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Abstract
We propose the integration of a random test generation system
(capable of discovering program bugs) and a refinement type sys-
tem (capable of expressing and verifying program invariants), for
higher-order functional programs, using a novel lightweight learn-
ing algorithm as an effective intermediary between the two. Our
approach is based on the well-understood intuition that useful, but
difficult to infer, program properties can often be observed from
concrete program states generated by tests; these properties act as
likely invariants, which if used to refine simple types, can have their
validity checked by a refinement type checker. We describe an im-
plementation of our technique for a variety of benchmarks written
in ML, and demonstrate its effectiveness in inferring and proving
useful invariants for programs that express complex higher-order
control and dataflow.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification-Correctness proofs, Formal
methods; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

Keywords Refinement Types, Testing, Higher-Order Verification,
Learning

1. Introduction
Refinement types and random testing are two seemingly disparate
approaches to build high-assurance software for higher-order func-
tional programs. Refinement types allow the static verification of
critical program properties (e.g. safe array access). In a refinement
type system, a base type such as int is specified into a refine-
ment base type written {int| e} where e (a type refinement) is a
Boolean-valued expression constraining the value of the term de-
fined by the type. For example, {int| ν > 0} defines the type of
positive integers where the special variable ν denotes the value of
the term. Refinement types naturally generalize to function types.
A refinement function type, written {x : Px → P}, constrains the
argument x by the refinement type Px, and produces a result whose
type is specified by P . Refinement type systems such as DML [41]
and LIQUIDTYPES [28] have demonstrated their utility in validat-
ing useful specifications of higher-order functional programs.
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l e t max x y z m = m (m x y) z
l e t f x y = i f x >= y t h e n x e l s e y
l e t main x y z =

l e t result = max x y z f i n
assert (f x result = result)

Figure 1. A simple higher-order program

To illustrate, consider the simple program shown in Fig. 1.
Intuitive program invariants for max and f can be expressed in
terms of the following refinement types:

max :: (x : int→y : int→z : int→
m : (m0 : int→m1 : int→{int| ν ≥ m0 ∧ ν ≥ m1})
→{int|ν ≥ x ∧ ν ≥ y ∧ ν ≥ z})

f :: (x : int→y : int→{int| ν ≥ x ∧ ν ≥ y})

The types specify that both max and f produce an integer that is
no less than the value of their parameters. However, these types
are not sufficient to prove the assertion in main ; to do so, requires
specifying more precise invariants (we show how to find sufficient
invariants for this program in Section 2).

On the other hand, random testing, exemplified by systems like
QUICKCHECK [6], can be used to define useful underapproxima-
tions, and has proven to be effective at discovering bugs. However,
it is generally challenging to prove the validity of program asser-
tions, as in the program shown above, simply by randomly execut-
ing a bounded number of tests.

Tests (which prove the existence, and provide conjectures on the
absence, of bugs) and types (which prove the absence, and conjec-
ture the presence, of bugs) are two complementary techniques for
understanding program behavior. They both have well-understood
limitations and strengths. It is therefore natural to ask how we might
define synergistic techniques that exploit the benefits of both.
Approach. We present a strategy for automatically constructing re-
finement types for higher-order program verification. The input to
our approach is a higher-order program P together with P’s safety
property ψ (e.g. annotated as program assertions). We identify P
with a set of sampled program states. “Good” samples are col-
lected from test runs; these are reachable states from concrete ex-
ecutions that do not lead to a runtime assertion failure that invali-
dates ψ. “Bad” samples are states generated from symbolic execu-
tions which would produce an assertion failure, and hence should
be unreachable; they are synthesized from a backward symbolic
execution, structured to traverse error paths not explored by good
runs. The goal is to learn likely invariants ϕ of P from these sam-
ples. If refinement types encoded from ϕ are admitted by a refine-
ment type checker and ensure the property ψ, thenP is correct with
respect to ψ. Otherwise, ϕ is assumed as describing (or fitting)
an insufficient set of “Good” and “Bad” samples. We use ϕ as a
counterexample to drive the generation of more “Good” and “Bad”
samples. This counterexample-guided abstraction refinement (CE-
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Verifier (P, ϕ, ψ)

Deducer (P, ϕ, ψ)

Learner (VG, VB)

Runner (P, iv, ψ)

ψ failed

intput iv

bad samples VB

good samples VG

likely inv ϕ

failed inv ϕ

ψ verified

Safety Property ψ
Program P with initial inv ϕ : true

Figure 2. The Main algorithm.

GAR) process [7] repeats until type checking succeeds, or a bug is
discovered in test runs.

There are two algorithmic challenges associated with our proof
strategy: (1) how do we sample good and bad program states in the
presence of complex higher-order control and dataflow? (2) how
do we ensure that the refinement types deduced from observing
the sampled states can generally capture both the conditions (a)
sufficient to capture unseen good states and (b) necessary to reject
unseen bad ones?

The essential idea for our solution to (1) is to encode the un-
known functions of a higher-order function (e.g. function m in
Fig. 1) as uninterpreted functions, hiding higher-order features
from the sampling phase. Our solution to (2) is based on learning
techniques to abstract properties classifying good states and bad
states derived from the CEGAR process, without overfitting the in-
ferred refinement types to just the samples.
Implementation. We have implemented a prototype of our frame-
work built on top of the ML type system. The prototype can take
a higher-order program over base types and polymorphic recur-
sive data structures as input, and automatically verify whether the
program satisfies programmer-supplied safety properties. We have
evaluated our implementation on a set of challenging higher-order
benchmarks. Our experiments suggest that the proposed technique
is lightweight compared to a pure static higher-order model checker
(e.g. MOCHI [17]), in producing expressive refinement types for
programs with complex higher-order control and data flow. Our
prototype can infer invariants comprising arbitrary Boolean com-
binations for recursive functions in a number of real-world data
structure programs, useful to verify non-trivial data structure speci-
fications. Existing approaches (e.g. LIQUIDTYPES [28]) can verify
these programs only if such invariants are manually supplied which
can be challenging for programmers.
Contributions. Our paper makes the following contributions:

• A CEGAR-based learning framework that combines testing
with type checking, using tests to exercise error-free paths and
symbolic execution to capture error-paths, to automatically in-
fer expressive refinement types for program verification.
• An integration of a novel learning algorithm that effectively

bridges the gap between the information gleaned from samples
to desired refinement types.
• A description of an implementation, along with experimental

results over a range of complex higher-order programs, that
validates the utility of our ideas.

2. Overview
This section describes the framework of our approach, outlined
in Fig. 2. Our technique takes a (higher-order) program P and
its safety property ψ as input. To bootstrap the inference process,

the initial program invariant ϕ is assumed to be true. A Deducer
(a) uses backward symbolic execution starting from program states
that violateψ, to supply bad sample states at all function entries and
exits, i.e., those that reflect error states of P , sufficient to trigger a
failure of ψ. A Runner (b) runs P using randomly generated tests,
and samples good states at all function entries and exits. These good
and bad states are fed to a Learner (c) that builds classifiers from
which likely invariants ϕ (for functions) are generated. Finally a
Verifier (d) encodes the likely invariants into refinement types and
checks whether they are sufficient to prove the provided property.
If the inferred types fail type checking, the failed likely invariants
ϕ are transferred from the Verifier to the Deducer, which then
generates new sample states based on the cause of the failure.
Our technique thus provides an automated CEGAR approach to
lightweight refinement type inference for higher-order program
verification.

In the following, we consider functional arguments and return
values of higher-order functions to be unknown functions. All other
functions are known functions.
Example. To illustrate, the program shown in the left column of
Fig. 3 makes heavy use of unknown functions (e.g., the functional
argument a of init is an unknown function). In the function
main , the value for a supplied by f is a closure over n , and
when applied to a value i , it checks that i is non-negative but less
than n , and returns 0. The function init iteratively initializes the
closure a ; in the i -th iteration the call to update produces a new
closure that is closed over a and yields 1 when supplied with i .
Our system considers program safety properties annotated in the
form of assertions. The assertion in main specifies that the result
of init should be a function which returns 1 when supplied with
an integer between [0, n ).

