
An Empirical Study of Collusion Behavior in the
Maze P2P File-Sharing System

Qiao Lian1, Zheng Zhang1, Mao Yang13, Ben Y. Zhao2, Yafei Dai3, Xiaoming Li3

Microsoft Research Asia, Beijing, China1

U. C. Santa Barbara, Santa Barbara, CA, USA2

Peking University, Beijing, China3

Abstract— Peer-to-peer networks often use incentive policies to
encourage cooperation between nodes. Such systems are generally
susceptible to collusion by groups of users in order to gain unfair
advantages over others. While techniques have been proposed to
combat web spam collusion, there are few measurements of real
collusion in deployed systems. In this paper, we report analysis
and measurement results of user collusion in Maze, a large-scale
peer-to-peer file sharing system with a non-net-zero point-based
incentive policy. We search for colluding behavior by examining
complete user logs, and incrementally refine a set of collusion
detectors to identify common collusion patterns. We find collusion
patterns similar to those found in web spamming. We evaluate
how proposed reputation systems would perform on the Maze
system. Our results can help guide the design of more robust
incentive schemes.

I. INTRODUCTION

File-sharing networks such as Kazaa and Gnutella have
popularized the peer-to-peer (P2P) resource sharing model. In
these networks, selfish users often “free-ride,” or act in their
self interests to exploit the system. Prior research has focused
on the use of incentive systems [11] to encourage sharing
among users. Despite their effectiveness, these incentives are
generally vulnerable to user collusion along with the Sybil
Attack [4], where users create and control multiple online
identities.

Very little is known about user collusion in real systems.
Measuring user collusion is extremely difficult, since it re-
quires a global view of all transactions in a system. To date,
most user studies log traffic at the edge nodes while per-
forming queries or membership operations [13], [12]. While
informative, these results reveal only a small subset of peer
transactions, and do not shed light on active user collusion.

In this paper, we present measurements of user collusion
activity in the Maze peer-to-peer file-sharing network [17].
Maze is a popular Napster-like P2P network designed, im-
plemented and deployed by an academic research team at
Peking University, Beijing China. As a measurement platform,
Maze is unique in two ways. First, our control over the
Maze software allows us to deploy and embed customized
measurement code inside clients. Second, Maze’s centralized
architecture means all control and query traffic is logged
and available to us. Maze uses a simple incentive system
where user points increase with uploads and decrease with
downloads. Our central server audits file transfers and adjusts
user points accordingly.

In our study, we define collusion as collaborative activity
of a subset of users that grants its members benefits they
would not be able to gain as individuals. We note that we
cannot determine a user’s true intent, or definitively whether
multiple online identities belong to the same user. Issues
such as dynamic addressing via DHCP and shared addresses
behind NATs prevent us from reliably detecting the use of
multiple virtual identities. Instead of measuring user intent,
our study focuses purely on observable action patterns that
produce results similar to those produced by colluding users.
Quantifying all forms of collusion is a topic to be addressed
in ongoing work.

To the best of our knowledge, this is the first empirical
study of collusion behavior in an incentive-based P2P system.
Our results validate conclusions of previous work on incentive
mechanisms [3], [8], [7], but also show that certain types of
collusion are difficult to detect and deter. Our work makes
several key contributions. First, we describe techniques to
aggregate logs and construct collusion detectors that pro-
gressively reveal collusion behaviors and their patterns. We
believe that these techniques have general applicability to other
experimental settings when detecting collusions. Second, we
find that while some behaviors are linked to our incentive
system, their patterns are nearly identical to those found in
Web spamming, albeit at smaller scales. Finally, we evaluate
the ability of the EigenTrust reputation system [6], [7] to detect
and mark colluders with lower reputations. Our results show
that under several collusion patterns, EigenTrust produces non-
ideal reputations for both well-behaved and colluding peers.

The rest of the paper is organized as follows. Section 2
gives a brief description of Maze and the measurement data
used for this study. Next, Section 3 describes each of our
collusion detectors in detail, along with results from the Maze
dataset. Then in Section 4, we apply the EigenTrust algorithm
to the Maze dataset and analyze the results. Finally, we discuss
related work in Section 5 and conclude in Section 6.

II. THE MAZE PEER-TO-PEER SYSTEM

We begin by providing necessary background information
on the Maze file-sharing system. Maze was originally deployed
to address issues of data location and load-balancing on FTP
servers as part of the T-Net Web search project [14]. T-Net’s
increasing popularity led to significantly degraded download
performance across its limited number of FTP servers. Maze



Fig. 1. The Maze point system

provided a way to distribute content while minimizing infras-
tructure costs.

