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ABSTRACT 

 
Accurate phone-level segmentation of speech remains an important 

task for many subfields of speech research. We investigate 

techniques for boosting the accuracy of automatic phonetic 

segmentation based on HMM acoustic-phonetic models.  In prior 

work [25] we were able to improve on state-of-the-art alignment 

accuracy by employing special phone boundary HMM models, 

trained on phonetically segmented training data, in conjunction with 

a simple boundary-time correction model. Here we present further 

improved results by using more powerful statistical models for 

boundary correction that are conditioned on phonetic context and 

duration features. Furthermore, we find that combining multiple 

acoustic front-ends gives additional gains in accuracy, and that 

conditioning the combiner on phonetic context and side information 

helps. Overall, we reduce segmentation errors on the TIMIT corpus 

by almost one half, from 93.9% to 96.8% boundary accuracy with a 

20-ms tolerance.  

 

Index Terms— phonetic segmentation, phone boundary 

model, forced alignment, HMM, regression, system fusion. 

 

1. INTRODUCTION 

 

The availability of large corpora of transcribed speech data has been 

an important enabler for achieving the current level of performance 

in automatic speech recognition (ASR). However, ASR training 

only requires transcription at the word-level, whereas research fields 

such as phonetics, sociolinguistics, and psychology, depend on 

accurate phone-level segmentations and transcriptions.  Manual 

phonetic segmentation is time-consuming and expensive, taking up 

to 400 times real time [1] or 30 seconds per phone [2]. Automatic 

phonetic segmentation is much needed. 

A common approach for automatic phonetic segmentation is 

“forced alignment”, based on two inputs: a speech audio waveform 

and a transcription at the phone- or word-level. In the case of word-

level transcription, the words are first mapped into a phone sequence 

using a combination of pronouncing dictionary and grapheme-to-

phoneme rules. Acoustic phone models in the hidden Markov model 

(HMM) framework are then trained, as would be required for a 

phone recognizer [3][4][5][6][7][8]. In this approach, each phone is 

a HMM of typically 3-5 states, and the entire utterance is modeled 

by the concatenation of phone HMMs (in the case of alternate 

pronunciations, a lattice of states may be used).  Each state has a 

self-loop to emit a variable number of speech frame feature vectors, 

computed by an acoustic front end. The sequence of frames 

comprising a speech utterance is aligned to the known phone 

sequence or lattice by finding the sequence of hidden states that 

maximizes the utterance likelihood under the state acoustic models. 

On the standard TIMIT corpus, the reported performances of 

conventional HMM-based forced alignment systems range from 

80%-89% agreement (of all boundaries) within 20 ms compared to 

manual segmentation [6]. 

A main drawback of the HMM-based forced alignment for 

phonetic segmentation is that phone boundaries are not represented 

in the model and the training procedure does not explicitly optimize 

for boundary accuracy. The boundaries are merely a by-product of 

the likelihood maximization over possible state alignments. Contrast 

this with the manual phonetic segmentation process, in which the 

acoustic landmarks at the phone boundaries [9], e.g., an abrupt 

spectral change, are used to determine the location of a boundary. 

One method to address this shortcoming is discriminative training 

of alignment models, as in [14]. Another approach is the use of 

features specifically designed to model boundary events, such as 

energy-based features and distinctive phonetic features, and the use 

of observation-dependent state transition probabilities [15]. That 

system achieved 93.36% agreement within 20 ms on TIMIT 

compared to manual segmentation, a result that comes close to the 

average agreement of 93.49% among human labelers [6][15]. 

Another group of approaches uses a two-stage architecture, 

where HMM-based forced alignment generates rough boundary 

estimates that are then refined by more specialized (and 

discriminatively trained) models.  For example, [10] used energy 

changes in different frequency bands for boundary correction, [11] 

trained support vector machine (SVM) classifiers to differentiate 

boundaries from non-boundary positions, and [12] and [13] 

employed neural network to refine phone boundaries.  

