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 ABSTRACT

Two new lapped transforms are introduced: the LBT (lapped
biorthogonal transform) and the HLBT (hierarchical lapped bior-
thogonal transform). The LBT has the same computational com-
plexity of the LOT (lapped orthogonal transform), with much less
blocking artifacts. The HLBT has a significantly lower computa-
tional complexity than the LOT, essentially no blocking artifacts,
and less ringing artifacts than the commonly-used DCT (discrete
cosine transform). The LBT and HLBT have a transform coding
gain that is typically between 0.5 and 1.2 dB higher than that of
the DCT. Image coding examples using JPEG and embedded
zerotree coders demonstrate the better performance of the LBT
and HLBT.

1. INTRODUCTION

Transform coding (TC) is an efficient and commonly used tool
for signal compression. TC is used as a basis for many video,
image, and audio coding standards, such as MPEG and JPEG. In
the encoding process, the signal is divided into blocks of N sam-

ples (or  for images). For each block, a transform operator
is applied. The resulting transform coefficients are quantized
(usually, via scalar quantizers) and entropy encoded. At the
decoder, the reverse operations are performed: entropy decoding,
dequantization, and inverse transformation. The decoded blocks
are combined to form the reconstructed signal.

Two kinds of reconstruction artifacts are typical in TC,
mainly at low bit rates: blocking (or tiling) and ringing. Blocking
artifacts arise because the concatenation of the reconstructed
blocks generates signal discontinuities across block boundaries.
Ringing artifacts arise because TC reconstructs blocks by linear
combinations of the transform basis functions, and the quantiza-
tion errors on the transform coefficients generate signal errors
that last for the entire block duration (quite similarly to the Gibbs
phenomenon in truncated Fourier series).

Lapped transforms (LTs) [1, 2] reduce blocking effects sig-
nificantly, because their basis functions have two key properties:
(i) they are longer than the block size, and (ii) they decay
smoothly to zero at their boundaries. This is particularly true with
biorthogonal solutions [2], in which the synthesis basis functions
are smoother than the analysis ones. Furthermore, LTs have

higher coding gains, which lead to lower reconstruction error
energies. However, the longer basis functions of LTs cause an
increase in ringing artifacts.

In this paper we introduce two new lapped transforms: the
lapped biorthogonal transform (LBT), which is both a fast-com-
putable approximation of the biorthogonal filter banks in [2] and
a simpler version of the GLTs in [3], and the hierarchical lapped
biorthogonal transform (HLBT), which uses the hierarchical con-
structions in [4] and [5] applied to the LBT. The HLBT leads to
less blocking than lapped orthogonal transforms (LOTs) and less
ringing than the discrete cosine transform (DCT), while main-
taining a computational complexity lower than that of the LOT.

2. THE LBT

The direct and inverse LBT are defined by the flowgraph shown
in Fig. 1, which is based on the LOT flowgraph of [1]. The only
difference from the LOT flowgraph in [1] is that the first oddly-
symmetrical DCT coefficients (i.e., the first AC coefficients) are

multiplied by  in the inverse transform (synthesis), and by

 in the direct transform (analysis). This is represented in

Fig. 1 by the matrix V, defined by  

for the direct transform, and by  
for the inverse transform. The construction of the LBT in Fig. 1 is
quite similar to that in [5], where the DC coefficients were scaled,
and in [3], where all coefficients were scaled.

3. THE HLBT

The HLBT is a two-level hierarchical lapped transform [4], built
from the LBT as shown in Figure 2. It is similar to the three-level
HMFLT of [5], which is based on the MFLT (modified fast
lapped transform) [5].

From a subband decomposition viewpoint, the HLBT in
Fig. 2 is a nonuniform (multiresolution) filter bank with 5 bands.
The first two subbands, corresponding to coefficients with indi-
ces 0 and 1, have bandwidth π/8. The third subband covers π/4 to
π/2, corresponding to coefficients 2 and 3, and so forth.

N N×
1 2⁄

2

V diag 2 1 1 … 1, , , ,{ }=

V
1–

diag 1 2⁄ 1 1 … 1, , , ,{ }=

(Note: this is a corrected version, with a corrected Fig. 4 and PSNR values)



The LBT basis functions are shown in Fig. 3 (a) and (b),
where it is clear the reason for the scaling matrix V in Fig. 1:
increased smoothness of the synthesis functions. Unlike the LOT,
where the basis functions decay to a value near zero at the bound-
aries [1], the LBT synthesis basis functions decay to zero at the
boundaries. That is why the LBT has less blocking artifacts than
the LOT, as shown in Section 5. Although the analysis functions
approach relatively large nonzero values at their boundaries, that
does not contribute to blocking artifacts.

 The HLBT basis functions of Fig. 3(c) have many interesting
properties. The low-frequency functions (DC and first AC) have
an overlap of 33% (compared to 50% for the LOT and LBT). The
high-frequency functions (indices 3 to 7) have the same length as
the DCT basis functions (equal to the block size N = 8). However,
since the HLBT functions decay to zero smoothly, their effective
length is actually less than the block size, and that is why they
generate less ringing than the DCT, LBT or LOT, as shown in
Section 5.