At login, each Maze peer1 authenticates to a central server,
and uploads an index of its locally available shared files. The
central server maintains heartbeats with all online peers, and
its central index supports full-text queries across all shared
files in the system. In addition to searching for files via the
central index, users can browse three peer lists for files: a
friend-list, a neighborhood-list, and an altruistic list.

The friend-list is a user-controlled list of friendly peers,
initially bootstrapped as a random set of peers by the central
server. Over time, these friend-lists across users form a con-
tinuously adapting social network. A peer’s neighborhood list
is a set of peers with the same B-class IP address provided by
the server. These are peers likely to share high-bandwidth, low
latency links with the local host. Finally, the altruistic list is
a collection of peers with the highest “points” as determined
by the server. They are hosts who have contributed the most
to the system as determined by the Maze incentive system.
Their status as “celebrities” in the user population provides
additional social incentive for sharing [17].

A peer can browse and download the storage contents of
any host on these lists. As of November 2004, more than two-
thirds of all downloads are initiated through these peer lists.
As will become clear later, these social lists have unexpected
impacts on the design of a good incentive system. After each
transaction, peers involved send a report to the central server,
which adjusts their points accordingly.

A. The Maze incentive system

Maze currently operates using a point system, where peers
consume points by downloading files and earn points by
uploading files. Download requests are queued according to
their points: requestT ime−3 logP , where P is the requester’s
point total. Frequent uploads provide peers with higher points
and faster downloads. The Maze user community voted for
an asymmetric point system where uploading receives more
points than downloading the same amount of data. While this

1We use the terms “user” and “peer” interchangeably in this paper. We also
use “clients” of peer X to refer to the peers that download from X.

encourages uploads, it also allows two peers to create a net
gain in points after mutual interaction. To allow new users to
participate, Maze initializes new users with enough points to
download > 1GB of data before its downloads are throttled.
The details of the points system are as follows:

1) New users are initialized with 4096 points.
2) Uploads: +1.5 points per MB uploaded.
3) Points used per file downloaded:

• -1.0/MB downloaded within first 100MB.
• -0.7/MB per additional MB between 100MB and

400MB.
• -0.4/MB between 400MB and 800MB.
• -0.1/MB per additional MB over 800MB.

4) Service differentiation:

• Requests are ordered by T = requestT ime −
3 logP , where P is the requester’s point total.

• Users with P < 512 are limited to 200Kb/s.

B. Data collection

We perform our analysis on a log segment gathered during
the span of a one-month period from 2/19/05 to 3/24/05.
During this period, more than 161,000 users participated in
more than 32 million file transfers totaling more than 437
Terabytes. Data gathered for this study includes user point
values and the detailed traffic log. Each log entry contains
the following: uploading peer-id, downloading peer-id, upload
time, transfer start and end times (source), bytes transferred,
file size, downloader IP, file MD5 hash, and full file path.

We tried to associate online identities with the physical
machine the peer uses to detect when a user was controlling
multiple identities. We first used the hash of the hard drive
serial number, but later discovered that the serial number is
not guaranteed to be unique. Thus to uniquely identify the
machine that a peer uses, we concatenate the peer’s IP address
with the hash of the hard drive serial number. As ongoing
work, we are investigating the use of network MAC addresses
as an alternative identifier.

All logs are anonymized for user privacy. In this paper, we
refer to distinct users using common names (e.g. Alice and
Bob), and random alphabetic letters to represent 8-bit blocks
of an IP address (e.g. C.H.97.140).

III. IDENTIFYING COLLUSION TOPOLOGIES

We now discuss our efforts to detect collusion attempts in
the Maze system. Based on our experiences and analysis of the
traffic logs, we design a number of collusion detectors aimed
at locating different types of collusion patterns. We describe
these in detail in this section.

A. Repetition-based Collusion Detection

Our first attempt starts by looking at how users use uploads
to generate points. Given the point system generates a net gain
from a symmetric operation, colluders can benefit from using
only a small “working set” of files to generate points. We use
this assumption to generate our first collusion detector.



Fig. 2. Duplication degree in uploading from peer A to peer B

Detector 1: (Repetition detector) Colluders generate large
amounts of upload traffic with repeated content.