Verifying this program is challenging because a proof system
must account for unknown functions. The program also exhibits
complex dataflow (e.g., init can create an arbitrary number of
closures via the partial application of update ); thus, any useful
invariant of init must be inductive. We wish to infer a useful
refinement type for init, consistent with the assertions in main
and f without having to know the concrete functions that may be
bound to a a priori (note that a is dynamically updated in each
recursive iteration of init ).
Hypothesis domain. Assume that f is higher-order function and
Θ(f) includes all the arguments (or parameters) and return vari-
ables bound in the scope of f . For each variable x ∈ Θ(f), if x
presents an unknown function, we define Ω(x) = [x0;x1; · · · ;xr]
in which the sub-indexed variables are the arguments (x0 denotes
the first argument of x) and xr denotes the return of x. Other-
wise, if x is a base typed variable, Ω(x) = [x]. We further de-
fine Ω(f) =

⋃
x∈Θ(f) Ω(x). We consider refinement types of f

with type refinements constructed from the variables in Ω(f). For
example, Ω(init) includes variables i, n, a0, ar where a0 and ar
denote the parameter and return of a.

Assume {y1, · · · , ym} are numeric variables bound in Ω(f).
In this paper, following LIQUIDTYPES [28], to ensure decidable
refinement type checking, we restrict type refinements to the de-
cidable logic of linear arithmetic. Formally, our system learns type
refinements (invariants for function f ) which are arbitrary Boolean
combination of predicates in the form of Equation 1:

c1y1 + · · ·+ cmym + d ≤ 0 (1)

where {c1, · · · , cm} are integer coefficients and d is an integer
constant. Our hypothesis domain is parameterized by Equation 1.

To deliver a practical algorithm, we define C = {−1, 0, 1} and
D as the set of the constants and their negations that appear in the
program text of f and requires that all the coefficients ci ∈ C and
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l e t f n i =
(assert (0≤i ∧ i<n);0)

l e t update i a y j =
i f (j = i) t h e n y
e l s e a j

l e t r e c init i n a =
i f i ≥ n t h e n a
e l s e

l e t u = update i a 1
i n init (i+1) n u

l e t main n j =
l e t a = f n i n
l e t r = init 0 n a i n
i f j≥0 ∧ j<n t h e n
assert (r j = 1)

l e t main n j =
l e t a = f n i n
l e t r = init 0 n a i n

{δ1 :
�� ��(j ≥ 0) ∧ (j < n) ∧ r j 6= 1 }

i f j≥0 ∧ j<n
t h e n assert (r j = 1)

l e t r e c init i n a =

{δprebad :
�� ��(i ≥ n ∧ δ5) ∨ (¬(i ≥ n) ∧ δ4)

from the if-expression

}

i f i ≥ n t h e n

{δ5 :
�� ��(j ≥ 0) ∧ (j < n) ∧ a j 6= 1

from [a/ν]δpostbad

} a

e l s e {δ4 is obtained after processing update in δ3}
{δ3 :

�� ��i + 1 ≥ n ∧ (j ≥ 0) ∧ (j < n) ∧ update i a 1 j 6= 1 }
l e t u = update i a 1

{δ2 :
�� ��i + 1 ≥ n ∧ (j ≥ 0) ∧ (j < n) ∧ u j 6= 1

unroll init once

}
i n init (i+1) n u

{δpostbad:
�� ��(j ≥ 0) ∧ (j < n) ∧ ν j 6= 1

from [ν/r]δ1

}

Figure 3. A higher-order program (in the first column) and its bad-conditions (in the latter two columns).

d ∈ D. We define two helper functions used throughout the paper.

min(y1, · · · , ym) = min
∀i.ci∈C. d∈D

{c1y1 + · · ·+ cmym + d} − 1

max(y1, · · · , ym) = max
∀i.ci∈C. d∈D

{c1y1 + · · ·+ cmym + d}+ 1

We now exemplify the execution flow presented in Fig. 2 by learn-
ing an invariant for function init .
Deducer. Any invariant inferred for init must be sufficiently
strong to prevent assertion violations. Using assertions in the pro-
gram, we perform a backward symbolic analysis (wp generation
defined in Sec. 4), to capture bad runs, the pre- and post conditions
of a known function sufficient to lead to an assertion failure, which
we call its pre- and post-bad conditions. Bad program states are
sampled as (SMT) solutions to such conditions. Program states at a
function’s entry and exit are called its pre- and post-states.

Consider the bad-conditions in the boxes in the program in
Fig. 3, generated by a backward symbolic analysis from the as-
sertion in main to the call to init . To capture bad conditions that
cause failures, we negate the assertion, incorporating the path con-
dition before the assertion in δ1. Substituting ν (syntactic sugar for
the value of an expression) for r in δ1, we obtain δpostbad which de-
notes the post-bad condition for init . δ5 instantiates ν in δpostbad
to the real return variable a for the then branch of the if -
expression; assume the bad-condition for the else branch is δ4,
we then infer the pre-bad condition for init as δprebad. Notably, in
this process, we consider unknown functions as uninterpreted (e.g.
a in δ5), allowing us to generate useful constraints over their in-
put (e.g. j ) and output (e.g. a j ). As a result, bad samples for
init can be queried from δprebad and δpostbad, using SMT solvers
with decidable first-order logic with uninterpreted functions [23].
Recursive functions are unrolled twice in this example as reflected
by δ2.

Consider how we might generate a useful precondition for
init. Recall that a0 and ar denote the parameter and return val-
ues of the unknown function a within init . The bad pre-states,
sampled from δprebad for init , are listed as entries under label B
in Table 1(a). Our symbolic analysis concludes, in the absence of
proper constraints on init ’s inputs, that an assertion violation in
main occurs if the call to the closure a with 0 returns either -1 or
2 when the iterator i is already increased to 1 .

Furthermore, the symbolic analysis for an unknown function
is deferred until a known function to which it is bound (say, at
a call-site) is supplied. The conditions defined for the unknown
function that lead to assertion failures can eventually be propagated
to the known function and used for deriving its bad samples. This is
demonstrated in δ3, where the unknown function u is substituted
with the function update , which can drive sampling for update .

Deducer is also used to provide a test input for Runner based
on failed invariants as counterexamples. For the initial case, we use
random testing to “seed” the inference process.
Runner. Our test infrastructure instruments the entry and exit of
function bodies to log values of program variables into a log-file;
these values represent a coarse underapproximation of a function’s
pre- and post-state. For example, with a random test input, we
might invoke main by supplying 4 as the argument for n and 0 as
the argument for j . When init is invoked from main , we record
the binding for its parameters, i to 0 and n to 4. The values for
arguments i and n can be used to build a coarse specification. The
question is how do we seed a specification for a , without tracking
its flow to and from update , which happens within a series of
recursive calls to init ? Note that the argument to the application
of a takes place in update but not init . To realize an efficient
analysis, we sample the unknown function a by calling it with
inputs from [min ( i , n ), ..., max ( i , n )] in the instrumented code,
with the expectation that its observed input/output pairings can be
subsequently abstracted into a relation defined in terms of i and
n . Note that, at run-time, the values of i and n are known. This
design is related to the hypothesis domain and function min and
max are exactly defined according to the hypothesis domain (see
their definitions above).

In Table 1(a), entries labeled under G represent good pre-states
at the entry of init ; these states lead to a terminating execution
that does not trigger an assertion failure. In the second iteration
of the function init , we record that function a returns 1 when
supplied with 0. This corresponds to the good sample in the first
row in the table; at this point, the closure a has been initialized
such that (a 0) = 1 and (a a0) = 0 for 0 < a0 < n .
Learner. A classifier that admits all good samples and prohibits all
bad ones is considered a likely invariant. We rely on predicate ab-
straction [11] to build these classifiers. For illustration, consider a
subset of the atomic predicates obtained from Equition 1 (simpli-
fied for readability): Π0 ≡ a0 ≥ 0,Π1 ≡ a0 < n,Π2 ≡ ar <
n,Π3 ≡ a0 < i,Π4 ≡ ar < i,Π5 ≡ i < n,Π6 ≡ ar = 1.
Our goal is to learn a sufficient invariant over such predicates. The
challenge is to obtain a classifier that generalizes to unseen states.
We are inspired by the observation that a simple invariant is more
likely to generalize than a complex one [1]. Similar arguments have
been demonstrated in machine learning and static verification tech-
niques [13].

