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Abstract

Modern relational database systems are beginning to
support ad hoc queries on mining models. In this paper,
we explore novel techniques for optimizing queries that ap-
ply mining models to relational data. For such queries, we
use the internal structure of the mining model to automat-
ically derive traditional database predicates. We present
algorithms for deriving such predicates for some popular
discrete mining models: decision trees, naive Bayes, and
clustering. Our experiments on Microsoft SQL Server 2000
demonstrate that these derived predicates can significantly
reduce the cost of evaluating such queries.

1. Introduction

Progress in database technology has made massive ware-
houses of business data ubiquitous [10]. There is increasing
commercial interest in mining the information in such ware-
houses. Data mining is used to extract predictive models
from data that can be used for a variety of business tasks.
For example, based on a customer’s profile information, a
model can be used for predicting if a customer is likely to
buy sports items. The result of such a prediction can be
leveraged in the context of many applications, e.g., a mail
campaign or an on-line targeted advertisement.

Recently, several database vendors have made it possi-
ble to apply predictive models on relational data using SQL
extensions. The predictive models can either be built na-
tively or imported, using PMML or other interchange for-
mat. This enables us to express queries containingmin-
ing predicates such as: “Find customers who visited the
MSNBC site last week and who arepredicted to belong to
the category of baseball fans”. The focus of this paper is to
optimize queries containing such mining predicates. To the
best of our knowledge, this is the first study of its kind. The
techniques described in this paper are general and do not
depend on the specific nature of the integration of databases
and data mining.

We propose a technique that exploits knowledge of the
mining model’s content to optimize queries with mining

predicates. Today’s systems would evaluate the above query
by first selecting the customers who visited the MSNBC
site, then applying the mining model (treated as black-box)
on the selected rows, and filtering the subset that are pre-
dicted to be “baseball fans”. In contrast, we wish to exploit
the mining predicate for better access path selection, partic-
ularly if “baseball fans” represent a very small fraction of
MSNBC visitors. The main challenge in exploiting mining
predicates is that each mining model has its own specific
method of predicting classes as a function of the input at-
tributes, and some of these methods are too complex to be
directly usable by traditional database engines.

We present a general framework in which, given a min-
ing predicate, a model-specific algorithm can be used to
infer a simpler derived predicate expression. The derived
predicate expression is constrained to be a propositional
expression consisting of simple selection predicates on at-
tribute values. Such a derived predicate, which we call an
upper envelope of the mining predicate, can then be ex-
ploited for access path selection like any other traditional
database predicate.

We concentrate on predictive mining models that when
applied to a tuple~x predict one ofK discrete classes
c1; : : : cK . Most classification and clustering models fall in
this category. For every possible classc that the modelM
predicts, its upper envelope is a predicate of the formM c(~x)
such that the tuple~x has classc only if it satisfies the predi-
cateMc(~x), but not necessarily vice-versa. We require that
Mc(~x) is a propositional predicate expression consisting of
simple selection conditions on attributes of~x. Such upper
envelopes can be added to the query to generate a semanti-
cally equivalent query that would result in the same set of
answers over any database. SinceMc(~x) is a predicate on
the attributes of~x, it has the potential of better exploiting
index structures and improving the efficiency of the query.

The effectiveness of such semantic optimization depends
on two criteria. First, we must demonstrate that the upper-
envelope predicates can be derived for a wide set of com-
monly used mining models. Second, we need to show that
the addition of these upper-envelope predicates can have a
significant impact on the execution time for queries with



mining predicates. In turn, this requires that our deriva-
tion of upper envelopes to be “tight” and the original min-
ing predicate to be selective so that they are effective in in-
fluencing the access path selection. Our extensive exper-
iments on Microsoft SQL Server provide strong evidence
of the promise of such semantic optimization. Moreover,
our experiments demonstrate that little overhead is incurred
during optimization for using such upper envelopes.

Outline: The rest of the paper is organized as follows.
In Section 2 we review existing support for mining pred-
icates in SQL queries in two commercially available rela-
tional database engines: Microsoft SQL Server’s Analysis
Server and IBM DB2’s Intelligent Miner Scoring facility.
In Section 3 we present algorithms for deriving such pred-
icates for three popular discrete mining models: decision
trees, naive Bayes classifiers and clustering. In Section 4
we discuss the operational issues of using upper envelopes
to optimize queries with mining predicates. In Section 5 we
report the results of our experimental study to evaluate the
effectiveness of our technique in improving the efficiency
of queries with mining predicates. We discuss related work
in Section 6.

2. Expressing Mining Queries in Existing Sys-
tems

In this section, we describe some of the possible ap-
proaches to expressing database queries with mining predi-
cates. We emphasize that our techniques are general in the
sense that they do not depend on the specific nature of such
integration of databases and data mining.

2.1. Extract and Mine

The traditional way of integrating mining with query-
ing is to pose a traditional database query to a relational
backend. The mining model is subsequently applied in the
client/middleware on the result of the database query. Thus,
for the example in the introduction, the mining query will be
evaluated in the following phases: (a) Execute a SQL query
at the database server to obtain all the customers who vis-
ited MSNBC last week (b) For each customer fetched into
the client/middleware, apply the mining model to determine
if the customer is predicted to be a “baseball fan”.

2.2. Microsoft Analysis Server

In the Microsoft Analysis Server product (part of SQL
Server 2000) mining models are explicitly recognized as
first-class table-like objects. Creation of a mining model
corresponds to schematic definition of a mining model. The
following example shows creation of a mining model that
predicts risk level of customers based on source columns
gender, purchases and age using Decision trees.

CREATE MINING MODEL Risk Class // Name of Model
(
CustomerID LONG KEY, // source column
Gender TEXT DISCRETE, // source column
Risk TEXT DISCRETE PREDICT, // prediction column
Purchases DOUBLE DISCRETIZED(), // source column
Age DOUBLE DISCRETIZED, // source column
)
USING [DecisionTrees101] // Mining Algorithm

The model is trained using the INSERT INTO statement
that inserts training data into the model (not discussed due
to lack of space), Predictions are obtained from a model
M on a dataset D using a prediction join [15] between D
and M. A prediction join is different from a traditional equi-
join on tables since the model does not actually contain data
details. The following example illustrates prediction join.