We examine our transaction log and construct a large graph,
where vertices represent individual users and edges represent
aggregated file transfers between users. This results in a
directed graph with roughly 4.5 million individual edges. Out
of all edges, 221,000 (roughly 4.9%) contain duplicate files in
the transfer traffic. We define duplication degree as the ratio
of total upload traffic (bytes) to amount of non-duplicated data
(bytes). A high duplication degree means a small proportion
of traffic across the link is unique.

We plot the duplication degree of all edges against their
total upload traffic as a scatter plot in Figure 2. For thresholds
set at duplication degrees of 5, 10 and 20, there are 890, 148,
27 edges with duplication degree greater than each threshold.
Since this data is generated from activities performed over the
span of a month, it is highly likely that many of these peers
are actively colluding. We also note that colluders are likely to
use nearby machines to perform the transfers. Such network
locality maximizes throughput and gain from collusion. We
show this in Figure 2: Duplication degree in uploading from
peer A to peer B by classifying edges by the IP affinity
between the two peers. IP affinity confirms that edges with
high amounts of duplicate traffic are likely to be across peers
with similar IP addresses.

To better understand this behavior, we take a closer look
at the temporal distribution of duplicate traffic by individual
users. Table I lists the top-6 edges with the most duplicate
traffic. The table shows each user’s total uploads, and uploads
on the edge with the most repeat traffic (max edge). Each
table entry also includes a temporal locality graph. Each bar
stands for one day, and the height of the bar is proportional
to that day’s upload traffic. These results show that there is
strong temporal locality present. If the same file is uploaded
multiple times close in time, then it is more likely to be used
as a colluding tool than legitimate sharing.

TABLE I

TOP 6 EDGES WITH THE MOST REDUNDANT TRAFFIC

Fig. 3. Collusion link topology of 100 links with the highest ratio of duplicate
transfers

The temporal locality provides strong evidence that all
5 of these peers are colluding aggressively. The maximum
duplication degree is close to 43 by Cindy. David colludes with
two different peers, with non-overlapping temporal behavior.
Our data shows that the data transferred during these colluding
sessions are generally large files or directories. For example,
Alice uploaded the a 3GB DVD image 29 times.

To better understand collusion topologies, we built a vi-
sualization tool that draws edges with the highest ratios of
duplicate traffic. Figure 3 gives a snapshot of the top-100
duplicate traffic links. This figure shows collusion patterns
graphically. In addition to pair-wise collusions that exploit
the net-gain in points from transfers, we also observe more
complex 3-party and star-shaped topologies. We examine these
complex collusion behaviors in detail in the next two sections.

B. Group-based Collusion Detection

We now turn our attention to mutually colluding peers.
In Maze, group collusion occurs when peers exchange large
amount of data among themselves to earn points. This is a
consequence of the asymmetric point assignment in Maze. If



Fig. 4. Pair-wise collusion detector by the ratio of mutual upload traffic over
total traffic

two peers upload 10GB data to each other, each of them will
acquire at least 5000 points. The asymmetric point system was
a result of extensive discussions and voting on the Maze user
forum, where users wanted to encourage uploading.

Our data shows that most group collusion are pairs, and
groups of three or more are rare. Intuitively, the traffic pattern
for a pair-wise colluding group is where the traffic between
two peers outweigh their traffic with outside peers. Note that
the total traffic for a peer measured through our log segment is
a rough granularity approximation of a peer’s download/upload
rate. We define the metric pair-wise degree as the ratio of total
traffic between two peers to the sum of all traffic uploaded by
both peers. We use this as our first group collusion detector:

Detector 2: (Pair-wise detector) high rate of mutual upload
traffic compared to total uploads.

Figure 4 shows the results of applying this detector to
our dataset. There are 28,000 pairs of peers with mutual
uploads, each plotted as a single point with total uploads on
the x-axis and pair-wise degree on the y-axis. A horizontal
line is plotted for pair-wise degree equal to 0.5. Above that
line are 73 pairs of peers whose pair-wise upload exceeds
uploads to external peers. While it is possible for two friends
to share large amounts of mutually interesting content, the
highly concentrated nature of these uploads appear to indicate
collusion. Regardless of whether the users intend to collude,
this type of behavior results in artificially inflated point values
for peers who are not contributing to the community at large.

One impediment to effective collusion of any kind is con-
nectivity. It is tedious to transfer large amounts of data through
a narrow pipe just for collusion. While pair-wise collusion
across the wide-area is possible, signing on as a new user
(whitewashing [18]) is an easier alternative to replenish a
peer’s points. Thus, we assert that pair-wise collusion requires
good connectivity between peers. To verify this, we show the
IP affinity of peer pairs in Figure 4 with different symbols.
We see that most colluding peers have similar IP addresses,

TABLE II

TOP-3 MUTUAL UPLOAD PAIRS. PEER 1/EXTERNAL SHOWS ALL TRAFFIC

FROM PEER 1 NOT GOING TO 2.