In our own prior work [26], we achieved state-of-the-art 

alignment accuracy on TIMIT (93.92%) by combining explicit 

boundary models (using HMM states associated with transitions 

between phones), carefully choosing context-dependency 

(monophone models can outperform triphone models), constraining 

phone model training by human boundary labels, and employing 

simple post-alignment correction models (constant or linear 

adjustment based on training data statistics for each phone label 

pair). 

 

In this paper we build on the above work to achieve further 

improvements of the state-of-the-art in TIMIT phone alignment 

accuracy.  First, we consider more sophisticated boundary 



correction models than used previously. We add a wider array of 

local features (phonetic context, phone durations, etc.) and apply 

general regression model architectures, including regression trees 

and neural nets. We also investigate the use of global speaker-

dependent features. Second, we instantiate our architecture with a 

large array of acoustic front ends, comparing performance to 

standard MFCC and PLP versions of our system. Finally, we 

investigate combinations of multiple systems based on diverse front 

ends, an approach that has been very successful in ASR systems 

[27]. A static combination of multiple alignment outputs has been 

proposed by [28]; here we develop an approach that allows the 

combiner model to learn from contextual features which subsystems 

to trust.  

In the following we first introduce the data set and the evaluation 

method (Section 2). In Section 3 we summarize out the basic 

boundary estimator developed in [26], as well as the acoustic front 

ends employed. Section 4 investigates the various boundary 

correction models. Section 5 compares performance for different 

front ends and ways to combine them, followed by conclusions. 

2. DATA AND EVALUATION 

The TIMIT corpus was used [22]. Excluding the “dialect 

calibration” sentences (SA sentences), 3,696 utterances from the 

training partition of the corpus were used for training and 1,344 

utterances from the test partition were used for testing. As listed in 

Table 1, the 61 TIMIT phonemes were mapped to 54 phonemes 

(following [15], pp. 357). The boundaries between two pauses, 

including stop closures, were excluded from evaluation. There were 

136,450 boundaries in the training set, and 49,248 boundaries in the 

test set for evaluation. 

The accuracy of automatic segmentation is measured in terms of 

what percentage of the automatically labeled boundaries are within 

20 ms of the manually labeled boundaries, which has been widely 

used in previous studies. 

Table 1: The phoneme set (54 phonemes) 

Pauses and 

stop closures 

/pau/, /pcl/, /bcl/, /tcl/, /dcl/, /kcl/, /gcl/ 

Vowels /aa/, /ae/, /ah/, /ao/, /aw/, /ax/, /axh/, 

/axr/, /ay/, /eh/, /er/, /ey/, /ih/, /ix/, /iy/, 

/ow/, /oy/, /uh/, /uw/, /ux/ 

Glides /l/, /r/, /w/, /y/, /hh/, /hv/ 

Nasals /m/, /n/, /ng/, /nx/ 

Plosives /b/, /d/, /g/, /p/, /t/, /k/, /dx/, /jh/, /ch/ 

Fricatives /s/, /z/, /sh/, /zh/, /f/, /v/, /th/, /dh/ 

  

3. SYSTEM COMPONENTS 

 

3.1 Phone and boundary modeling 

Both monophone and phone boundary HMMs were trained, using 

the HTK toolkit [25]. Stops, stop closures, the vowel /axh/ 

(“devoiced schwa”), nasals, and liquids (/l/, /r/) are 1-state HMMs; 

the “true” diphthongs (/ay/, /aw/, /oy/) are 5-state HMMs; and the 

other phonemes are 3-state HMMs. The phone boundary HMMs are 

a special 1-state HMM, in which the transition probabilities a01 = 1,  

a11 = 0, and a12 = 1 (as shown in Figure 1). Therefore, a boundary 

can have one and only one state occurrence, i.e., aligned with only 

one frame. 

 

 

Figure 1: The boundary model is a special 1-state HMM for phone 

boundaries with transition probabilities a11 = 0 and a12 = 1. 

The special 1-state phone boundary HMMs were trained using 

frames extracted at the manually labeled phone boundaries, one 

frame for each boundary. Within-word and cross-word boundaries 

were differentiated. The full set of boundary models contained 5,832 

states, one state for each boundary type (54 phonemes on the left × 

54 phonemes on the right × 2). The boundary states were tied 

through decision-tree based clustering, similar to triphone state 

tying. The monophone HMMs were trained using frames extracted 

within the manually labeled phone boundaries, excluding the 

boundary frames. Each state has 8 Gaussian mixture components 

with diagonal covariance matrices. 