SELECT D.CustomerID, M.Risk
FROM [Risk Class] M
PREDICTION JOIN
(SELECT CustomerID, Gender, Age, sum(Purchases) as SP

FROM Customers D Group BY CustomerID, Gender, Age ) as D
ON M.Gender = D.Gender
and M.Age = D.Age
and M.Purchases = t.SP
Where M.Risk = “low”

In this example, the value of “Risk” for each customer
is not known. Joining rows in the Customers table to the
model M returns a predicted “Risk” for each customer. The
WHERE clause specifies which predicted values should be
extracted and returned in the result set of the query. Specif-
ically, the above example has the mining predicate Risk =
”low”.

2.3. IBM DB2
IBM’s Intelligent Miner (IM) Scoring product integrates

the model application functionality of IBM Intelligent
Miner for Data with the DB2 Universal Database [21] [1].
Trained mining models in flat file, XML or PMML format
can be imported into the database. We show an example
of importing a classification model for predicting the risk
level of a customer into a database using a UDF called ID-
MMX.DM impClasFile().

INSERT INTO IDMMX.ClassifModels values (’RiskClass’,
IDMMX.DM impClasFile(’/tmp/myclassifier.x’))

Once the model is loaded, it can be applied to compatible
records in the database by invoking another set of User De-
fined Functions (UDFs). An example of applying the above
classification mining model (“RiskClass”) on a data table
called Customers is shown below.

SELECT CustomerID, Risk
FROM (

SELECT CustomerID, IDMMX.DM getPredClass(
IDMMX.DM applyClasModel(c.model,



IDMMX.DM applData(IDMMX.DM applData(’AGE’,s.age),
’PURCHASE’,s.purchase))) as Risk

FROM ClassifModels c, Customerlist s
WHERE c.modelname=’RiskClass’ and s.salary<40000

) WHERE Risk = ’low’

The UDF IDMMX.DM applData is used to map the
fields s.salary and s.age of the Customerlist table into the
corresponding fields of the model for use during predic-
tion. The UDF applyClasModel() applies the model on
the mapped data and returns a composite result object that
has along with the predicted class other associated statis-
tics like confidence of prediction. A second UDF ID-
MMX.DM getPredClass extracts the predicted class from
this result object. The mining predicate in this query is:
Risk = ’low’.

3. Deriving Upper Envelopes for Mining Pred-
icates

We present algorithms for deriving upper envelopes for
three popular mining models. We focus on mining models
that produce a discrete class as output. The class of models
whose prediction is real-valued is a topic of our future work.
For some models like decision trees and rule-based classi-
fiers, derivation of such predicates is straightforward as we
show in Section 3.1. The process is more involved for naive
Bayes classifiers and clustering as we show in Sections 3.2
and Sections 3.3 respectively.

In deriving these upper envelopes two conflicting issues
that arise are thetightness andcomplexity of the upper enve-
lope predicate. An upper envelope of a classc is said to be
exact if it includes all points belonging toc and no point be-
longing to any other class. In most cases, where the model
is complex we need to settle for looser bounds because both
the complexity of the enveloping predicate and the running
time for deriving the upper envelope might get intolerable.
Complex predicates are also ineffective in improving the ef-
ficiency of the query because the DBMS might spend a lot
of time in evaluating these otherwise redundant predicates.
We revisit these issues in Sections 4.2.

3.1. Decision trees
In a decision tree [29] the internal nodes define a simple

test on one of the attributes and the leaf-level nodes define
a class label. An example of a decision tree is shown in
Figure 1. The class label of a new instance is determined
by evaluating the test conditions at the nodes and based on
the outcome following one of the branches until a leaf node
is reached. The label of the leaf is the predicted class of
the instance. We extract the upper envelope for a classc,
by ANDing the test conditions on the path from the root
to each leaf of the class and ORing them together. Clearly,
this envelope isexact. For the example in Figure 1 the upper
envelope of classc1 is “((lower BP> 91) AND (age> 63)

Lower BP > 91

Age > 63

2

Upper BP > 130

1

yes no

yes no

yes no

1
2

yes no

Overweight? 2

Figure 1. Example of a decision tree
AND (overweight)) OR ((lowerBP� 91) AND (upper BP
> 130))”. Similarly, of classc2 is “((lower BP> 91) AND
(age� 63)) OR ((lower BP> 91) AND (age> 63) AND
(not overweight)) OR ((lowerBP� 91) AND (upper BP�
130))”.

Extraction of upper envelopes for rule-based classi-
fiers [27, 14] is similarly straightforward. A rule-based
learner consists of a set of if-then rules where the body
of the rule consists of conditions on the data attributes and
the head (the part after “then”) is one of thek class-labels.
The upper envelope of each classc is just the disjunction of
the body of all rules wherec is the head. Unlike for deci-
sion trees, the envelope may not be exact because some rule
learners allow rules of different classes to overlap. There-
fore, an input instance might fire off two rules, each of
which predicts a different class. Typically, a resolution pro-
cedure based on the weights or sequential order of rules is
used to resolve conflict in such cases. It may be possible to
tighten the envelope in such cases by exploiting the knowl-
edge of the resolution procedure.

3.2. naive Bayes Classifiers
Extracting the upper envelopes for naive Bayes classi-

fiers is considerably more difficult than for decision trees.
We first present a primer on naive Bayes classifiers in Sec-
tion 3.2.1. Then we present two algorithms for finding up-
per envelopes in Sections 3.2.2. Finally, we present a proof
of correctness in Section 3.2.3.

3.2.1. Primer on naive Bayes classifiers
Bayesian classifiers [27] perform a probabilistic model-

ing of each class. Let~x be an instance for which the clas-
sifier needs to predict one ofK classesc1; c2; : : : cK . The
predicted classC(~x) of ~x is calculated as

C(~x) = argmaxk Pr(ckj~x) = argmaxk
Pr(~xjck) Pr(ck)

Pr(~x)

wherePr(ck) is the probability of classck andPr(~xjck) is
the probability of~x in classck. The denominatorPr(~x) is
the same for all classes and can be ignored in the selection
of the winning class.