Peer 1 Peer 1 Mutual upload2 Peer 2 Peer 2
external external
1.7GB Fred 24GB←→ 23GB Gary 5GB
23GB Cindy 81GB←→ 27GB Harry 0GB
52GB David 62GB←→ 126GB Alice 32GB

implying that the peers are likely physically close in the
network and likely to be connected using a high bandwidth
connection.

We take a closer look at specific examples of possible
colluding peer-pairs. Table II lists the top 3 pairs ranked by
pair-wise degree. Given the asymmetric point system, even the
most unbalanced peer (Harry) will end up with a net point gain
(after uploading 27GB and then downloading 81GB).

C. Spam Account Collusion

In our repetition-based topology in Figure 3 that showed 100
links with the highest ratio of duplicate transfers, we observed
an unexpected colluding topology: the star-shaped colluding
group. The center of the star gains points by uploading to
many other peers without downloading anything in return. This
seems contrary to behavior observed in our previous colluding
patterns. The willingness of these “leaf peers” to download
duplicate content from the central peer without personal gain
is puzzling.

In reality, all peers in this topology are controlled by the
same user, and all peers collaborate to increase the point total
of the center peer. We call these leaf-peers spam accounts,
since they are created and then discarded when they expend
their initial point allocations2. This strategy is similar to the
link spam [16] problem in search engines using page rank
to sort results. One might ask why a user would prefer
this strategy to performing whitewashing (restarting with new
identities). One explanation is that users need to maintain
one persistent primary account either for social status from
higher point values or to maintain a persistent friends-list. This
strategy is also efficient because it earns points much faster
than pair-wise collusion for the same amount of traffic. For this
to work, however, the colluder must use multiple machines.

There are 4 star-shaped topologies caught by the repetition
detector in Figure 3. Ted has fan-out of 8, Mary and Sam
have fan-out of 4, and Ingrid has fan-out of 3. We take a
closer look at them in Table III. Except for Ted’s group, there
is generally strong IP address proximity between the center
peer and its leaf-peers. All of this indicates a high likelihood
of collusion. Peer Ted, however, turns out to be the Maze user
with the highest uploads of the month (3.8TB). Since its 8
edges carrying duplicate traffic shows very little IP address
similarity, Ted is likely not a colluder.

While zero-cost identities are easy to generate, physically
separate machines are expensive to obtain. This means spam

2Note that spam accounts can be produced by performing the Sybil [4]
attack.



TABLE III

PEERS SUSPICIOUS OF DOING SPAM ACCOUNT COLLUDING, AS FOUND BY

REPETITION DETECTOR

accounts can be many in number, but are likely to reside
on few machines. We define the PM ratio as the ratio of
number of peers to number of machines to describe how
densely a peer’s clients are distributed across different physical
machines.

Detector 3: (Spam account detector) high Peer to Machine
ratio can indicate spam account collusion.

We use the method described in Section II-B to associate a
peer with its machine. One problem with the PM value is the
signal to noise ratio. A single upload to a random peer counts
as an additional peer-machine pair, and significantly reduces
the PM value. We remove these noisy values by discarding
the bottom smallest uploads that, in aggregate, holds less than
20% of all upload traffic.

Figure 5 plots all peers as points with the total uploads
made by the peer on the X-axis, and the peer’s PM ratio
on the Y-axis. Most peers have PM ratio slightly above 1
and below 2. This is statistically normal because many users
perform whitewashing. However, a number of peers have
exceptionally high PM ratios (up to 7). These peers are likely
machines generating new user accounts to help a peer collude.
Table IV lists the peers whose upload > 10GB and have
PM ratio > 3. The temporal column shows when each client
generated its peak loads of Maze traffic. Consistent temporal
collisions between virtual nodes on the same machine may
signal collusion.

We check for three additional properties of likely colluders.
First, we use IP address proximity to infer whether these
accounts have good connectivity to the center peer as expected.

Fig. 5. Spam account detection by PM ratio

Second, we check if these accounts only download data
from the center peer. Finally, we examine whether the spam
accounts perform a large amount of downloads in a relatively
short life-span. All of these heuristics confirm the likelihood
that these peers are colluding. Most spam accounts live on the
same machine; they generally download exclusively from the
center peer; and they are only active for short life spans (1-2
days).