To learn a simple invariant, a learning algorithm should select
a minimum subset of the predicates that separates all good states
from all bad states. In the example, we first convert the original
data sample into a Boolean table, evaluating the atomic predicates
using each sample; the result is shown in Table 1(b) and we show
the selection informally in Table 1(c) (Π3 and Π6 constitute a
sufficient classifier). To compute a likely invariant, we generate its
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Table 1. Classifying good (G) and bad (B) samples to construct an invariant (precondition) for init .
(a) samples

n i a 0 ar

G

4 1 0 1
4 1 1 0
4 1 2 0
4 3 2 1
4 3 3 0

B
1 1 0 2
2 1 0 -1

(b) relate samples to predicates

Π0 Π1 Π2 Π3 Π4 Π5 Π6

G

1 1 1 1 0 1 1
1 1 1 0 1 1 0
1 1 1 0 1 1 0
1 1 1 1 1 1 1
1 1 1 0 0 1 0

B
1 1 0 1 0 0 0
1 1 1 1 1 1 0

(c) select predicates

Π3 Π6

G
1 1
0 0

B 1 0

(d) truth table

Π3 Π6

G
1 1
0 0
0 1

B 1 0

truth table Table 1(d). The table rejects all (Boolean) bad samples
in Table 1(c) and accepts all the other possible samples, including
the good samples in Table 1(c). Note that we generalize good states.
The truth table accepts more good states than sampled. We apply
standard logic minimization techniques [20] to the truth table to
generate the Boolean structure of the likely invariant. We obtain
¬Π3 ∨Π6, which in turn represents the following likely invariant:

¬(a0 < i) ∨ ar = 1

During the course of sampling the unknown function a , our
system captures that certain calls to a may result in an assertion
violation (rooted from the assertion in f ). Consider a call to a
that supplies an integer argument less than 0 or no less than n.
These calls, omitted in the table, provide useful constraints on a ’s
inputs, which are also used by Learner. Indeed, comparing such
calls to calls that do not lead to an assertion violation allows the
Learner to deduce the invariant: ψ0 ≡ a0 ≥ 0 ∧ a0 < n, that
refines a ’s argument. We treat ψ0 and ψ1 as likely invariants for
the precondition for init. A similar strategy can be applied to also
learn the post-condition of init .
Verifier. We encode likely program invariants into refinement types
in the obvious way. For example, the following refinement types
are automatically synthesized for init :

i : int→ n : int→
a : (a0 : {int|ν ≥ 0 ∧ ν < n} → {int|¬(a0 < i) ∨ ν = 1})
→ ({int|ν ≥ 0 ∧ ν < n} → {int|ν = 1})

This type reflects a useful specification - it states that the argument
a to init is a function that expects an argument from 0 to n , and
produces a 1 only if the argument is less than i ; the result of init
is a function that given an input between 0 and n produces 1 .
Extending [28], we have implemented a refinement type checking
algorithm, which confirms the validity of the above type that is also
sufficient to prove the assertions in the program.
CEGAR. Likely invariants are not guaranteed to generalize if in-
ferred from an insufficient set of samples. We call likely invariants
failed invariants if they fail to prove the specification. They are
considered counterexamples, witnessing why the specification is
refuted. Notice that, however, these could be spurious counterex-
amples. We develop a CEGAR loop that tries to refute a counterex-
ample by sampling more states. If the counterexample is spurious,
new samples prevent the occurrence of failed invariants in subse-
quent iterations.
Bad sample generation. Assume that Learner is only provided with
the first bad sample in Table 1(a). The good and bad samples are
separable with a simple predicate Π2 ≡ ar < n. This predicate is
not sufficiently strong since it fails to specify the input of a . To
strengthen such an invariant, we ask for a new bad sample from the
SMT solver for the condition:

ϕprebad ∧ (ar < n)

which was captured as the second bad sample in Table 1(a). The
new bad sample would invalidate the failed invariants.

Good sample generation. We exemplify our CEGAR loop in sam-
pling good states using the program of Fig. 1. To bootstrap, we may
run the program with arguments 1,2 and 3 , and infer the follow-
ing types:

max ::(x : int→ y : int→ z : int→
m : (· · · )→ {int|ν > x ∧ ν ≥ y})

The refinement type of max is unnecessarily strong in specifying
that the return value must be strictly greater than x . To weaken
such a type, we seek to find a sample in which the return value of
max equals x . To this end, we forward the failed invariant to the
Deducer, which symbolically executes the negation of the post-
condition of max (ν > x ∧ ν ≥ y) back to main using our
symbolic analysis. A solution to the derived symbolic condition
(from an SMT solver) constitutes a new test input, e.g., a call to
main with arguments 3 , 2 and 1 . With a new set of good samples,
the program then typechecks with the desired refinement types:

max :: (x : int→y : int→z : int→
m : (m0 : int→m1 : int→{int| ν ≥ m0 ∧ ν ≥ m1})
→{int|ν ≥ x ∧ ν ≥ y ∧ ν ≥ z})

f :: (x : int→y : int→{int| ν ≥ x ∧ ν ≥ y ∧
((x ≤ y ∧ ν ≤ y) ∨ (x > y ∧ ν > y))})

The refinement type for f reflects the result of both the first
and the second test. The proposition defined in the first disjunct,
x ≤ y ∧ ν ≤ y captures the behavior of the call to f from max
in the first test, with arguments x less than y ; the second disjunct
x > y∧ν > y captures the effect of the call to f in the second test
in which x is greater than y .
Data Structures. Our approach naturally generalizes to richer (re-
cursive) data structures. Important attributes of data structures can
often be encoded into measures (data-sorts), which are functions
from a recursive structure to a base typed value (e.g. the height of
a tree). Our approach verifies data structures by generating sam-
ples ranging over its measures. In this way, we can prove many
data structure invariants (e.g. proving a red-black tree is a balanced
tree).

Consider the example in Fig. 4. Function iteri is a higher-
order list indexed-iterator that takes as arguments a starting index
i , a list xs , and a function f . It invokes f on each element of
xs and the index corresponding to the elements position in the list.
Function mask invokes iteri if the lengths of a Boolean array
a and list xs match. Function g masks the j -th element of the
array with the j -th element of the list.

Our technique considers len, the length of list ( xs ), as an
interesting measure. Suppose that we wish to verify that the array
reads and writes in g are safe. For function iteri , based on our
sampling strategy, we sample the unknown function f by calling
it with inputs from [min (i, len xs), ..., max (i, len xs)] in the
instrumented code. Since f binds to g , defined inside of mask ,
our system captures that some calls to f result in (array bound)
exception, when the first argument to f is less than 0 or no less
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l e t r e c iteri i xs f =
match xs w i t h
| [ ] → ()
| x::xs →

(f i x;
iteri (i+1) xs f)

l e t mask a xs =
l e t g j y =
a[j] ← a[j] && y i n

i f Array.length a =
len xs t h e n

iteri 0 xs g

Figure 4. A simple data structure example.

than i + len xs. Separating such calls from calls that do not raise
the exception, our tool infers the following refinement type:

iteri :: (i : {int|ν ≥ 0} → xs : ′a list→
f : (f0 : {int|ν ≥ 0 ∧ ν < i + len xs} → ′

a→ ())→ ())

This refinement type is the key to prove that all array accesses in
function mask (and g ) are safe.

3. Language
Syntax. For exposition purposes, we formalize our ideas in the
context of an idealized language: a call-by-value variant of the λ-
calculus, shown in Fig. 5, with support for refinement types defined
in Sec. 1. We cover recursive data structures in Sec. 7.

Typically, x and y are bound to variables; f is bound to function
symbol. A refinement expression is either a refinement variable (κ)
that represents an initially unknown type refinement or a concrete
boolean expression (e). Instantiation of the refinement variables to
concrete predicates takes place through the type refinement algo-
rithm described in Sec. 6.

Note that the let rec binding (in our examples) is syntactic
sugar for the fix operator: let rec f x̃ = e in e′ is converted
from let f = fix ( fun f → λx̃.e) in e′. Here, x̃ abbreviates a
(possibly empty) sequence of arguments {x0, · · · , xn}. The length
of x̃ is called the arity of f .

Our language is A-normalized. For example, in function appli-
cations f ỹ, we ensure every function and its arguments are asso-
ciated with a program variable. When the length of ỹ is smaller
than the arity of f , f ỹ is a partial application. For any expres-
sion of the form let f = λx̃.e in e′, we say that the function f is
known in the expression e′. Functional arguments and return values
of higher-order functions are unknown (e.g., in let g = f v in e′

if the symbol g is used as a function in e′, it is an unknown func-
tion in e′; similarly in λx. e′ if x is used as a function in e′, x is an
unknown function in e′). The statement “ assert p” is standard.
Programs with assertion failure would immediately terminates.
Semantics. We reuse the refinement type system defined in [28];
the type checking rules are given in [44].