Letn be the number of attributes in the input data. Naive
Bayes classifiers assume that the attributesx1; : : : ; xn of ~x
are independent of each other given the class. Thus, the



above formula becomes:

C(~x) = argmaxk(
nY

d=1

Pr(xdjck) Pr(ck)) (1)

= argmaxk(
nX

d=1

logPr(xdjck) + logPr(ck)) (2)

Ties are resolved by choosing the class which has the
higher prior probabilityPr(ck).

The probabilitiesPr(xdjck) andPr(ck) are estimated us-
ing training data. For a discrete attributed, letm1d : : :mndd

denote thend members of the domain ofd. For each mem-
bermld, during the training phase we learn a set ofK values
corresponding to the probabilityPr(xd = mldjck). Con-
tinuous attributes are either discretized using a preprocess-
ing step (see [17] for a discussion of various discretization
methods) or modeled using a single continuous probabil-
ity density function, the most common being the Gaussian
distribution. In this paper we will describe the algorithm
assuming that all attributes are discretized.

Example An example of a naive Bayes classifier is shown
in Table 1 forK = 3 classes,n = 2 dimensions, first di-
mensiond0 havingn0 = 4 members and the second di-
mensiond1 havingn1 = 3 members. The triplet along
the column margin show the trainedPr(mj1jck) values for
each of the three classes for dimensiond1. The row margin
shows the corresponding values for dimensiond0. For ex-
ample, the first triplet in the column margin (.01, .7, .05)
stands for(Pr(m01jc1);Pr(m01jc2);Pr(m01jc3)) respec-
tively. The top-margin shows the class priors. Given these
parameters, the predicted class for each of the 12 possible
distinct instances~x (found using Equation 1) is shown in
the internal cells. For example, the value 0.001 for the top-
leftmost cell denotesPr(~xjc1) where~x = (m00;m01).

3.2.2. Finding the upper envelope of a class
We next present algorithms for finding the upper en-

velope to cover all regions in then dimensional attribute
space where the naive Bayes classifier will predict a given
classck. For example, the upper envelope for classc2
in the example of Figure 1 is (d0 2 fm20;m30g AND
d1 2 fm01;m11g) OR (d1 = m01). We will express this
envelope as two regions described by their boundaries as
(d0 : [2::3]; d1 : [0::1]) _ (d1 : [0::0]).

A simple way to find such envelopes is to enumerate for
each combination in thisn dimensional space the predicted
class as we have done for the example above. We can then
cover all combinations where classck is the winner with
a collection of contiguous regions using any of the known
multidimensional covering algorithms [2, 30]. Each region
will contribute one disjunct to the upper envelope. This is
in fact a generic algorithm applicable to any classification
algorithm, not simply naive Bayes. Unfortunately, it is im-
practically slow to enumerate all

Qn

d=1 nd (nd is the size

of the domain of dimensiond) member combinations. A
medium sized data set in our experiments took more than
24 hours for just enumerating the combinations. We next
present a top-down algorithm that avoids this exponential
enumeration.

A top-down algorithm The algorithm proceeds in a top-
down manner recursively narrowing down the region be-
longing to the given classck for which we want to find the
upper envelope. The main intuition behind this algorithm
is to exploit efficiently computable upper bounds and lower
bounds on the probabilities of classes to quickly establish
the winning and losing classes in a region consisting of sev-
eral combinations.

The algorithms starts by assuming that the entire re-
gion belongs to classck. It then estimates an upper bound
maxProb(cj) and lower bound minProb(cj) on the proba-
bilities of each classcj as follows:

maxProb(cj) = Pr(cj)

nY
d=1

max
l21:::nd

Pr(mldjcj)

minProb(cj) = Pr(cj)
nY

d=1

min
l21:::nd

Pr(mldjcj)

Computation of these bounds requires time only linear in
the number of members along each dimension. In Fig-
ure 2(a) we show the minProb (second row) and maxProb
(third row) values for the region shown in Figure 1. For ex-
ample, in the figure the minProb value of 0.0005 for class
c2 is obtained by multiplying the three valuesPr(c2) =
0:5;minl20::3 Pr(ml0jc2) = min(0:1; 0:1; 0:4; 0:4) =
0:1;minl20::2 Pr(ml1jc2) = min(0:7; 0:29; 0:01) = 0:01.

Using these bounds we partially reason about the class
of the region to distinguish amongst one of these three out-
comes.

1. MUST-WIN: All points in the region belong to class
ck. This is true if the minimum probability of classck
(minProb(ck)) is greater than the maximum probabil-
ity (maxProb(cj)) values of all classescj .

2. MUST-LOSE: No points in the region belong to class
ck. This is true if there exists a classcj for which
maxProb(ck) < minProb(cj). In this case classcj will
win over classck at all points in this region.

3. AMBIGUOUS: Neither of the previous two conditions
apply, i.e., possibly a subset of points in the region be-
long to the class.

In Section 3.2.3 we sketch a proof of why these bounds are
correct and also show how to improve them further.

When the status of a region isAMBIGUOUS, we need to
first shrink the region and then split it into smaller regions,
re-evaluate the upper and lower bounds in each region and
recursively apply the above tests until all regions either sat-
isfy one of the first two terminating conditions or the al-



d1 # p(c1) = 0:33; p(c2) = 0:5; p(c3) = 0:17

m01 .01, .7, .05 .001, .03, .0005(c2) .001, .03, .0005(c2) .0002, .1, .004(c2) .0002, .1, .004(c2)
m11 .5, .29, .05 .07, .01, .0005(c1) .07, .01, .0005(c1) .009, .06, .004(c2) .009, .06, .004(c2)
m21 .49, .1, .9 .07, .0005, .009(c1) .07, .0005, .009(c1) .009, .002, .07(c3) .009, .002, .07(c3)

d0 ! .4, .1, .05 .4, .1, .05 .05, .4, .4 .05, .4, .4
m00 m10 m20 m30

Table 1. Example of a naive-Bayes classifier. Refer the Example paragraph of Section 3.2.1 for a description.