D. Upload Traffic Concentration

Pair-wise colluding and spam account colluding share one
common trait: a high volume of uploads to a small number
of machines. We now shift our focus from the flow among
peers to among physical machines. We define the traffic
concentration degree (TC degree), as the ratio of a peer’s
highest upload traffic to a single machine to his total upload
traffic. For instance, if X uploads to 10 clients for a total of
100GB, and with 90GB going to one machine, then the TC
degree of X is 0.9. The higher the TC degree, the more likely
that the peer is performing either pair-wise or spam-account
colluding.

Detector 4: (Traffic concentration detector) peers with
exceptionally high TC degree.

We plot the results from this detector in Figure 6 where we
plot the total upload of each peer on the X-axis and its TC
degree on the Y-axis. For non-colluding users, we expect an
increase in upload traffic to correlate with more destinations
and thus a lower TC degree. Figure 6 confirms this in our data
set. Most peers who upload around 10GB have TC degrees
around 10%. For heavy uploaders who upload around 1TB,
the TC degree drops to about 1%.

We identify a number of potential colluders who have TC
degrees significantly higher than their peers. For example,
seven peers have uploaded more than 50GB and have TC
degrees higher than 0.6. This means that more than 60% of
the 50GB uploaded is going to a single machine. We list these



TABLE IV

SOME TOP SPAM ACCOUNT COLLUDERS

TABLE V

TOP 7 COLLUDERS DETECTED BY TC DETECTOR

peers and their traffic in Table V. Six of these have been
detected by previous detectors. The pair-wise detector missed
the new peer Nancy because it has no pair-wise traffic with any
other peer. The spam account detector missed Nancy because
it mainly uploads to only one peer and its PM ratio is close
to one. It turns out that it ranks #7 by the repetition detector
(we listed only the top 6 in Section 3.1).

E. Detectors Compared

After presenting four different collusion detectors, we sum-
marize the top colluders discussed in earlier sections in Fig-
ure 7, and graphically show how they were detected by each

Fig. 6. Upload traffic concentration detector result

TABLE VI

SEVEN TOP COLLUDERS AND HOW OUR DETECTORS HAVE FOUND AND

MISSED THEM

of our four detectors. Table VI lists the top seven colluders
according to their total upload traffic. The detectors responsi-
ble for detecting each colluder is shown in shaded cells. Our
first observation is that spam-account and pair-wise colluders
do not overlap. This is logical, because the two detectors are
designed specifically with these two patterns in mind. While
colluders can engage in both activities simultaneously to evade
potential detectors, the fact that spam-account colluding is
more “cost effective” and that these detectors were applied
to logs after the fact, leads us to believe that this does not
happen in practice.

As discussed earlier, the traffic concentration detector relies
on the observation that colluders generally control relatively
few machines. Thus it examines how a peer’s upload traffic
is spread across its partners. Figure 7 shows that this detector
detects the majority of both spam-account and pair-wise col-
luders. We now examine the colluders that TC degree failed
to detect. With the exception of “Bob,” who was missed due
to a low TC degree (0.39), the other colluders it missed all
have high TC degrees (>0.8), and avoided detection only
because their total upload traffic was low. Lowering our traffic



TABLE VII

SUMMARY OF STRENGTHS AND WEAKNESSES OF COLLUSION DETECTORS.

Detector Heuristic Strength Weakness
Colluders Small colluding working set General Cannot detect randomized colluding group
Pair-wise Uploads: pair-wise > external Accurate Limited to pair-wise topologies
Spam One uploads to many Accurate Limited to spam collusion topologies
Traffic Concentration Colluder controls few hosts General Difficult to optimize parameters

Fig. 7. Venn diagram of collusion detectors

threshold from the current value of 50GB would allow us
to detect all of our colluders, showing that the TC detector
is in fact quite effective. However, because we still cannot
guarantee perfect results when mapping peers to specific
machines (in the presence of DHCP and NATs), we cannot
yet deploy the TC detector as an online collusion detector.
Finally, we are still investigating how to choose reasonable
traffic thresholds to avoid false positives.

Table VI shows that the repetition detector misses six
colluders. All six peers have too small redundant traffic on
a single link to be noticed. For example, peers Larry and
Jane have a lot of collusion traffic, but their traffic is scattered
across multiple upload links. The repetition can only be found
if we aggregate multiple links together (Figure 3). The pair-
wise detector also missed four colluders. Two among the
four colluders have little number of mutual upload with other
peers. The other two have no mutual upload with any peer at
all. Spam account detector missed five colluders. All the five
colluders evaded the spam account detector because they have
very low PM ratios.