B ∈ Base ::= int | bool
P ∈ RefinementType ::= {B |κ} | {B | e} | {x : P → P}
x, y, ν, f ∈ Var c ∈ Constant ::= 0, . . . , true , false

v ∈ Value ::= c | x | y | fix ( fun f → λx̃. e) | λx̃.e
op ∈ Operator ::= {+,−,≥,≤,¬, · · · }

e ::= v | op (v0, · · · , vn) | assert v | if v then e1 else e2 |
let x = e in e′ | f ỹ

Figure 5. Syntax

4. Higher-Order Program Sampling
In this section, we sketch how our system combines information
gleaned from tests and (backward) symbolic analysis to prepare a
set of program samples for higher-order programs.

Sampled Program States. In our approach, sampled program
states, ranged over with the metavariable σ, map variables to val-
ues in the case of base types and map unknown functions to a
set of input/output record known to hold for the unknown func-
tion from the tests. For example, if x is a base type variable
we might have that σ(x) = 5. If f is a unary unknown func-
tion that was tested on with the arguments 0, 1 and 2 (such as
the case of a in Table 1(a)), we might for instance have that
σ(f) = {(f0 : 0, fr : 1), (f0 : 1, fr : 0), (f0 : 2, fr : 0)}
where we use f0 to index the first argument of f and fr to de-
note its return variable. The value of fr is obtained by applying
function f to the value of f0. Importantly, fr is assigned a special
value “ err ” if an assertion violation is triggered in a call to f with
arguments recorded in f0.
WP Generation. “Bad” program states are captured by pre- and
post-bad conditions of known functions sufficient to lead to an as-
sertion violation. To this end, we implement a backward symbolic
analysis, wp, analogous to weakest precondition generation; the
analysis simply pushes up the negation of assertions backwards,
substituting terms for values in a bad condition δ based on the
structure of the term e. As is typical for weakest precondition gen-
eration, wp ensures that the execution of e, from a state satisfying
wp(i, e, δ), terminates in a state satisfying δ. To ensure termination,
recursive functions are unrolled a fixed number of times, defined by
the parameter i. The definition of wp is given as follows:

wp(i, e, δ) =

let δ = match e with

| if v then e1 else e2 →
((v ∧ wp(i, e1, δ)) ∨ (¬v ∧ wp(i, e2, δ)))

| let x = e1 in e2 → wp(i, e1, [ν/x]wp(i, e2, δ)))

| v ⇒ [e/ν]δ

| op (v0, · · · , vn)⇒ [e/ν]δ

| assert p→ ¬p ∨ δ
| f ỹ → (match f with

| unknown fun or partial application→ [(f ỹ)/ν]δ

| known fun (when let f = λx̃. e)→ [ỹ/x̃]wp(i, e, δ)

| known fun (when let f = fix ( fun f → λx̃.e))→
if i > 0 then [ỹ/x̃]wp(i− 1, e, δ) else false )

in

if exists f ỹ in δ and f is a known fun

then wp(i, f ỹ, [ν/(f ỹ)]δ) else δ

Our wp function is standard, extended to deal with unknown func-
tion calls. The concept of known function and unknown function
is defined in Sec. 3. Our idea is to encode unknown functions into
uninterpreted functions, reflected in the f ỹ case for an application
expression when f is an unknown function with a list of argument
ỹ or f ỹ is a partial application. As a result, we can generate con-
straints over the input/output behaviors of unknown functions for
higher-order functions (e.g. δ5 in Fig. 3). The symbolic analysis for
the actual function represented by the unknown function is deferred
until it becomes known (e.g. δ3 in Fig. 3), reflected in the last two
lines of the definition—if there exists a known function f that has
substituted an unknown function in δ (e.g. at a call-site), and f ỹ∈ δ
where ỹ is a list of arguments, we perform wp(i, f ỹ, [ν/(f ỹ)]δ).

In the f ỹ case, if f is bound to a known recursive function,
since we restrict the number of times a recursive function is un-
rolled, when i = 0, we simply return false to avoid considering
further unrolling of f ; otherwise, the bad-condition δ is directly

404



l e t app x (f:int→(int→int)→int) g = f x g
l e t f x k = k x
l e t check x y = (assert (x = y); x)
l e t main a b = app (a * b) f (check (a * b))

Figure 6. Generating samples for g , bound to parameter k in f ,
may trigger assertion violations in check .

pushed back to the definition of f in order to drive the sampling for
f . In the latter case, the value of i is accordingly decremented.

During wp, the symbolic conditions collected at the entry and
exit point of each function is treated as the pre- and post-bad
condition of the function (e.g. δprebad and δpostbad in Fig. 3).
Program Sampling. Our approach instruments the original pro-
gram at the entry and exit point of a function to collect values for
each function parameter and return, together with variables in its
lexical scope (for closures). The instrumentation for base type vari-
ables is trivial. To sample an unknown function, we adopt two con-
servative strategies.

1. A side-effect of wp’s definition is that it provides hints on how
unknown functions are eventually used because the arguments
to such functions are already encoded into uninterpreted forms.
If the variables that compose the arguments are all in the lexical
scope, we call the function with those arguments (e.g. the argu-
ment j to unknown function a inside function update in Fig. 3
is considered in-scope).

2. The arguments supplied to unknown functions may not be in-
scope (e.g. recall that in function init in Fig. 3 the argument
j to a is supplied in update and undefined in init). In this
case, for a base type argument, we supply integers drawn from
min(x̃) to max(x̃) where x̃ are integer parameters from the
higher-order function that hosts the unknown function. The goal
is to build a refinement type of the unknown function based
on its relation (parameterized by our hypothesis domain) with
variables in x̃. The definition of min and max is in Sec. 2. For a
function type argument that is not in-scope, we similarly supply
ghost functions with return values from the above domain.

For each known function, bad samples (VB) can be queried
from an SMT solver as solutions to its pre- and post-bad conditions
generated by wp. During the course of sampling good states, the call
to an unknown function with arguments according to the second
sampling strategy (above) may raise an assertion failure that is
associated with an “ err ” return value. We classify the subset of
samples involving “ err ” as an additional set of bad samples (V ′B).
The rest of the samples from test outcomes constitute good program
states (VG). Intuitively, VB can constrain the output while V ′B can
constrain the input of unknown function in a likely invariant. For
example, we may call (main 0 0) for the program given in Fig. 6
and obtain the sample states for function app shown in Fig. 7 where
the first argument of f and g are supplied from x-1 to x+1. Samples
in which calls to the unknown function g return err (because
it would trigger an assertion violation in check ) will be used to
strengthen g ’s pre-condition.

x f0 f1 fr g0 gr
0 1 g err -1 err
0 0 g 0 0 0
0 -1 g err 1 err

· · ·

Figure 7. Sample table for pre-state of app in Fig. 6

Sample Generalization. Our main idea is to generalize useful in-
variants from good program states based on the expectation that

such invariants (even for unknown functions) should be observ-
able from test runs. By summarizing the properties that hold in all
such runs, we can construct likely invariants. In addition, the use
of bad program states, which are either solutions of bad-conditions
queried from an SMT solver (VB) or collected from the “ err ”
case during sampling of an unknown function (V ′B), enables a
demand-driven inference technique. With a set of good (VG) and
bad (VB ∪ V ′B) program states, our method exploits a learning al-
gorithmL(VG, VB) (resp.L(VG, V

′
B)) to produce a likely invariant

that separates VG from VB (resp. V ′B). We lift these invariants to a
refinement type system and check their validity through refinement
type checking technique (Sec. 6).

5. Learning Algorithm
We describe the design and implementation of our learning algo-
rithm L(VG, VB) in this section. Suppose we are given a set of
good program states VG and a set of bad program states VB , where
both VG and VB contain states which map variables to values. We
simplify the sampled states by abstracting away unknown function
f : each sampled state σ in VG and VB only records the values of
its parameters f0, · · · and return fr . We base our analyses on a
set of atomic predefined predicates Π = {Πi}0≤i<n from which
program invariants are constructed. Recall the hypothesis domain
defined in Sec. 2. Each atomic predicate Πi is of the form:

c1y1 + · · ·+ cmym + d ≤ 0

where {y1, · · · , ym} are numerical variables from the domains of
VG and VB , each ci ∈ C (i = 1, · · · ,m) is an integer coefficient
and d ∈ D is an integer constant. We have restricted D to a finite
set of integer constants and its negations from the program text and
C = {−1, 0, 1}. Note that further restricting the number of nonzero
ci to at most 2 enables the learning algorithm to choose predicates
from a subset of the octagon domain. In our experience, we have
found such a selection to be a feasible approach, attested by our
experiments in Sec. 8. Thanks to this parameterization, we can
draw on predicates from a richer abstract domain without requiring
any re-engineering of the learning algorithm.