Region:d0; d1 [0::3]; [0::2] [0::3]; [2::2] [0::3]; [0::1] [0::1]; [0::1] [2::3]; [0::1]
MinProb: .0002, .0005, .0005 .0002, .03, .0005 .009, .0005, .0005 .07, .0005, .0005 .009, .002, .004
MaxProb: .07, .1, .07 .0014, .1, .004 .07, .06, .07 .07, .01, .009 .009, .06, .07
Status: AMBIGUOUS MUST-LOSE AMBIGUOUS MUST-WIN AMBIGUOUS

(a) Starting region (b) Tighter bounds (c) Shrinking d1 (d) 1st child on splitting d0 (e) 2nd child
with member m21 of d1 to [0..1] into [0..1] and [2..3]

Figure 2. First three steps of finding predicates for classc1 of the classifier in Figure 1 showing a shrinkage step along dimension
1 followed by a split along dimension 0. In each box, the first line identifies the boundary of the region, the second and third lines
show respectively the minProb and maxProb values of each of the three classes. The fourth line is the status of the region with
respect to classc1.

gorithm has made a maximum number of splits (an input
parameter of the algorithm). A sketch of the algorithm ap-
pears below.
Algorithm 1 UpperEnvelope(ck)

1: T : Tree initialized with the entire region as root;
2: while number of tree nodes expanded< Thresholddo
3: r= an unvisited leaf ofT ;
4: r.status = Compute usingck and maxProb, minProb

values ofr;
5: if r.status =MUST-WIN then markr as visited;
6: if r.status =MUST-LOSE then remover from T ;
7: if r.status =AMBIGUOUS then
8: Shrink r along all possible dimensions;
9: Split r into r1 andr2;

10: Add r1 andr2 to T as children ofr;
11: end if
12: end while
13: SweepT bottom-up merging all contiguous leaves;
14: UpperEnvelope(ck) = disjunct over all leaves ofT .

Shrink: We cycle through all dimensions and for each
dimensiond evaluate for each of its memberm ld the
maxProb(cj ; d;mld) and minProb(cj ; d;mld) value as

maxProb(cj ; d;mld) = Pr(cj) Pr(mldjcj)
Y
e6=d

max
r

Pr(mrejcj)

minProb(cj ; d;mld) = Pr(cj) Pr(mldjcj)
Y
e6=d

min
r

Pr(mrejcj)

We use these revised tighter bounds to further shrink the
region where possible. We test theMUST-LOSE condition
above on the revised bounds and remove any members of an
unordered dimension that satisfy this condition. For ordered

dimensions, we only remove members from the two ends to
maintain contiguity.

In Figure 2(a), from the minProb and maxProb values of
the starting region[0::3]; [0::2] we find that for classc1 nei-
ther of theMUST-WIN or MUST-LOSEsituation hold. Hence
the situation isAMBIGUOUS for c1 and we attempt to shrink
this region. In Figure 2(b) we show the revised bounds
for the last memberm21 of dimension 1. This leads to
a MUST-LOSE situation for classc1 because in the region
maxProb for classc1 is smaller than minProb for classc2.
The new maxProb and minProb values in the shrunk region
are shown in Figure 2(c). The shrunk region is again in an
AMBIGUOUS state and we attempt to split it next.

Split: Regions are split by partitioning the values along a
dimension. In evaluating the best split, we want to avoid
methods that require explicit enumeration of the class of
each combination. In performing the split our goal is to sep-
arate out (as best as possible) the regions which belong to
classck from the ones which do not belong tock. For this,
we rely on the well-known entropy function [27] for quan-
tifying the skewness in the probability distribution of class
ck along each dimension. The details of the split are exactly
as in the case of binary splits during decision tree construc-
tion. We evaluate the entropy function for split along each
member of each dimension and choose the split which has
the lowest average entropy in the two sub-regions. The only
difference is that we do not have explicit counts of each
class, instead we rely on the probability values of the mem-
bers on each side of the splitting dimension.

Continuing with our example, in Figure 2(d) and (e) we
show the two regions obtained by splitting dimensiond0
into [0..1] and [2..3]. The first sub-region shown in Fig-



ure 2(d) leads to aMUST-WIN situation and gives one dis-
junct for the upper envelope of classc1. The second re-
gion is still in anAMBIGUOUS situation – however a second
round of shrinkage along dimensiond1 on the region leads
to an empty region and the top-down process terminates.

Merging regions: Once the above top-down split process
terminates, we merge all regions that do not satisfy the
MUST-LOSE condition. During the course of the above par-
titioning algorithm we maintain the tree structure of the split
so that whenever all children of a node belong to the same
class, they can be trivially merged together. This is followed
by another iterative search for pairs of non-sibling regions
that can be merged. The output is a set of non-overlapping
regions that totally subsume all combinations belonging to
a class.

Complexity The above top-down algorithm has a com-
plexity of O(tnmK) where t is the threshold that con-
trols the depth of the tree to which we expand andm =
maxnd=1(nd) is the maximum length of a dimension. Con-
trast this with the exponential complexityK

Qn
d=1 nd of

just the enumeration step of the naive algorithm.

3.2.3. Formal Results
This section contains a sketch of the proof of correctness

of the top-down algorithm and can be skipped on first read-
ing.

The main concern about the correctness of the above al-
gorithm arises from the use of the maxProb and minProb
bounds in determining the twoMUST-WIN andMUST-LOSE

conditions. We sketch a proof of why these bounds are cor-
rect and also present a set of improved bounds for the spe-
cial case of two classes. In this proof we do not explicitly
discuss the case where there is a tie in thePr(ck j~x) values
of two classes.

