frames. The RD results correspond
to fourQP quantization parameters: 27, 32, 37 and 42.

We implemented the proposedz-mode in JM 18.0. In motion
estimation, only luminance component was considered. The maxi-
mum amplitude parameterρ in our statistical model, as defined in
(3), was set to 8. We see that the addition of ourz-mode in H.264
resulted in significant compression gain. Specifically, an average bi-
trate reduction of up to 30% and 20% for the depth video sequence
Ballet andBreakdancers, respectively, was observed.

6. CONCLUSION

In this paper we proposed a lossless arithmetic edge coding scheme
for arbitrarily shaped sub-block motion prediction in depth video
coding. We first partition a given depth block into two non-
overlapping, arbitrarily shaped sub-blocks for separate motion pre-
diction. The overhead from the boundary representation is encoded
through a new arithmetic edge coding scheme. We designed a sta-
tistical model that captures the geometric correlation in the edges.
The computed edge direction probabilities are inputted to an adap-
tive arithmetic coder. Experimental results show an overall bitrate
reduction of up to 30% over classical H.264 implementation.
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