The problem of inferring an invariant then reduces to a search
problem from the chosen predicates. A number of static invariant
inference techniques have been proposed for efficient search over
the hypothesis space generated by Π [9, 28]. Compared to those,
our algorithm has the strength of discovering invariants of arbitrary
Boolean structure. In our context, given Π, an abstract state α over
σ ∈ (VG ∪ VB) is defined as:

α(σ) ≡ { 〈Π1(σ), · · · ,Πn(σ)〉 }
We say that L(VG, VB) is consistent with respect to VG and VB ,
if ∀σ ∈ VG . α(σ) ⇒ L(VG, VB), and ∀σ ∈ VB . α(σ) ∧
L(VG, VB) ⇒ false. Intuitively, we desire L to compute an
interpolant or classifier (that is derived from atomic predicates in
Π) that separates the good program states from the bad states [32].

However, we would like to discover classifiers from samples
with the property that they generalize to yet unseen executions.
Therefore, we exploit a simple observation: a general invariant
should be simple enough. Specifically, we answer the question by
finding the minimal invariant from the samples, in terms of the
number of predicates that are used in the likely invariant. This idea
has also been explored before in the context of computing simple
proofs based on interpolants [13, 21].

To this end, we build the following constraint system. Us-
ing Π, we transform VG and VB that are defined over inte-
gers to V b

G and V b
B defined over Boolean values. Specifically,

V b
G = {〈(Π1(σ), · · · ,Πn(σ))〉| σ ∈ VG}. V b

B is defined dually.
Table 1(b) is an example of such conversion from Table 1(a). We as-
sociate an integer variable seli to the ith predicate Πi(0 ≤ i < n).
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Algorithm 1: L (VG, VB)

1 let (ϕ1, ϕ2) = encode (VG, VB) in
2 let k := 1 in
3 if sat (ϕ1 ∧ ϕ2) 6= UNSAT) then
4 while not (sat (ϕ1 ∧ ϕ2 ∧ (Σiseli = k)) do
5 k := k + 1
6 McCluskey (smt model (ϕ1 ∧ ϕ2 ∧ (Σiseli = k)))
7 else abort “Invariant not in hypothesis domain”

If Πi should be selected for separation in the classifier, seli is
assigned to 1. Otherwise, it is assigned as 0.

ϕ1 :
∧

∀g,b. g∈V b
G
,b∈V b

B

∨
0≤i<n

(g(Πi) 6= b(Πi) ∧ seli = 1)

ϕ2 :
∧

0≤i<n

0 ≤ seli ≤ 1

ϕc : min(Σ0≤i<nseli)

The first constraint ϕ1 specifies the separation of good states
from bad states—for each good state g and bad state b, there
must exist at least one predicate Πi labeled by seli such that the
respective evaluations of Πi on g and b differs.

The second constraint ϕ2 ensures that each xi must be between
0 and 1. The third constraint ϕc specifies the cost function of the
constraint system and minimizing this function is equivalent to
minimizing the number of predicates selected for separation, which
in turn results in a simple invariant as discussed.

Algorithm 1 computes a solution for likely invariant. It firstly
builds ϕ1 and ϕ2 as stated. Then it iteratively solves the constraint
system to find the minimum k that renders the constraint system
satisfiable. In our experience, since the number of parameters of a
function is not large, and the fact that a few number of samples
usually suffice for discovering an invariant, the call to an SMT
solver in our algorithm is very efficient. For example, a solution of
the constraint system built over Table 1(b) is shown in Table 1(c).
By design, our algorithm guarantees that the invariants discovered
are the minimum one to separate VG and VB and therefore, it is
very likely that they will generalize.

When the solution is computed, the likely invariant should be a
Boolean combination of the predicates Πi if seli=1 in the solution.
We use a Boolean variable Bi to represent the truth value of pred-
icate Πi and generate a truth table T over the Bi variables for the
selected predicates. Formally {B = Bi| seli = 1(0 ≤ i < n)}. To
construct the likely invariant, we firstly generate a table V b

B , which
only retains the values corresponding to the selected predicates Πi

(seli = 1) in V b
B . Each row of the truth table T is a configuration

(assignment) to the variables in B. If a configuration corresponds to
a row in V b

B , its corresponding result in T is false. Otherwise, the
result in true. Intuitively, T must reject all the evaluations to B if
they appear in a bad sample in V b

B and accept all the other possible
evaluations to B (which of course include those in V b

G). See Ta-
ble 1(d) as an example of the generated truth table from Table 1(c).
In line 6 of Algorithm 1, the call to McCluskey applies standard
sound logic minimization techniques [20] to T to compute a com-
pact Boolean structure of the likely invariant.

Lemma 1. L (VG, VB) is consistent.

Lemma 1 claims that our algorithm will never produce an in-
variant that misclassifies a good sample or bad sample.

6. Verification Procedure
To yield refinement types, we extend standard types with invariants
which are automatically synthesized from samples as type refine-
ments. The invariants inferred for a function f are assigned to un-
known refinement variables (κ) in the refinement function type of
f . Other unknown refinement variables, associated with local ex-
pressions inside function definitions, are still undefined.

To solve this problem, we have implemented an algorithm that
extracts path-sensitive verification conditions from refinement typ-
ing rules, which extends the inference algorithm in [28]. Therefore
it does not need to explicitly infer the refinement types for local
expressions. It also can verify programmer-supplied program as-
sertions using synthesized likely invariants. We present the full al-
gorithm in [44].

Notably, our approach can properly account for unknown func-
tions whose order is more than one, that is unknown functions
which may also takes functional arguments. Recall the sample
states generated for function app in Fig. 7. In the app function,
the argument f is an unknown function whose second argument
f1 is also an unknown function as the type in Fig. 6 shows. We
did not sample the input/output values for function f1 and only
recorded its supplier, g. We observe that such an unknown function
will be eventually supplied with another function. For example, in
the body of app, g will be supplied for f1. This indicates the in-
variant inferred for g is also likely to be invariant for f1 so the type
refinements for g can flow into that of f1. Formally, consider the
refinement function subtyping rule in [28]:

Γ ` P ′x <: Px Γ;x : P ′x ` P <: P ′

Γ ` {x : Px → P} <: {x : P ′x → P ′} Subtyping Fun

If the type refinement in Px is synthesized, it can be propagated to
that of P ′x.

For example, according to the subtyping rule, g must subtype
to f1. f1 can then inherit the type refinements for g. We then
let our type inference algorithm decide a valid type instantiation,
following [28]. In Fig. 7, separating the samples that represent
good calls to f and g with the samples that represent bad calls
(e.g., calls that raise an err ), we infer the invariant: f0 = x and
g0 = x. Leveraging the type inference algorithm with the likely
type refinement ν = x, we conclude the desired type for app:

app ::(x : int→ f : (f0 : {int| ν = x} →
f1 : ({int|ν = x} → int)→ int)→
g : (g0 : {int|ν = x} → int)→ int)

6.1 CEGAR Loop
Algorithms. Our Main algorithm (Algorithm 2) takes as input a
higher-order program e with its safety property ψ that is expected
to hold at some program point. We first annotate ψ in the source
as assertions at that program point and use random test inputs iv
(like [6]) to bootstrap our verification process (line 1). We then
instrument the program using the strategy discussed in Sec. 4.
Function run compiles and runs the instrumented code with iv
(line 2); concrete program states at the entry and exit of each
known function are logged to produce good states VG. (We omit
including additional bad states V ′B caused by calls to unknown
functions returning “err” in the instrumented code (see Sec. 4), for
simplicity.) We then enter the main CEGAR loop (line 4-8). With
a set of good and bad states for each known function, the function
learn invokes the L learning algorithm (see Sec. 5) to generate
likely invariants (line 5) which are subsequently encoded as the
function’s refinement types for validation (line 6). If the program
typechecks, verification is successful. Otherwise, type checking is
considered to fail because these invariants are synthesized from
an insufficient set of samples. We try generating more samples
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Figure 8. CEGAR loop: Invariant as classifier.

Algorithm 2: Main e ψ
Input: e is a program; ψ is its safety property
Output: verification result

1 let (e′, iv) = (annotate e ψ, randominputs e) in
2 let (VG, VB) := ( run (instrument e′) iv, ∅) in
3 let i := 2 in
4 while true do
5 let ϕ = learn (VG, VB) in
6 if verify e′ ϕ then
7 return “Verified”
8 else (VG, VB) := Refine (i, e, ψ, ϕ, VG, VB)

for the learning algorithm, refining the failed invariants (line 8).
Notably, our backward symbolic analysis (wp) requires to bound the
number of times recursive functions are unrolled. This is achieved
by passing the bound parameter i to Refine. Initially i is set to 2
(line 3 of Algorithm 2).