Figure 7 shows that the repetition detector also works quite
well. However, the reason that it works at all is because the
current version of Maze has no explicit defense mechanism
against collusion. This detector can easily be circumvented
by a colluder if it simply modifies the content slightly, even
by just flipping one single bit. Also, differentiating legitimate
repeated downloads from colluders will be a challenging task.
For example, peers could lose their local cache and be required

Fig. 8. The basic EigenTrust algorithm for computing trust.

to repeat previous downloads. We have used this detector in the
study to lead the ways to other more robust detectors, taking
advantage of the very fact that colluders today do not bother
to cover their tracks by randomizing their colluding working
set. We summarized the four detectors in Table VII.

IV. EIGENTRUST AND COLLUSION

Our access to a complete view of all transactions in Maze
gives us a unique opportunity to evaluate how proposed
reputation systems from research would perform on real world
systems. In this section, we will evaluate EigenTrust [6], a
well-known reputation system that generatess a global ranking.
The EigenTrust ranking can be used for both reputation man-
agement [6] (clients choose trustworthy download sources),
and free-rider detection [7] (uploaders choose trustworthy
clients). Ideally, the ranking algorithm would assign low scores
to malicious colluders.

A. An Overview of EigenTrust

We first give a high level description of the EigenTrust
system [6]. EigenTrust calculates global trust values for all
peers based on Power iteration in peer-to-peer file-sharing
systems. The algorithm is similar to the PageRank algorithm.
First, peer i assigns peer j trust values Cij based on its
downloading experience from j. Trust values for all j are
normalized locally by each peer i. We obtain from this a
matrix C containing a measure of trust across all peer pair in
the network. The trust vector t is defined as the left principal
eigenvector of C. The component ti is called the EigenRank
of peer i, and represents the peer’s global reputation.

The basic algorithm can be further improved to enhance its
robustness against malicious users. This is done by incorpo-
rating the notion of pre-trusted peers in the set P . So, for
peer i, we define pi = 1/|P | if i ∈ P , and pi = 0 otherwise.
The algorithm is summarized in Figure 8. Parameter α is a
constant less than 1 that is used to control the level of trust



Fig. 9. The EigenRank of peers

each peer places on the pre-trusted peers. A higher value of
α implies more confidence on the pre-trusted peers.

B. Applying EigenTrust to Maze

We map the EigenTrust algorithm to Maze system as
follows. First, we define the trust value cij be proportional
to the total traffic peer i downloads from peer j during the
log period. We then normalize the local trust value cij such
that:

∑N
j=1 cij = 1. Next, we select 10 pre-trusted peers from

the Maze population by choosing ten well-known users who
we have directly interacted with on the Maze user forum (i.e.
|P | = 10). This model gives us the matrix C and the set of
pre-trusted peers P . Finally, we set α to a reasonable value of
0.1.

C. Experimental Results

Figure 9 shows the EigenTrust values for the 9568 peers
whose upload traffic total more than 10GB. We can make two
interesting observations. First, generally speaking, the more
uploads a peer has, the higher its score will be. Thus, if Maze
had no colluders or whitewashers, its primitive point system
should work well. Second, peers are spread in two noticeable
bands. We drew a line and partitioned peers into two (High
and Low) regions, as shown in Figure 9. Out of roughly 9600
peers, 551 are in the Low region. If we focus on peers with
similar amounts of upload traffic, reputation values of peers
in the High region are far higher than those in the Low region
(about 103 times). This seems to imply that peers in the Low
region are misbehaving colluders.

To test this assertion, we label the positions of the fourteen
colluders detected from earlier sections using square symbols
(see Figure 9). Peer Mary is absent because its EigenTrust
value is 0 and outside the scope of the Y-axis. The result is
surprising. While some colluders have low scores in the Low
region, many others have higher scores and reside in the High
region. Therefore, there is no clear cause for the delineation
between the two regions of Eigenvalues.