Lemma 3.1 If a region satisfies theMUST-WIN condition
minProb(ck) > maxj 6=k maxProb(cj) then for every possi-
ble cellv in the region the probability of classck is greater
than the probability of every other class. Letp j(mld) de-
notePr(mldjcj). We wish to prove that

Pr(ck)
nY

d=1

min
l

pk(mld) > max
j 6=k

Pr(cj)
nY

d=1

max
l

pj(mld) (3)

implies

8v

 
Pr(ck)

nY
d=1

pk(vd) > max
j 6=k

Pr(cj)
nY

d=1

pj(vd)

!
(4)

That is, (3)) (4). Similar results hold for theMUST-LOSE

condition.

PROOF. Let f(v; j) denote Pr(cj)
Qn

d=1 Pr(vdjcj).
If minv f(v; k) > maxj 6=k maxv(f(v; j)) then
f(v; k) > f(v0; j) for all values v0 and all classes

j 6= k. Also minv(Pr(ck)
Qn

d=1Pr(vdjck)) =
Pr(ck)

Qn

d=1minvd Pr(vdjcj) because all the terms
within the product are non-negative. Similarly, moving the
max() beyond the

Q
leaves the result unchanged. Thus,

(3)) (4).

We next present a lemma that will help us getexact
bounds for the case when the number of classesK = 2.

Lemma 3.2 When the number of classesK = 2, the
MUST-WIN and theMUST-LOSE bounds are exact when
the probability valuesPr(vdjcj) in condition 3 of Lemma

3.1 are replaced withPr0(vdjcj) =
Pr(vdjcj)

maxi6=k Pr(vdjci)
. Let

p0j(mld) denotePr0(mldjcj). We wish to prove that, when
K = 2 condition 4is equivalent to

Pr(ck)

nY
d=1

min
l

p
0
k(mld) > max

j 6=k
Pr(cj)

nY
d=1

max
l

p
0
j(mld) (5)

Similar results hold for theMUST-LOSE condition.

PROOF. Omitted due to lack of space.

3.3. Clustering
Clustering models [22] are of three broad kinds: parti-

tional, hierarchical and fuzzy. We concentrate on parti-
tional clusters where the output is a set ofk clusters and
each point is assigned to exactly one of thesek clusters.
Hierarchical and fuzzy clusters are a subject of our on-
going work. Partitional clustering methods can be fur-
ther subdivided based on the membership criteria used for
assigning new instances to clusters. We consider three
variants: centroid-based, model-based and boundary-based
(commonly arising in density-based clusters).

In the popular centroid-based method each cluster is as-
sociated with a single point called the centroid that is most
representative of the cluster. An appropriate distance mea-
sure on the input attributes is used to measure the distance
between the cluster centroid and the instance. A common
distance function is Euclidean or weighted Euclidean. The
instance is assigned to the cluster with the closest cen-
troid. This partitions the data space intoK disjoint par-
titions where thei-th partition contains all points that are
closer to theith centroid than to any other centroid. A clus-
ter’s partition could take arbitrary shapes depending on the
distance function, the number of clusters and the number
of dimensions. Our goal is to provide an upper envelope
on the boundary of each partition using a small number of
hyper-rectangles.

A second class of clustering methods is model-
based [25]. Model-based clustering assumes that data is
generated from a mixture of underlying distributions in
which each distribution represents a group or a cluster.



We show that both distance based and model-based clus-
ters can be expressed exactly as naive Bayes classifiers
for the purposes of finding the upper envelopes. Consider
distance-based clustering first. Letc1; c2 : : : cK be theK
clusters,n be the number of attributes or dimensions of an
instance~x and(c1k : : : cnk) be the centroid of thek-th clus-
ter. Assume a weighted Euclidean distance measure. Let
(w1k : : : wnk) denote the weight values. Then, a point~x is
assigned to a cluster as follows:

cluster of~x = argmaxk

nX

d=1

wdk(xd � cdk)
2

This is similar in structure to Equation 2 with the prior term
missing. In both cases, for each component of~x, we have
a set ofK values corresponding to theK different clus-
ters/classes. We sum over thesen values along each dimen-
sion and choose of theseK sums the class with the largest
sum.

For several model-based clusters the situation is similar.
Each groupk is associated with a mixing parameter called
�k (
PK

k=1 �k = 1) in addition to the parameters�k of the
distribution function of that group. Thus, an instance will
be assigned to the cluster with the largest value of

cluster of~x = argmaxk(�kfk(~xj�k))

When the distribution functionfk treats each dimension in-
dependently, for example, mixtures of Gaussians with the
covariance entries zero, we can again express the above ex-
pression in the same form as Equation 2.

Boundary-based clusters [18] explicitly define the
boundary of a region within which a point needs to lie in
order to belong to a cluster. Deriving upper envelopes is
equivalent to covering a geometric region with a small num-
ber of rectangles. This is a classical problem in computa-
tion geometry for which several approximate algorithms ex-
ist [30, 2]. Further investigation of this problem is part of
our future work.

4. Optimizing Mining Queries

So far we have considered examples of mining predi-
cates of the form “Predictioncolumn = classlabel”. In Sec-
tion 4.1, we show a wider class of mining predicates that
may be optimized using upper envelopes for mining predi-
cates of the above form. Then in Section 4.2 we discuss the
key steps needed in enabling such optimization in a tradi-
tional relational database engine.

4.1. Types of mining predicates
We discuss three additional types of mining predicates

that can be optimized using the derived per-class upper en-
velopes.

IN predicates: A simple generalization is mining pred-
icates of the form: M.Predictioncolumn IN (c1; : : : ; cl),
wherec1; : : : ; cl are a subset of the possible class labels

on M.Predictioncolumn. An example of such a query is
to identify customers who a data mining model predicts
to be either baseball fans or football fans. For such a
mining predicate, the upper envelope is a disjunction of
the upper envelopes corresponding to each of the atomic
mining predicates. Thus, ifMci denotes the predicate
(M:P rediction column = ci), we can express the over-
all disjunct as:

Wl

i=1Mci

Join predicates between two predicted columns: An-
other form of join predicates is M1.Predictioncolumn1 =
M2.Predictioncolumn2. Such predicates select instances
on which two models M1 and M2 concur in their predicted
class labels. An example of such a query is “Find all mi-
crosoft.com visitors who are predicted to be web devel-
opers by two mining modelsSAS customer model and
SPSS customer model”. In order to optimize this query
using upper envelopes, we assume that the class labels
for each of the mining models can be enumerated during
optimization by examining the metadata associated with
the mining models. In typical mining models we expect
the number of classes to be quite small. Let the class
labels that are common to these two mining models be
fc1; c2; ::; ckg. Then, the above join predicate, is equiv-
alent to this disjunction:

Wk

i=1(M1.Predictioncolumn1 =
M2.Predictioncolumn2 =ci). Adopting the notation of the
previous paragraph, this can be expressed as:

W
i(M1ci ^

M2ci). Note that if M1 and M2 are identical models, then
the resulting upper envelope results in a tautology. Con-
versely, if M1 and M2 are contradictory, then the upper en-
velope evaluates to false and the query is guaranteed to re-
turn no answers. These observations can be leveraged dur-
ing the optimization process to improve efficiency.