The Refine algorithm (see Algorithm 3) guides the sample gen-
eration to refine a failed likely invariant. The first step of Refine is
the invocation of the wp procedure over the given higher-order pro-
gram annotated with the property ψ (line 1 and 2); this step yields
pre-and post-bad conditions for each known function sufficient to
trigger a failure of some assertion (line 3). A failed invariant may
be too over-approximate (failing to incorporate needed sufficient
conditions) or too under-approximate (failing to account for impor-
tant necessary conditions). This is intuitively described in Fig. 8(a)
where the classifier (as invariant) only separates the observed good
and bad samples but fails to generalize to unseen states.

To account for the case that it is too over-approximate, we
firstly try to sample new bad states (line 4). The idea is reflected in
Fig. 8(b). The new bad samples should help the learning algorithm
strengthen the invariants it considers. For each known function, we
simply conjoin the failed likely pre- and post-invariants with the
pre- and post-bad conditions derived earlier from the wp procedure.
Bad states (VB) are (SMT) solutions of such conditions (line 5).
Note that bad cond and ϕ are sets of bad conditions and failed
invariants for each known function in the program. Operators like
∧ and ∪ in Algorithm 3 are overloaded in the obvious way. If no
new bad states can be sampled, we account for the case that failed
invariants are too under-approximate (line 6).

Our idea of sampling more good states is reflected in Fig. 8(c).
The new good state should help the learning algorithm weaken the
invariants it considers. To this end, we annotate the failed pre- and
post-invariant as assertions to the entry and exit of function bodies
for the known functions where such invariants are inferred. (Func-
tion annotate substitutes variables representing unknown function
argument and return in a failed invariant with the actual argument
and return encoded into uninterpreted form in the corresponding
function’s pre- and post-bad conditions. For example, a 0 and ar

Algorithm 3: Refine (i, e, ψ, ϕ, VG, VB)
Input: (e, ψ) are as in Algorithm 2; ϕ are failed invariants; i

is the number of times a recursive function is unrolled
in wp; VG and VB are old good and bad samples

Output: good or bad samples (VG, VB) that refines ϕ
1 let e′ = annotate e ψ in
2 let = wp (i, e′, false) in
3 let bad cond = bad conditions of functions from wp call in
4 if sat (bad cond ∧ϕ) then
5 (VG, ( deduce (bad cond ∧ϕ)) ∪ VB)
6 else
7 let test cond = wp (i, annotate e ϕ, false) in
8 if sat (test cond) then
9 let iv = deduce test cond in

10 (( run (instrument e′) iv) ∪ VG, VB)
11 else Refine (i+ 1, e, ψ, ϕ, VG, VB)

in Table 1(a) are replaced with j and a j in a failed invariant
for the init function (consider δ5) in Fig. 3.) Note that these in-
variants only represent an under-approximate set of good states. To
direct tests to program states that have not been seen before, the wp
procedure executes the negation of these annotated assertions back
to the program’s main entry to yield a symbolic condition (line 7).
Function deduce generates a new test case for the main entry (line
8 and 9) from the (SMT) solutions of the symbolic condition. The
new good states from running the generated test inputs are ensured
to refine the failed invariant (line 10).

In function Refine, we only consider unrolling recursive func-
tion a fixed i times. As stated, if this is not sufficient, we increase
the value of i and iterate the refinement strategy (line 11). However,
in our experience (see Sec. 8), unrolling the definition of a recur-
sive function twice usually suffices based on the observation that
the invariant of recursive function can be observed from a shallow
execution. Particularly, i is unlikely to be greater than the maximum
integer constant used in the if -conditions of the program.
Algorithm Output. (a) In the testing phase (Runner), the Main algo-
rithm terminates with test inputs witnessing bugs in function run
when the tests expose assertion failures in the original program. (b)
In the sampling phase (Deducer), since our technique is incomplete
in general, if a program has expressions that cannot be encoded into
a decidable logic for SMT solving, Refine may be unable to infer
necessary new samples because the sat function (line 4 and line 8
of Algorithm 3) aborts with undecidable result. (c) In the learning
phase (learner), it terminates with “Invariant not in hypothesis do-
main” in line 7 of Algorithm 1 when no invariant can be found in
the search space (which is parameterized by Equation 1 in Sec. 2).
(d) In the verifying phase (verifier), it returns “Verified” in line 5 of
Algorithm 2 when specifications are successfully proved.
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6.2 Soundness and Convergence
Our algorithm is sound since we rely on a sound refinement type
system [28] for proving safety properties (proved in [44]) or a test
input for witnessing bugs.

For a program e with some safety property ψ, a desired invari-
ant of e should accept all possible (unseen) good states and re-
ject all (unseen) bad states (according to [44], the desired invariant
found in our system is an inductive invariant, which hence can be
encoded into the refinement type system in [28] for verification).

Recall that our hypothesis domain is the arbitrary Boolean com-
bination of predicates, parameterized by Equation 1 in Sec. 2. We
claim the CEGAR loop in Algorithm 2 converges: it could eventu-
ally learn the desired invariant ϕ, provided one exists expressible
as a hypothesis in the hypothesis domain.

Theorem 1. [Convergence] Algorithm 2 converges.1

To derive a proof, assume Refine (line 8 of Algorithm 2) does
not take a desired invariant as input; otherwise Algorithm 2 has
already converges. Refine can iteratively increase i, the number of
times recursive functions are unrolled in e, to generate a new pair
of good/bad samples that refine ϕ. Otherwise, if such a value of i
does not exist,ϕ already classified all the unseen good/bad samples.
Hence, in each CEGAR iteration, by construction, a new sample
provides a witness of why a failed invariant should be refuted.

According to Lemma 1, our learning algorithm produces a con-
sistent hypothesis that separates all good samples from bad sam-
ples. As a result, the CEGAR loop does not repeat failed hy-
pothesis. Our technique essentially enumerates the hypothesis do-
main. Finally, the hypothesis domain is finite since the coefficients
and constants of atomic predicates are accordingly bounded (see
Sec. 5); the CEGAR based sampling-learning-checking loop in Al-
gorithm 2 converges in a finite number of iterations.

6.3 Algorithm Features
In Algorithm 2, the refinement type system and test system co-
operate on invariant inference. The refinement type system bene-
fits from tests because it can extract invariants from test outcomes.
Conversely, if previous tests do not expose an error in a buggy pro-
gram, failed invariants serve as abstractions of sampled good states.
By directing tests towards the negation of these abstractions, Algo-
rithm 3 guides test generation towards hitherto unexplored states.

Second, it is well known that intersection types [37] are nec-
essary for verification when an unknown function is used more
than once in different contexts [17]. Instead of inferring intersec-
tion types directly as in [17], we recover their precision by inferring
type refinements (via learning) containing disjunctions (as demon-
strated by the example in Fig. 3).

7. Recursive Data Structures
As stated in Sec. 2, we extend our framework to verify data struc-
ture programs with specifications that can be encoded into type re-
finements using measures [15, 40]. For example, a measure len,
representing list length, is defined in Fig. 9 for lists. We firstly ex-
tend the syntax of our language to support recursive data structures.

e ::= · · · | 〈e〉 | C〈e〉 | match e with |i Ci〈xi〉 → ei

M ::= (m, 〈Ci〈xi〉 → εi〉) ε ::= m | c | x | ε ε
The first line illustrates the syntax for tuple constructors, data type
constructors where C represent a constructor (e.g. list cons ), and
pattern-matching. M is a map from a measure m to its definition.
To ensure decidability, like [15], we restrict measures to be in the
class of first order functions over simple expressions (ε) so that they

1 All proofs can be found in [44].

l e t r e c len l =
match l w i t h
| x :: xs →

len xs + 1
| [ ] → 0

l e t reverse zs =
l e t r e c aux xs ys =

match xs w i t h
| [ ] → ys
| x::xs → aux xs (x::ys) i n

l e t r = aux zs [ ] i n
(assert(len r = len zs); r)

Figure 9. Samples of data structures can be classified by measures.

wp(e, φ) = case e of

| Ci〈e〉 when (m, 〈Ci〈xi〉 → εi〉) ∈M → [εi 〈e〉/(m ν)]φ

| { match e with |i Ci〈xi〉 → ei} when (m, 〈Ci〈xi〉 → εi〉) ∈M →∨
i

{∃〈x′i〉.[〈x′i〉/〈xi〉]((m e) = εi〈xi〉 ∧ (wp(ei, φ)))}

Figure 10. wp rule for recursive data type

are syntactically guaranteed to terminate. The typing rules for the
extended syntax are adapted from [15] and are available as part of
the supplementary material. To support this extension, we also need
to extend our wp definition in Fig. 10.