TABLE VIII

CLIENT IP DISTRIBUTION OF REGIONS H AND L

Region Average # of distinct IPs
in clients

Avg. # of Class-B spaces
with clients

H 299.5 59.38
L 98.323 2.18

TABLE IX

A COMPARISON OF A NON-COLLUDING REGION-L PEER (WAYNE) WITH A

REGION-H SPAM-ACCOUNT COLLUDER (JANE)

In EigenTrust, a peer’s reputation depends on the reputations
of its clients: if the clients have lower reputations, then this
peer suffers as well. Therefore, we examine the respective
client groups of these peers to find the cause for their dif-
ference in trust values. After analyzing the data, we find that
there is a significant difference in the IP address distribution
of the clients of the High (H) region and the Low (L) region
peers. The data is shown in Table VIII. On average, region-
H peers upload to about 300 distinct IP addresses scattered
across 60 class-B spaces. This means that each class-B space
contains on average 5 IP addresses used by clients of region-H
peers. On the other hand, region-L peers upload to 98 distinct
IP addresses scattered across 2.2 class-B spaces. Thus, each
class-B space contains about 45 IP addresses used by clients
of region-L peers. Therefore, the key difference is that region-
H peers have more clients than region-L peers, and they are
more widely spread geographically. Region-L peers seem to
serve the role of “local distributors” that disseminate data only
to nearby peers.

We take a closer look at well-behaved peers with low trust
values and colluding peers with high trust values. Table IX
lists one of the region-L peers (Wayne) and compares it with
a spam-account colluder (Jane) we found earlier. Wayne is
in region-L, whereas Jane is in region-H (the reason that
Jane ranks high will be discussed shortly). Peer Wayne’s 722
clients reside on 614 different machines, all of which have
temporal activities that are vastly different from the colluder;
we show only its three top clients. In contrast, Jane’s download
activities are well synchronized in time and strongly indicative
of collusion.

A closer look at Wayne’s uploading history reveals that



Fig. 10. Wayne’s school is a satellite cluster

TABLE X

A PRE-TRUSTED PEER HELPS COLLUDER LARRY

Total upload by
Larry

Total collusion Uploads to
Ted

Ted’s total
downloads

29.7GB 29GB 734KB 124MB

many of its clients are also region-L peers. Thus, we speculate
that due to the nature of good network connectivity, peers in a
subnet tend to cluster together in their downloading activities.
Despite the fact that there is large volume of traffic within
the cluster, because the amount of external traffic is low,
EigenTrust compounds the lower scores in the group through
its transitive trust computation, in effect treating these peers
as part of a big misbehaving group. We query Wayne’s IP
address in the APNIC whois database, and find that Wayne
belongs to a university, and most of his clients are from the
same university. We calculate the internal and external traffic
of this school and show the results in Figure 10.

The total traffic consumed by Wayne’s school is the sum of
its internal traffic (15TB) and its download from external sites
(5.6TB). On average, a peer in Wayne’s school is responsible
for 4.9GB of traffic during the log period. For the same
period, a peer not in Wayne’s school has an average of
2.7GB of traffic. While the difference is noticeable, it is
not statistically significant. The key problem is that Wayne’s
school collectively uploads (172GB) far less than it downloads
(5.6TB): the upload volume is only 3% of the download
volume. Therefore, everyone in this cluster (Wayne’s school)
is punished by the EigenTrust algorithm, including Wayne.
While it is interesting that EigenTrust has helped to identify
this satellite cluster with asymmetric traffic flow, the scores
assigned to individual peers do not seem justified. A non-
colluding region-L peer such as Wayne has contributed to a
great number of other peers, but nontheless receives a low
score because of his client peers. It may be fair for peers
outside of Wayne’s school to treat Wayne as colluder, but peers
inside his school should not. In this instance, a global ranking
can clearly lead to a non-ideal representation of a peer’s trust
value.

We now try to understand how certain colluders have
obtained such high trust values in EigenTrust. We take as
example a colluder Larry, who has a much higher trust value
than other normal peers with comparable uploads. Figure 9
shows many colluders located in region-H. While it is difficult
to determine all contributing factors, one possibility is that

Fig. 11. The TC plot with local distributors and colluders

pre-trusted peers may have unintentionally helped colluders
elevate their trust values. Table X presents a case where a pre-
trusted peer Ted helps colluder Larry. Larry uploads 29.7GB,
mostly of which are uploads to colluding partners. Pre-trusted
peer Ted has a total of 3.8TB of uploads, and it has also
downloaded 124MB data. Out of these downloads, 734KB
or only 0.59% are from Larry. This tiny amount of traffic
raises Larry’s trust value by nearly a factor of 10 (from 8.2e-
6 to 6.6e-5). Removing this upload would have dropped the
colluder’s ranking from 334 to 1905. In addition, Larry has a
small amount of uploads to other reputable peers. If we remove
its top 200MB uploads to “celebrity peers,” it drops into region
L (trust value drops to 7.4e-8). Decreasing the value of α to
place less trust on the pre-trust peers produces a similar effect.
These findings seem to suggest another vulnerability of the
EigenTrust algorithm.