In testing, forced alignment was run over utterances representing 

their phone transcriptions (including the boundary labels derived 

from the phone identities). The forced alignment boundaries were 

then adjusted by applying statistical models that are conditioned on 

phonetic context and duration features, built on the training data. 

 

3.2 Acoustic front ends 

 
The baseline system [26] was built on Perceptual Linear Prediction 

(PLP) features implemented by HTK. One of the goals of this study 

was to explore and combine a variety of acoustic front ends, as is 

common in ASR systems. We included systems based on the 

traditional Mel-frequency cepstral coefficients (MFCCs), and PLP 

features using RASTA processing (RASTA-PLP) [29]. 

The first group of nonstandard features explored in our study are 

perceptually motivated features that have been shown to have 

significant robustness to noise and channel degradation. Normalized 

Modulation Cepstral Coefficient (NMCC) [30] is a noise robust 

acoustic feature obtained from tracking the amplitude modulations 

(AM) of gammatone-filtered subband speech signals in time 

domain. The AM estimates are obtained using the discrete energy 

separation algorithm (DESA) [31] based on the nonlinear Teager’s 

energy operator [32]. The modulation information after root power 

compression is used to create a cepstral-like feature, where the first 

thirteen discrete cosine transform (DCT) coefficients were retained 

and their dynamic coefficients were also computed. Modulation of 

Medium Duration Speech Amplitudes version 1 (MMeDuSA-1) is a 

variant of NMCC features that uses medium-duration analysis 

windows (~51 ms) to estimate approximate AM information of 

band-limited speech signals [33]. MMeDuSA-2 [34] is similar to 

MMeDuSA-1[33] except that it has three extra dimensions to 

capture the summary speech modulation across frequency channels; 

these extra dimensions provide prosodic information and 

information about speech activity. Power Normalized Cepstral 



Coefficients (PNCC) [35] is a feature obtained from gammatone 

filterbank analysis of speech signals, where the filterbank energies 

are power-normalized, bias-subtracted, root-compressed and then 

cosine-transformed to yield cepstra-like features. Mean Hilbert 

Envelop Cepstra (MHEC) [36] is a feature that uses gammatone 

filterbank to analyze speech and performs DCT on the mean Hilbert 

envelopes to construct a cepstra-like feature. Synchronized damped 

oscillator cepstral coefficients (SyDOCC) [37] are a set of 

perceptually motivated features that represent auditory hair cells as 

a set of damped oscillators excited by a set of time-synchronized 

band-limited speech signals. 

We also explored a set of articulatory features originally 

developed for ASR [37]. The use of articulatory features is 

motivated by the fact that they are robust to coarticulation effects 

and have also shown some degree of robustness to channel and noise 

degradation [38]. The articulatory features (a.k.a. tract variables or 

TVs) define vocal tract constrictions dynamically in time. We fused 

the modulation information of the TVs with MFCCs and, after 

dimensionality reduction based on principal component analysis 

(PCA), created a 30-dimensional composite feature, which we call 

MFCC_ModTV-PCA [38]. 

Finally, we also explored a feature obtained from training an 

autoencoder (AE) network with 150 neurons using the NMCCs as 

input. An AE network maps the input space to itself and, as a 

consequence, its hidden variables learn the broad phonetic inventory 

of the acoustic space in an unsupervised manner. Once trained, the 

output (or generation) layer is split off from the network and the 150-

dimensional hidden variables from the first (or extraction) layer are 

used as the AE feature. We applied PCA on these features to reduce 

them to 53 dimensions, ensuring that at least 95% of information is 

retained. Note that all the cepstra-like features used the first 13 DCT 

coefficients and their Δ, Δ2, and Δ3 information, resulting in feature 

vectors of dimension 52. In the case of MMeDuSA-2, the additional 

3 dimensions resulted in a feature vector of dimension 55.  