The basic idea is that when a recursive structure is encountered,
its measure definitions are accordingly unrolled: (1) for a struc-
ture constructor Ci〈e〉, we derive the appropriate pre-condition by
substituting the concrete measure definition εi〈e〉 for the measure
applicationm ν in the post-condition; this is exemplified in Fig. 11
where bad-condition δ2 is obtained from δ1 by substituting len ys
for len ys + 1 based on the definition of measure len; (2) for a
match expression, the pre-condition is derived from a disjunction
constructed by recursively calling wp over all of its case expres-
sions, which are also extended with the guard predicate capturing
the measure relation between e and 〈xi〉. All the 〈xi〉 need to be
existentially quantified and skolemized when fed to an SMT solver
to check satisfiability. The bad condition δ3 in Fig. 11 is such an
example.

With the extended definition, sampling recursive data structures
is fairly strait-forward. To collect “good” states, in the instrumenta-
tion phase, for each recursive structure serving as a function param-
eter or return value in some data structure function, we simply call
its measure functions and record the measure outputs in the sam-
ple state. To collect “bad” states, we invoke an SMT solver on the
bad-conditions for each data structure functions to find satisfiabil-
ity solutions. The solver can generate values for measures because
it interprets a measure function in bad-conditions as uninterpreted.

Consider how we might infer a precondition for function aux
in Fig. 9. Note that aux is defined inside reverse and is a closure
which can refer to variable zs in its lexical scoping. A good sample
presents the values of len(xs), len(ys) and len(zs), trivially
available from testing. A bad sample captures a bad relation among
len(xs), len(ys) and len(zs) that is sufficient to invalidate the
assertion in the reverse function, solvable from δprebad in Fig. 11.
With these samples, our approach infers the following refinement
type for aux, which is critical to prove the assertion.

xs:list→ ys: {list| len xs + len ν = len zs}
→ {list | len ν = len zs}

If function aux is not defined inside of function reverse where zs
is not in the scope of aux, our technique infers a different type for
aux, xs:list→ ys:list→ {list | len xs + len ys = len ν}.

When there is a need for sampling more good states in the Re-
finement algorithm (Algorithm 3), generating additional test inputs
for data structures from wp-condition reduces to Korat [3], a con-
straint based test generation mechanism. Alternatively, the failed
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l e t r e c aux xs ys =
δprebad : δ3 ∨ δ4

match xs w i t h
δ4 : len xs = 0 ∧ len ys 6= len zs
| [ ] → ys
δ3 : ∃xs′.len xs = 1 + len xs′ ∧ [xs′/xs]δ2
| x::xs →
δ2 : len xs = 0 ∧ len ys + 1 6= len zs
l e t ys = x::ys i n
δ1 : len xs = 0 ∧ len ys 6= len zs
aux xs ys i n

δpostbad : len ν 6= len zs

Samples:
lxs lys lzs

G 1 2 3
2 1 3

B 1 0 2
1 0 0

Likely invariant:

lxs + lys = lzs

Figure 11. Classifying good (G) and bad (B) samples to construct
an invariant (precondition) for aux. lxs abbreviates len xs, etc.

Loops N L T CPA ICE SC MC2

cgr2 2 0.2 0.3s 1.7s 6.9s 2.7s 17.3s
ex23 3 0.3 0.4s 16.7s 17.4s 4.7s 0.1s
sum1 5 0.6 0.8s 1.5s 1.8s 2.6s 29.1s
sum4 2 0.1s 0.1s 3.2s 2.6s × ×

tcs 2 0.1s 0.1s 1.7s 1.4s 0.5s ×
trex3 2 0.1s 0.3s × 2.2s × ×
prog4 3 0.3s 0.5s 1.6s × × 0.1s
svd 2 0.5s 1.0s 19.1s × 5.9s ×

Figure 12. Evaluation using loop programs: N and T are the num-
ber of CEGAR iterations and total time of our tool (L is the time in
learning). × means an adequate invariant was not found.

invariants can be considered incorrect specifications. We can di-
rectly generate inputs to the program by causing it to violate the
specifications following [24, 29]. Notably, the former approach is
complete if the underlying SMT solver can always find a model for
any satisfiable formula. As an optimization for efficiency, we boot-
strap the verification procedure with random testing to generate a
random sequence of method calls (e.g. insert and remove ) up
to a small length s in the Main algorithm (line 1 of Algorithm 2).
In our experience in Sec. 8, setting s to 300 allows the system to
converge for all the container structures we consider without requir-
ing extra good samples; this result supports a large case study [31]
showing that test coverage of random testing for container struc-
tures is as good as that of systematic testing.

8. Experimental Results
We have implemented our approach in a prototype verifier.2 Our
tool is based on OCaml compiler. We use Yices [42] as our SMT
solver. To test the utility of our ideas, we consider a suite of
around 100 benchmarks from the related work. Our experimental
results are collected in a laptop running Intel Core 2 Duo CPU
with 4GB memory. Our experiments are set up into three phases.
In the first step, we demonstrate the efficiency of our learning
based invariant generation algorithm (Sec. 5) by comparing it with
existing learning based approaches, using non-trivial first-order
loop programs. In this step, we only compare first-order programs
because the sampling strategies used in the other learning based
approaches do not work in higher-order cases. In the second and
third steps, we compare with MOCHI and LIQUIDTYPES, two
state-of-the-art verification tools for higher-order programs.

8.1 Learning Benchmarks
We collected challenging loop programs found in an invariant
learning framework ICE [10]. We list in Fig. 12 the programs

2 https://www.cs.purdue.edu/homes/zhu103/msolve/

Program N L T I DI MOCHI
ainit 4 1.9s 2.3s 5 4 5.7s
amax 4 0.6s 0.9s 5 2 2.4s
accpr 3 0.8s 1.1s 7 0 3.9s

fold fun list 3 0.2s 0.6s 5 0 3.7s
mapfilter 5 0.7s 1.2s 3 2 18.5s

risers 3 0.1s 0.3s 4 2 2.4s
zip 3 0.1s 0.2s 1 0 2.4s

zipunzip 3 0.1s 0.2s 1 0 1.7s

Figure 13. Evaluation using MOCHI benchmarks: N and T are
the number of CEGAR iterations and total time of our tool (L is
the time spent in learning), I is the number of discovered type
refinements, among which DI shows the number of disjunctive
type refinements inferred. Column MOCHI shows verification time
using MOCHI.

that took more than 1s to verify in their tool. We additionally com-
pare our approach to CPA, a static verification tool [2] and three
related learning based verification tools that are also based on the
idea of inferring invariants as classifiers to good/bad sample pro-
gram states: ICE [10], SC [34] and MC2 [30]. Our tool outperforms
ICE because it completely abstracts the inference of the Boolean
structure of likely invariants while ICE requires to fix a Boolean
template prior to learning; it outperforms SC because it guides sam-
ples generation via the CEGAR loop; it outperforms MC2 due to its
attempt to find minimal invariants from the samples for generaliza-
tion.

8.2 MOCHI Higher-Order Programs
To gauge the effectiveness of our protptype with respect to exist-
ing automated higher-order verification tools, we consider bench-
marks encoded with complex higher-order control flow, reported
from MOCHI [17], including many higher-order list manipulating
routines such as fold, forall, mem and mapfilter.

We gather the MOCHI results on an Intel Xeon 5570 CPU with
6 GB memory, running an up-to-date MOCHI implementation, a
machine notably faster than the environment for our system. A CE-
GAR loop in MOCHI performs dependent type inference [37, 38]
on spurious whole program counterexamples from which suitable
predicates for refining abstract model are discovered based on inter-
polations [21]. However, existing limitations of interpolating theo-
rem provers may confound MOCHI. For example, it fails to prove
the assertion given in program in Fig. 9.

Fig. 13 only lists results for which MOCHI requires more than
1 second. Our tool also takes less than 1s for the rest of MOCHI
benchmarks. Performance improvements range from 2x to 18x.
We typically infer smaller and hence more readable types than
MOCHI. In the case of mapfilter , where the performance dif-
ferential is greatest, MOCHI spends 6.1s to find a huge dependent
intersection type in its CEGAR loop. This results in an additional
10.7s spent on model checking. In contrast, our approach tries to
learn a simple classifier from easily-generated samples to permit
generalization.