Join predicates between a predicted column and
a data column: Consider predicates of the form
M1.Predictioncolumn = T.Datacolumn that check if the
prediction of a mining model matches that of a database
column. An example of this type of predicate is: “Find all
customers for whom predicted age is of the same category
as the actual age”1. Such queries can occur, for example, in
cross-validation tasks. Evaluation of the above query seems
to require scanning the entire table. Fortunately, like in the
previous paragraph, we can use the approach of enumerat-
ing the set of possible class labels. Once again, such an
approach is feasible since in most mining models we ex-
pect the number of class to be small. If the set of classes
are fc1; c2; ::; ckg, then, we can derive an implied predi-
cate
W

i(M1ci ^ T:Data column = ci). This transforms
the query to a disjunct or a union of queries. More impor-
tantly, we now have the option of leveraging the content
of the mining model for access path selection. For exam-

1In this example, we consider age as a discretized attribute with the
domain consisting of three categories: ‘’young”, “middle-aged’, “senior”.



ple, for thei-th disjunct, the optimizer can potentially con-
sider either the predicateT:Data column = ci or a predi-
cate inM1ci for access path selection. Of course, the final
plan depends on other alternatives considered by the opti-
mizer (including sequential scan) but our rewriting opens
the door for additional alternatives. In addition to the above
technique, the traditional approach of exploiting transitivity
of predicates in the WHERE clause can also be effective.
For example, if the query contains additional predicates on
T.Datacolumns that indirectly limits the possible domain
values M1.Predictioncolumn can assume, then we can ap-
ply the optimization of the IN predicates discussed earlier
in this section. For example, if the query were “Find all
customers for which predicted age is the same as the ac-
tual age and the actual age is either old or middle-aged”
then, via transitivity of the predicate, we get a predicate
M.Predictioncolumn IN ( ’old’, ’middle-aged’) for which
we can add the upper-enveloping predicates as discussed in
the earlier paragraphs.

4.2. Key Steps in Optimization of Mining Predicates

The framework for optimizing queries with mining pred-
icates has two key parts. First, during training of the mining
models, upper envelopes for mining predicates of the form
Model.Predictioncolumn = classlabel have to be precom-
puted using the algorithms described in Section 3. Precom-
putation of such “atomic” upper envelopes reduces over-
head during query optimization. Second, during query opti-
mization we optimize queries with mining predicates using
the following key steps:

1. Apply traditional normalization and transitivity rules
to the given query to derive an equivalent query to be
used for the following steps.

2. For each mining predicatef in the query, do the fol-
lowing. Assume that the mining predicatef references
a mining modelmf :

(a) Look up the information on class labels ofmf

from the database, if needed.

(b) Depending on the type of the mining predicate,
derive an additional upper envelopeuf using the
techniques described in Section 4.1. Computa-
tion of such an upper envelope requires looking
up “atomic” upper envelopes computed during
training (see earlier in this subsection).

(c) Replacemf with mf ^ uf .

3. Apply normalization and transitivity rules to derive an
equivalent query. If new mining predicates are in-
ferred, return to step 2, else return.

Our experiments demonstrate that the additional work
during training to derive “atomic” upper envelopes as well
as step 2(b) during query optimization add little additional

overhead in themselves. However, our strategy for opti-
mization relies on the following assumptions about query
optimization and evaluation.

Complexity of upper envelopes does not impact execu-
tion cost: We assume the following: (a) The evaluation
of upper envelopes do not add to the cost of the query.
This is consistent with traditional assumptions made in
database optimization since every upper envelope consists
of AND/OR expression of simple predicates. (b) The opti-
mizer is well-behaved and is not misguided by the introduc-
tion of additional complex boolean predicates due to upper
envelopes. We rely on optimizers whose selectivity com-
putations and access path selections are robust for complex
boolean expressions. Although we make the above two as-
sumptions for simplicity, they rarely hold in all situations.
Failure to satisfy condition (a) can be dealt by more careful
rewriting. For example, if none of the predicates in the up-
per envelope is chosen for access path, the upper envelope
can be removed at the end of the optimization. In general,
we need to retain only a subset of relevant upper envelope
for evaluation as filter conditions. We omit these details due
to lack of space. Unfortunately, handling violation of condi-
tion (b) is more challenging, yet happens routinely. Today’s
query optimizers often degenerate to sequential scan when
presented with a complex AND/OR expression. This would
negate any benefits of upper envelopes as the latter typically
consist of several disjuncts over conjuncts of atomic pred-
icates on the data columns. Despite past work (e.g., [28]),
handling complex filter conditions remains a core challenge
for SQL query optimizers. This remains an area of our ac-
tive research in the context of query optimization. However,
for the time being, we rely on thresholding of the number
of disjuncts (see Section 3.2) and simplification based on
selectivity estimates to limit the complexity so that com-
mercial optimizers are able to exploit upper envelopes. We
omit detailed discussion due to lack of space.