 
4. BOUNDARY CORRECTION MODELS 

 

As discussed earlier, HMM segmentation points obtained from 

forced alignment (FA) need to be adjusted to achieve good boundary 

accuracy. In prior work [26], we used one of two statistical 

correction procedures, one for the boundaries between vowels or 

glides, and one for all other boundaries. The boundaries between 

vowel and glide phonemes are inherently subjective and labeling 

guidelines for such boundaries employ a heuristic rule by which 

“one-third of the vocalic region is assigned to the semivowel.” We 

therefore built a linear model for vowel/glide phonemes that predicts 

the manually labeled boundary positions from the forced alignment 

positions of the two phonemes (phoneme center positions), the 

identities of the boundaries (the phonemes preceding and following 

the boundary), and the forced alignment boundary positions. The 

model was trained on the training portion of the data and applied to 

the test data. For all other boundaries, the mean difference between 

manually labeled and forced alignment boundaries for every 

boundary identity was calculated using the training data, and the 

forced alignment boundaries in the test set were shifted by these 

boundary-dependent time differences. 

 

For this paper, we employed three more general regression models 

to predict true phone boundaries from FA boundaries. The first 

model consists of standard regression trees, as implemented by the 

M5PrimeLab package [39].  Input features to the model are the 

identities of the left/right phones and their durations (according to 

FA). The predicted variable is the signed deviation between FA and 

reference boundary. The phone identities are encoded either as unary 

feature vectors, or as a vector of 28 binary articulatory features. (We 

also tried M5’ tree models [39], but found them to work slightly less 

well than standard regression trees.) The articulatory encoding 

works best for this model. 

 

The second regression model was a simple multi-layer perceptron 

(neural network) with a single hidden layer of 20 units; the nonlinear 

hidden-unit activation function used was tanh. The training criterion 

was mean-squared error, and 30% of the training set was used for 

cross-validation. The input features were the same as described 

earlier for the regression tree model. We also investigated adding 

speaker-dependent features such as age, sex, and dialect region, but 

found no gains in preliminary experiments, and did not include these 

in results reported below. 

 

The final model for boundary correction was a neural net using 

expanded input features and modified network topology, trained 

with more sophisticated optimization techniques. A network with 

one hidden layer of 128 rectified linear units [40] was trained for 

2000 epochs (epoch = 250000 instances) using stochastic gradient 

descent with minibatches of size 128 and dropout of 50% in the 

hidden layer [41]. A decaying learning rate was used with initial 

learning rate set to 1. Momentum was increased from 0.25 to 0.5 

linearly over the course of learning. Input features consisted of left 

and right predicted phone durations (as before), left and right phone 

identity coded using a 1-of-k scheme, and distance from the system 

boundary to beginning and end of the utterance (the distance features 

had not yielded improved predictions with the simpler regression 

models). 

Table 2: Boundary accuracy (20ms tolerance) with different 

regression models 

Correction model Accuracy (%) 

Baseline [26]: without corrections 91.02 

Baseline [26]: with corrections 93.92 

Regression tree 93.90 

Neural network 1 94.17 

Neural network 2 94.39 

 
Table 2 shows the boundary accuracy within 20 ms for the various 

correction models. Also shown is the accuracy without correction of 

the underlying forced alignments, which were obtained with the 

system based on a single PLP front-end as described in [26]. 

Boundary correction by regression tree achieves the same accuracy 

as the simple heuristic correction model from that earlier work. The 

neural network models do improve on the previous result, reducing 

error by 4.1% and 7.7% relative, respectively. It is maybe surprising 

that the simple baseline model with linear heuristic correction is not 

far behind the completely data-driven models that use a wider array 

of input features. But the comparison between the two neural 

network models shows that the regression models may be data-

starved and require very careful optimization. 

 

5. SYSTEM COMBINATION 

 
In addition to the UPenn PLP system used previously [26], we 

trained separate HMM systems for all the front ends described in 

Section 3.2, based on feature extractors implemented at SRI. Note 

that the PLP (HTK) features were zero-mean normalized, whereas 



the SRI features, including PLP, did not employ utterance-level 

normalization. 