8.3 Recursive Functional Data Structure Programs
We further evaluate our approach on some benchmarks that ma-
nipulate data structures. List is a library that contains standard
list routines such as append, length, merge, sort, reverse and
zip . Sieve implements Eratosthene’s sieve procedure. Treelist
is a data structure that links a number of trees into a list. Brauntree
is a variant of balanced binary trees. They are described in [41].
Ralist is a random-access list library. Avltree and Redblack
are implementation of two balanced tree AVL-tree and Redblack
tree. Bdd is a binary decision diagram library. Vec is a OCaml ex-
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Program LOC An LIQTYAN T Property

List 62 6 12 2s Len1
Sieve 15 1 2 1s Len1

Treelist 24 1 2 1s Sz
Fifo 46 1 5 2s Len1

Ralist 102 2 6 2s Len1, Bal
Avl tree 75 3 9 20s Bal, Sz, Ht

Bdd 110 5 14 13s VOrder
Braun tree 39 2 3 1s Bal,Sz
Set/Map 100 3 10 14s Bal,Ht
Redblack 150 3 9 27s Bal,Ht,Clr

Vec 310 15 39 110s Bal,Len2,Ht

Figure 14. Evaluation using data structure benchmarks: LOC is
the number of lines in the program, An is the number of required
annotations (for instrumenting data structure specifications), T is
the total time taken by our system. LIQTYAN is the number of
annotations optimized in LIQUIDTYPES system.

tensible array libraray. These benchmarks are used for evaluation
in [28]. Fifo is a queue structures maintained by two lists, adapted
from the SML library [35]. Set/Map is the implementation of finite
maps taken from the OCaml library [26].

We check the following properties: Len1, the various proce-
dures appropriately change the length of lists; Len2, the vector
access index is nonnegative and properly bounded by the vector
length; Bal, the trees are recursively balanced (the definition of bal-
ance in different tree implementations varies); Sz or Ht, the func-
tions coordinate to change the number of elements contained and
the height of trees; Clr, the tree satisfies the redblack color invari-
ant; VOrder, the BDD maintains the variable order property.

The results are summarized in Fig. 14. The number of anno-
tations used in our system is reflected in column An. These an-
notations are simply the property in Fig. 14. Our experiment
shows that we eliminate the burden of annotating a predefined
set of likely invariants used to prove these properties, required in
LIQUIDTYPES, because we infer such invariants automatically.

For example, in the Vec library, an extensible array is repre-
sented by a balanced tree with balance factor of at most 2. To prove
the correctness of its recursive balancing routine, recbal(l, r),
which aims to merge two balanced trees (l and r) of arbitrarily
different heights into a single balanced tree, our tool infers a com-
plex invariant (equivalent to a 4-DNF formula) describing the re-
sult of recbal. Without that invariant, the refinement type checker
will end up rejecting the correct implementation. In contrast, such
a complicated invariant is required to be manually provided in
LIQUIDTYPES. Or, at least, the programmer has to provide the
shape of the desired invariant (the tool then considers all likely in-
variants of the presumed shape). The annotation burden of recbal
in LIQUIDTYPES is listed as below in which v refers to the result
of recbal and ht is a measure definition that returns the height a
tree structure.

1.Bal(v)(A : vec) : ht v{≤,≥}ht A {−,+} [1, 2, 3]

2.Bal(v) : ht v{≥,≤}(ht l >= ht r ? ht l : ht r) {−,+} [0, 1, 2]

3.Bal(v) : ht v ≥ (ht l ≤ ht r + 2 ∧ ht l ≥ ht r− 2 ?

(ht l ≥ ht r ? ht l : ht r) + 1 : 0)

4.Bal(v) : ht v ≥ (ht l ≥ ht r ? ht l : ht r)+

(ht l ≤ ht r + 2 ∧ ht l ≥ ht r− 2 ? 1 : [0,−1])

The four annotations are already complex because the desired
invariant of recbal must contain disjunctive clauses. Without suit-
able expertise, providing such annotations could be challenging.
In comparison, our tool automatically generates a Boolean combi-
nation of the necessary atomic predicates parameterized from the
hypothesis domain (parameterized from Equation 1). It learns in-

variants from sampling the program and closes the gap between
the programmer’s intuition and inference mechanisms performed
by formal verification tools.

Fig. 14 does not show the time taken by LIQUIDTYPES because
it crucially depends on the relevance of user-provided invariants.
Limitations. There are a few limitations to our current implemen-
tation. First, we rely on an incomplete type system [28]. In particu-
lar, our type system is not as complete as [39] which automatically
adds ghost variables into programs to remedy incompleteness in
the refinement type system. Second, our tool fails if our hypothe-
sis domain is not sufficiently expressive to compute a classifier for
an invariant. As part of future work, we plan to consider ways to
gradually increases the expressivity of the hypothesis domain by
parameterizing Equation 1. Third, we do not currently allow data
structure measures to be defined as mappings from datatypes to sets
(e.g. a measure that defines all the elements of a list), preventing us
from inferring properties like list-sorting, which requires reasoning
about the relation between the head element and all elements in its
tail. We leave such extensions for future work.

9. Related Work and Conclusions
There has been much work exploring the incorporation of refine-
ment types into programming languages. DML [41] proposed a
sound type-checking system to validate programmer-specified re-
finement types. LIQUIDTYPES [28] alleviates the burden for anno-
tating full refinement types; it instead blends type inference with
predicate abstraction [11], and infers refinement types from con-
junctions of programmer-annotated Boolean predicates over pro-
gram variables, following the Houdini approach [9].

There has also been substantial advances in the development of
dependent type systems that enable the expression and verification
of rich safety and security properties, such as Ynot [22], F* [36],
GADTs and type classes [18, 19], albeit without support for in-
variant inference. The use of directed tests to drive the inference
process additionally distinguishes our approach from these efforts.

Higher-order model checkers, such as MOCHI [17], compute
predicate abstractions on the fly as a white-box analysis, encoding
higher-order programs into recursion schemes [16]. Recent work
in higher-order model checking [27] has demonstrated how to scale
recursion schemes to several thousand rules. We consider the verifi-
cation problem from a different angle, applying a black-box analy-
sis to infer likely invariants from sampled states. In a direction op-
posite to higher-order model checking, HMC [14] translates type
constraints from a type derivation tree into a first-order program
for verification. However, 1) the size of the constraints might be
exponential to that of the original program; 2) the translated pro-
gram loses the structure of the original, thus making it difficult to
provide an actual counterexample for debugging. Popeye [43] sug-
gests how to find invariants from counterexamples on the original
higher-order source, but its expressiveness is limited to conjunctive
invariants whose predicates are extracted from the program text.

Refinement types can also be used to direct testing, demon-
strated in [29]. A relatively complete approach for counterexample
search is proposed in [24] where contracts and code are leveraged
to guide program execution in order to synthesize test inputs that
satisfy pre-conditions and fail post-conditions. In comparison, our
technique can only find first-order test inputs for whole programs.
However, existing testing tools can not be used to guarantee full
correctness of a general program.

Dynamic analyses can in general improve static analyses. The
ACL2 [4] system presents a synergistic integration of testing with
interactive theorem proving, which uses random testing to auto-
matically generate counterexamples to refine theorems. We are in
part inspired by YOGI [12], which combines testing and first-order
model checking. YOGI uses testing to refute spurious counterex-
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amples and find where to refine an imprecise program abstraction.
We retrieve likely invariants directly from tests to aid automatic
higher-order verification.

There has been much interest in learning program invariants
from sampled program states. Daikon [8] uses conjunctive learning
to find likely program invariants with respect to user-provided
templates with sample states recorded along test runs. A variety
of learning algorithms have been leveraged to find loop invariants,
using both good and bad sample states: some are based on simple
equation or template solving [10, 25, 33]; others are based on
off-the-shell machine learning algorithms [30, 32, 34]. However,
none of these efforts attempt to sample and synthesize complex
invariants, in the presence of recursive higher-order functions.
Conclusion. We have presented a new CEGAR based framework
that integrates testing with a refinement type system to automati-
cally infer and verify specifications of higher-order functional pro-
grams using a lightweight learning algorithm as an effective in-
termediary. Our experiments demonstrate that this integration is
efficient. In future work, we plan to integrate our idea into more
expressive type systems. The work of [5] shows that a refinement
type system can verify the type safety of higher-order dynamic lan-
guages like Javascript. However, it does not give an inference al-
gorithm. It would be particularly useful to adapt the learning based
inference techniques shown here to the type system for dynamic
languages.
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