Obtaining an endorsement from a highly reputed node is
expensive in the context of web spamming, but is not difficult
in file-sharing systems like Maze, since the primary factor
in choosing downloading target is content availability. Such
a transaction significantly boosts trust values of colluders.
EigenTrust is highly sensitive to this effect. Additionally,
since most colluders do not have downloads from highly
reputed nodes, transactions between a single colluder and a
highly reputed node would work to elevant the rankings of all
colluders.

To put things into perspective, we conclude this section by
redrawing the results of using the traffic-concentration detector
in Figure 11, now annotated with the same colluders and local
distributors as we did in Figure 9. Note that unlike EigenTrust,
a lower value of TC degree means that a peer is not only
contributing, but that its contribution flows are physically -
not logically - diverse. It is interesting to see that all the 14
sample colluders have high TC degree, whereas the two sample
local distributors have low TC degree. Thus, for the Maze
system at least, the TC degree metric seems to be a more
robust enhancement to our point-based trust system.



V. RELATED WORK

According to the taxonomy proposed in [5], incentive mech-
anisms can be categorized into those using private history,
shared history, or subjective shared history. The choking
algorithm in BitTorrent is a type of private history based on
Tit-for-Tat. Its robustness and ability to deal with free-riders
has been proven in practice [2]. However, systems based on
private history generally do not scale well. In a large P2P
network, peers will interact with a large amount of peers, most
of which are new faces, and they will only interact once [3].
This limits BitTorrent to generally small groups in individual
download sessions.

Many shared history solutions have been proposed to over-
come this drawback. They can be generally categorized into
two types [10]: virtual currency based and reputation based,
e.g. Mojo Nation [15] or Free Haven [3]. Shared history
introduces the collusion problem, where colluders can use
forged shared history to increase the ranking of colluders [5].
One approach is presented in the Stamp algorithm [10], where
peers issue stamps to use as virtual currency, and the value of
each peer’s stamps is maintained by exchange rates that act as
reputation values.

A more general solution is to use subjective shared history.
The maxflow algorithm [5] estimates the services that the
requester has provided to the uploader in the past, whether
directly or indirectly. The comparison is done from the up-
loader’s point of view, and therefore is “subjective.” The
algorithm is computationally expensive and does not offer any
global rankings of peer reputations. Our experience with Maze
has shown that mechanisms like the “altruistic list” provide
strong incentives for cooperation, even though it can encourage
collusion for popularity’s sake.

Finally, our results show that the collusion patterns found
in Maze have analogous counterparts in web spam attacks.
For example, link spam collusion [16] is a combination of our
spam account collusion and group collusion. Other similarities
exist. For example, TrustRank is an algorithm that is more
spam-resilient and similar to EigenTrust, both of which are
derived from the page ranking algorithm [1]. It would be
worthwhile to apply some of their results to collusion in P2P
file-sharing systems.

VI. CONCLUSION

Our work presents first-hand empirical analysis of colluding
behavior in a real peer-to-peer file sharing system. With total
access to the Maze network, we analyzed a complete user
and traffic log segment representing all transactions during
the course of a month. From our observations of collusion
behavior, we build four different types of collusion detectors
for file-sharing networks. While obtaining definitive proof of
intent to collude is difficult, and our detectors can produce
false-positives for unexpected user behavior, application of
our detectors has provided substantial evidence of existing
collusion-like behavior in Maze.

We also apply the popular EigenTrust reputation system
to our data set, and compare the results to our knowledge

of existing colluders. Using our lessons from this study, we
are developing incentive systems that will provide stronger
resistance against observed user collusion behavior [9].

Note that while Maze is a centralized system, most of our
detectors can be implemented using distributed mechanisms
and embedded inside client software. We believe that if client
software can prevent user tampering of data, our detectors
can quantify collusion behavior on an “online” basis. The
question of whether knowledge of collusion detection mecha-
nisms changes user behavior remains to be seen. Finally, the
collusion patterns we observe are likely to occur in any system
without conservation of points. Outside of BitTorrent’s Tit-for-
Tat scheme, Maze is one of the few peer-to-peer systems with
an incentive system, and our lessons can guide the design and
deployment of future distributed incentive schemes.
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