Table 3: Boundary accuracy by front end, using neural network 

boundary correction model 1 

Front end Accuracy (%) 

PLP (HTK) 94.17 

PLP (SRI) 93.83 

SyDOCC 93.73 

MMeDuSA-2 93.71 

PNCC 93.69 

MMeDuSA-1 93.66 

NMCC 93.57 

MFCC 93.09 

MFCC_ModTV-PCA 93.09 

MHEC 92.75 

AE 91.90 

 
As shown in Table 3, all front ends, with the exception of AE, 

resulted in accuracies within 1.5% of the original system. The AE 

system was over 2% worse, and was not included in combination 

experiments. In comparing results of the different systems it is 

important to note that the model parameters (e.g., the number of 

mixture components, the number of hidden states, and the degree of 

boundary state tying) were tuned using HTK PLPs only, and then 

applied to all features. This expedient seemed justified given that 

our focus was system fusion, not the comparison between particular 

front ends. 

 

As a baseline combiner approach, we can simply average boundary 

estimates from all systems. However, we want the combiner to learn 

which systems to trust as a function of context. To achieve this we 

trained a neural network with two hidden layers of 128 rectified 

linear units that takes the individual boundary estimates (we encode 

these as differences from the first system’s prediction), along with 

articulatory features encoding one phone of context on each side of 

the boundary as input. The network is trained to estimate the 

deviation from the first input system’s prediction to the true 

boundary time (i.e., a correction to a correction). The network was 

trained for 200 epochs (250000 instances per epoch) using stochastic 

gradient descent with minibatches of size 128 and 10% dropout in 

the hidden layers. Learning rate and momentum were kept constant 

at 1 and 0.5 respectively. 

Table 4: Boundary accuracy for different system combination 

approaches 

Combiner model Accuracy (%) 

Average 95.10 

Neural net w/o phone context 96.39 

Neural net with phone context 96.66 

+ average of regression-tree systems 96.77 

 
We found that the outputs of the simpler neural network 1 correction 

models (see Section 4) gave slightly better result than the more 

complex neural network 2 after combination, possibly because they 

were less correlated. (The optimization of individual system with 

respect to the combined result is a problem for future work.) 

 

Results in Table 4 show that the neural net achieves a 26.3% relative 

error reduction over the average of systems. Providing phone 

context to the combiner network reduces error by an additional 7.5% 

relative. 

 

A final improvement can be obtained by combining not just different 

front ends, but also different boundary correction models.  To avoid 

doubling the number of input parameters to the combiner, we take 

an average of versions of all the systems using a regression tree 

backend instead of the neural net. This yields an accuracy of 94.99% 

(slightly worse than 95.10%, the average of systems with neural net 

backends). This average was then added as one additional input to 

the overall combiner, which was itself neural network-based.   This 

final combination (last row of Table 4) gives an additional 3.3% 

relative error reduction. This overall combined system has 42.4% 

lower error than the best single boundary estimation system, and 

46.9% lower than the best previous result (cf. Table 2). 

 

We might also be interested in how error is reduced as a function of 

the number of available input systems. Figure 2 plots the drop in 

error as we added more systems to the simple averaging combiner, 

in the order of their individual accuracy (as shown in Table 3).  As 

shown, there is some leveling off after the three best systems are 

combined, but incremental improvements are achieved even with 

ten front ends.  

 

Figure 2: Boundary error rate as a function of number of front-

ends/systems (combining by averaging) 

6. CONCLUSIONS 

 
We have investigated ways to improve phone boundary time 

estimates based on HMM forced alignments. Two sources of 

improvement are better correction models, namely neural networks 

that take phonetic context and duration features as input to estimate 

the deviation of the true phone boundary from the one given by 

Viterbi alignment. A further improvement in accuracy is achieved 

by combining estimates based on multiple acoustic feature front 

ends. A simple averaging is effective as long as all systems are 

roughly equal in quality, but here, too, neural networks that take 

phonetic context into account can yield additional gains. Overall, we 

achieve a substantial improvement in phone segmentation accuracy 

on TIMIT data, cutting the residual error rate (at 20 ms tolerance) 

almost in half compared to the previous best result. 
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