Accessing content of mining models during query opti-
mization should be enabled: Our strategies for deriving
upper envelopes (as described in Section 4.1) requires ac-
cess to content of the mining models (e.g., class labels)dur-
ing optimization. Such information is different from the tra-
ditional statistical information about tables because the cor-
rectness of our optimization is impacted if the mining model
is changed. In such cases, we need to invalidate an execu-
tion plan (if cached or persisted) in case it had exploited up-
per envelopes. Nonetheless, our approach of leveraging the
content of mining models is justified because mining mod-
els evolve slowly and the size of a typical mining model is
relatively small compared to data size. Therefore, optimiza-
tion time is not severely impacted for accessing the content
of a mining model.



Data Set Test size Training size # of # of
in millions classes clusters

Anneal-U 1.83 598 6 6
Balance-Scale 1.28 416 3 5
Chess 1.63 2130 2 5
Diabetes 1.57 512 2 5
Hypothyroid 1.78 1339 2 5
Letter 1.28 15000 26 26
Pairty5+5 1.04 100 2 5
Shuttle 1.85 43500 7 7
Vehicle 1.73 564 4 5
Kdd-cup-99 4.72 100000 23 23

Table 2. Summary of Data Sets used in experiments

5. Experiments
In this section, we present results of experiments to eval-

uate the effectiveness of upper envelope predicates gener-
ated by algorithms presented in Section 3. Our experiments
focussed on three important aspects: (i) Impact of upper en-
velope predicates on the running time and physical plan of
queries. We study this in Section 5.2.1. (ii) Degree of tight-
ness of the approximation, studied in Section 5.2.2. (iii)
Time taken to generate upper envelope predicates. The sig-
nificant outcome of the last experiment was that in almost
all data sets the time to precompute the upper envelope
predicate for each class (see Section 4.2) was a negligible
fraction of the model training time. Likewise, the time to
look up “atomic” upper envelope predicates was insignifi-
cant compared to the time for optimizing the query. We do
not present further details of this experiment due to lack of
space.

5.1. Experimental Setup
Mining Models: We have implemented the algorithms
presented in Section 3 for the decision tree, naive Bayes and
clustering mining models. We generated decision tree and
clustering mining models using Microsoft Analysis Server
that ships with Microsoft SQL Server 2000. For generat-
ing naive Bayes mining models we used the discrete naive
Bayes inducer packaged with the MLC++ machine learning
library [23].

Data Sets: We report numbers on 10 data sets consist-
ing of 9 UCI [7] data sets and the 1999 KDDcup data set
available at [5]. Table 2 summarizes various characteris-
tics of each data set. We generated the test data set (for
the UCI data sets) by repeatedly doubling all available data
until the total number of rows in the data set exceeded 1
million rows. This way, the data distribution of each col-
umn (and hence selectivity of predicates on the column) in
the test data set is the same as in the training data set. All
data sets were stored in Microsoft SQL Server databases.

Implementation: When executing a mining query, we
first identify the mining model object(s) referenced in the

mining query and identify mining predicates for which gen-
eration of upper envelopes may be possible. In our current
implementation, generation of upper envelope predicates is
not integrated with the database engine; rather we rewrite
the mining query externally to include the upper envelope
predicates, and submit the rewritten query to the database
engine. The upper envelopes are generated during train-
ing time by referring the MININGMODEL CONTENT
schema rowset defined in the OLE DB for Data Mining [15]
interface.

Evaluation Methodology: For each class (or cluster), we
first generate the query with the upper envelope predicate
for that class. Thus, if T is the table containing the test
data, andhpi is the upper envelope predicate, we generate
the query “SELECT * FROM T WHEREhpi”. We cre-
ate a workload file containing all queries for the (data set,
mining model) combination. Thus, the number of queries
in the workload file is equal to the number of classes (or
clusters) for that (data set, mining model) combination. To
generate an appropriate physical design for this workload,
we invoke the Index Tuning Wizard tool [12, 4] that ships
with Microsoft SQL Server 2000 by passing it the above
workload file as input, and implement the index recommen-
dations proposed by the tool. We then execute the workload
on the database and record the plan and running time of each
query in the workload. We compare this with a query that
performs a full scan of the table, i.e., “SELECT * FROM
T”.

Although in practice, mining queries may also contain
other predicates, the above comparison with a “SELECT *”
query is reasonable since our goal is to determine if addi-
tion of upper envelopes can reduce running time in a signifi-
cant number of cases (due to indexed access path selection).
Whether upper envelope predicates are indeed chosen over
other predicates for indexing will of course depend on other
predicates and their relative selectivity. Finally, a design
that stores the class label with each tuple (e.g., as an addi-
tional column) in the base relation is not acceptable since
(a) It does not scale well with the number of mining models
and (b) In many cases, mining queries are issued not over
the base relations but on queries (or views) over possibly
multiple base relations Note that such precomputation of
the class label may however be appropriate in limited cases
(e.g., in materialized views).

5.2. Results

5.2.1. Impact of Upper Envelope Predicates on Run-
ning Time and Plan

We first evaluate the impact of upper envelope predicates
on the running time of all queries for all mining models.
The following table shows the average reduction in running
time over all queries for each type of mining model, com-
pared to a full scan of the data. We note that the reduction



Decision Tree Mining Model: Impact on Plans
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Figure 3. Impact of upper envelope predicates on physical
plan for decision tree model

in running time we report here is in comparison to a “SE-
LECT *” , which does not include the time for actually in-
voking the mining model on the columns. If the application
of mining models is time consuming, then we can expect to
see an even greater percentage reduction.

Decision Tree Naive Bayes Clustering
73.7% 63.5% 79.0%

To further analyze the reason for the reduced running
time, we measured the impact of the upper envelope predi-
cates on the physical plan chosen by the query optimizer.
For a given data set and mining model, we recorded for
each query whether the plan chosen by the query optimizer
changed compared to the query without upper envelope
predicates. A plan is said to have changed if either: (a) The
query optimizer chose one or more indexes to answer the
query. (b) The query optimizer decided to use a “Constant
Scan” operator since upper envelope predicate was NULL
(i.e., it does not need to reference the data at all to answer
the query). The table below shows the percentage of queries
for which the plan changed over all data sets and mining
models.

Decision Tree Naive Bayes Clustering
72.7% 75.3% 76.6%

As we can see from this table, for all types of mining
models, a significant fraction of the queries had their phys-
ical plans altered as a result of introducing upper envelope
predicates.