4. CODING GAIN AND COMPUTATIONAL 
COMPLEXITY

The transform coding gain [1–5] is a common measure of trans-
form performance in TC. It is usually computed for high bit rates

only, as the ratio of the arithmetic to the geometric means of the
transform coefficient variances, and is usually expressed in dB. In
general, the coding gain is defined as the improvement in SNR
(signal-to-noise ratio) over straight PCM quantization of the orig-
inal signal, and so a low bit rate TC can be computed by actually
performing bit allocation [6,7], evaluating the resulting SNR, and
computing its ratio to that of PCM. Low-rate TCs are more mean-
ingful in predicting practical transform coding performance.

Considering a Gauss-Markov input signal with an inter-sam-
ple correlation coefficient of 0.95 (a common model for image
coding [6,7]), the coding gains of the LOT, LBT, and HLBT are
shown in Table 1, in terms of improvements over the DCT.

Also shown in Table 1 are the computational complexities of
the new biorthogonal lapped transforms, obtained from the flow-
graphs in Figs. 1 and 2. The DCT and LOT complexities are
those reported in [7]. The LBT coding gain is within less than 0.1
dB of the optimal lapped biorthogonal transform (not fast-com-
putable) of [2].

Table 1:  Coding gain above DCT and computational
complexity for N = 8 and a bit rate of 0.3 bits/sample.

5. IMAGE CODING EXAMPLES

We tested the transforms in Table 1 with two DCT-based image
coding algorithms: the popular JPEG coder [8], and the recently
introduced embedded zerotree DCT coder [9] (which replaces the
wavelet transform of the SPIHT coder in [10] by DCTs, with
appropriate coefficient ordering). For the JPEG coder we used a
flat quantization matrix, for optimum SNR performance (the rec-
ommended quantization matrix in [8], used in almost all JPEG
implementations, was designed for good visual appearance, not
maximum SNR). For both coders, we tested the lapped trans-
forms by simply replacing the DCT by the LOT, LBT, and HLBT,
without any other change in the coder.

E
DCT

O

E
DCT

O

V

V

–

–

1/2

1/2

Z̃

Figure 1:  Flowgraph of the LBT; direct transform from left to right, inverse from right to left.
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Figure 2: HLBT flowgraph for N = 8.

Transform Coding 
Gain (dB) Multiplies Adds

DCT 0 13 29
LOT 0.40 22 54

HLBT 0.65 16 42
LBT 1.05 23 54



As a test image, we used “lena2,” a 256x256 cut from the
well known 512x512 “lena” image. The PSNR (peak SNR)
results are shown in Fig. 4, for rates between 0.15 and 1.0 bit per
sample. For the JPEG coder, the HLBT shows a small PSNR
improvement over the DCT (around 0.3 dB), whereas the LBT
shows a PSNR gain of more than 0.8 dB at rates around 0.5 bits/
sample. These results are consistent with Table 1. 

It is interesting to note that the performance of the HLBT is
quite close to that of the LBT for the embedded zerotree coder.
Both perform closely (within 0.8 and 0.4 dB, respectively) to the
optimized wavelet-based SPIHT coder (one of the best image
coders reported to date), but the HLBT-based embedded coder is
faster. The HLBT improves de embedded coder by about 0.5 dB
when compared to the DCT.

Fig. 5 shows 128x128 portions of the reconstructed images,
for the rate of 0.6 bits/sample. In the top row (JPEG results), we
see that all lapped transforms have less blocking then the DCT.
The LOT still shows some artifacts, and the LBT is virtually free
from blocking, but both show more ringing artifacts than the
DCT. The HLBT has less blocking and less ringing than the DCT.

The embedded zerotree coded images in the bottom row of
Fig. 5 show the significant improvement achieved with the bior-
thogonal lapped transforms. The HLBT- and LBT-coded images
are quite similar, as expected from the curves in Fig. 4, and they
both represent a visible improvement over the DCT-coded image.

6. CONCLUSION

We introduced two new lapped biorthogonal transforms, the
LBT and the HLBT, which are good alternatives to the DCT and
LOT for transform image coding. These transforms are obtained
from modifications in the LOT flowgraph, similar to the ideas in
[3,5]. The LBT has a performance close to the optimal biorthogo-
nal lapped transform of [2].
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Figure 3: Basis functions of lapped biorthogonal trans-
forms for N = 8, with indices 0, 1, 6, and 7: (a) LBT,
analysis; (b) LBT, synthesis; and (c) HLBT, synthesis.
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Figure 4: Performance for transform-based coders with N = 8,
for the “lena2” image. Dashed lines: embedded zerotree; solid
lines: JPEG. Reference: SPIHT (top solid line).
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The HLBT has a better coding gain than the DCT. Also,
because of its smooth low-frequency functions and shorter high-
frequency functions, it leads to less blocking and less ringing arti-
facts than the DCT. These advantages come at a computational
overhead of only 30% (compared to 80% for the LOT or LBT).

Specifically for the embedded zerotree coder, replacing the
DCT by the HLBT can improve the PSNR performance by more
than 1 dB. An HLBT-based embedded zerotree coder represents a
significant improvement over the DCT-based JPEG, with less
blocking and ringing artifacts, an embedded bitstream, and sin-
gle-pass encoding for any desired target bit rate.
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Figure 5: Coding examples for image “lena2”at 0.6 bits/pixel. Top row: JPEG encoding; column order, left to right:
DCT, LOT, LBT, HLBT, with PSNR (dB) = 33.0, 33.3, 33.7, and 33.4, respectively. Bottom row: embedded zerotree
encoding; column order, left to right: DCT, LOT, LBT, HLBT, with PSNR (dB) = 34.0, 34.5, 34.9, and 34.5.