We now analyze these results further by drilling-down
into the results for each data set. Figures 3, 4 and 5 show
these numbers for the decision tree, naive Bayes and clus-
tering mining models respectively. We observe that upper
envelope predicates have greater impact on the plan for data
sets where the number of classes is relatively large (e.g., kd-
dcup, letter, shuttle etc.), and less impact for data sets where
number of classes is small (e.g., Diabetes, Parity etc.). This
is due to the fact that when the number of classes is large,
there are typically more classes with small selectivity for
which the query optimizer picks an index to answer the
query. In fact, in some cases, the selectivity is 0, i.e., the

Naïve Bayes Mining Model: Impact on Plans
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Figure 4. Impact of upper envelope predicates on physical
plan for naive Bayes model

Clustering Mining Model: Impact on Plans
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Figure 5. Impact of upper envelope predicates on physical
plan for clustering model

upper envelope predicate is NULL. In such cases, the opti-
mizer does not need to access any data to answer the query.
A more detailed analysis of the average reduction in running
time as a function of the selectivity (both original and upper
envelope) of the class/cluster over all classes and clusters of
all mining models and data sets is shown in Figure 6. We
see that the reduction in running time is most significant
when the selectivity is below 10%. Also, a comparison of
the bars for original and upper envelope selectivities shows
that the low reduction in running time for higher selectivi-
ties is not a reflection of the effectiveness of our algorithm.
Rather, when a predicate’s selectivity is high (e.g., above
10%) the optimizer rarely selects indexes, particularly non-
clustered indexes. Thus, for high selectivity classes, adding
upper envelope predicates is rarely useful, even if we could
find exact predicates.

Finally, we noticed that in many cases, the upper enve-
lope predicates generated by our algorithms for these data
sets are relatively simple, i.e., consisting of few disjuncts.
This increases the likelihood that the query optimizer can
use an index lookup to answer the query. Overall, this ex-
periment confirms our intuition that inclusion of upper en-
velope predicates significantly impacts the plan, and hence
running times of queries with mining predicates.



Reduction in Running Time vs. Selectivity
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0.00001

0.0001

0.001

0.01

0.1

1

0.00001 0.0001 0.001 0.01 0.1 1

Original Selectivity (log scale)

U
p

p
er

E
n

ve
lo

p
e

S
el

ec
ti

vi
ty

(l
o

g
sc

al
e)

Figure 7. Tightness of approximation: naive Bayes and
clustering

5.2.2. Tightness of Approximation
In this experiment, we compare the tightness of approx-

imation of the upper envelopes for naive Bayes and cluster-
ing. For decision-trees, since the upper envelopes are ex-
act, this comparison is not necessary. Figure 7 shows for
all classes in all data sets for the naive Bayes and cluster-
ing mining models, a scatter plot of the original selectivity
of each class vs. the selectivity of the corresponding up-
per envelope predicate (on a log scale). Each point in the
scatter-plot corresponds to one class of a data set.

As we see from the figure, a significant fraction of the
upper envelope predicates either have selectivities close to
the original selectivity or have selectivity small enough that
use of indexes for answering the predicate is attractive.
Most cases where the algorithm failed to find a tight upper
envelope correspond to cases where the original selectivity
is large to start with. In such cases, the upper envelope pred-
icates are unlikely to be useful for improving access paths
even if they were exact.

6. Related Work

Our work falls in the broader area of integration of data
mining and database systems and there are several pieces of
related work in that area. The case for building the infras-

tructure for supporting mining on not only stored results but
also on the result of an arbitrary database query was made
in [9]. Agrawal et al [3] looked at the problem of gener-
ating decision tree classifiers such that the predicate could
easily be pushed into the SQL query. However, they do not
discuss how the method will work for other mining models.
Other complementary areas of work include construction
of mining models using SQL [31] and defining language
extensions and application programming interfaces for in-
tegrating mining with relation DBMS [26], [1] and [15].
More recently, database systems, such as Microsoft Analy-
sis Server or IBM DB2 have enabled specification of such
queries. However, none of these systems exploit mining
predicates for optimization in a general setting. Our paper
represents the first work in that direction.

Our work can be viewed as part of the broader field of se-
mantic query optimization. Early work in database systems
recognized value of query modification (e.g., in INGRES)
whereby a semantically implied predicate, perhaps derived
from integrity constraints, is added to make evaluation of
the query more efficient. Our technique follows the same
approach but our novelty is in the specific information we
exploit - the internal structure of the mining model to derive
upper envelopes. To the best of our knowledge, this has not
been attempted before. There has been past study of upper
envelopes that represent approximation to given recursive
queries [11, 8] but these do not apply to mining predicates.

Recently, there has been work on optimization of user-
defined functions and predicates [19, 13, 32]. Mining pred-
icates can certainly be viewed as user-defined predicates
Thus, it is an interesting research question whether our idea
of deriving implied database predicates based on content of
mining models can be effectively applied to other examples
of user-defined predicates as well.

The problem of rule extraction from hard to interpret
models like Neural networks [24, 16] bears resemblance,
but differs from our problem in that the extracted rules need
to approximate the classification function but are not re-
quired to be implied predicates (upper envelopes). More-
over, the algorithm for rule learning as proposed in [24] re-
quires an enumeration of the discretized input space, similar
to our first-cut bottom up algorithm. Such an approach has
been shown to be infeasible in our case.

The coverage problem has been addressed in several dif-
ferent contexts, including, covering a set of points with
the smallest number of rectangles [30, 2], covering a col-
lection of clauses with simpler terms in logic minimiza-
tion problems [20] and constructing clusters with rectilin-
ear boundaries [6]. Despite the apparent similarities, the
coverage problems differ in a few important aspects. First,
they assume that the points are already enumerated in the
n-dimensional space. This is not a feasible option in our
case. Next, the first two problems require an exact cover of



smallest size whereas we only need an upper envelope. Fi-
nally, most of these approaches assume a small number of
dimensions (two or three) and do not scale to higher dimen-
sions.
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