
 1

Detours: Binary Interception of Win32 Functions

Galen Hunt and Doug Brubacher
Microsoft Research
One Microsoft Way

Redmond, WA 98052
detours@microsoft.com

http://research.microsoft.com/sn/detours

Abstract
Innovative systems research hinges on the

ability to easily instrument and extend existing
operating system and application functionality.
With access to appropriate source code, it is often
trivial to insert new instrumentation or extensions
by rebuilding the OS or application. However, in
today’s world of commercial software,
researchers seldom have access to all relevant
source code.

We present Detours, a library for
instrumenting arbitrary Win32 functions on x86
machines. Detours intercepts Win32 functions by
re-writing target function images. The Detours
package also contains utilities to attach arbitrary
DLLs and data segments (called payloads) to any
Win32 binary.

While prior researchers have used binary
rewriting to insert debugging and profiling
instrumentation, to our knowledge, Detours is the
first package on any platform to logically
preserve the un-instrumented target function
(callable through a trampoline) as a subroutine
for use by the instrumentation. Our unique
trampoline design is crucial for extending existing
binary software.

We describe our experiences using Detours to
create an automatic distributed partitioning
system, to instrument and analyze the DCOM
protocol stack, and to create a thunking layer for
a COM-based OS API. Micro-benchmarks
demonstrate the efficiency of the Detours library.

1. Introduction

Innovative systems research hinges on the
ability to easily instrument and extend existing
operating system and application functionality
whether in an application, a library, or the
operating system DLLs. Typical reasons to
intercept functions are to add functionality,
modify returned results, or insert instrumentation
for debugging or profiling. With access to
appropriate source code, it is often trivial to insert
new instrumentation or extensions by rebuilding
the OS or application. However, in today’s world
of commercial development and binary-only
releases, researchers seldom have access to all
relevant source code.

Detours is a library for intercepting arbitrary
Win32 binary functions on x86 machines.
Interception code is applied dynamically at
runtime. Detours replaces the first few
instructions of the target function with an
unconditional jump to the user-provided detour
function. Instructions from the target function are
preserved in a trampoline function. The
trampoline function consists of the instructions
removed from the target function and an
unconditional branch to the remainder of the
target function. The detour function can either
replace the target function or extend its semantics
by invoking the target function as a subroutine
through the trampoline.

Detours are inserted at execution time. The
code of the target function is modified in memory,
not on disk, thus facilitating interception of binary
functions at a very fine granularity. For example,
the procedures in a DLL can be detoured in one
execution of an application, while the original
procedures are not detoured in another execution

The original publication of this paper was granted to
USENIX. Copyright to this work is retained by the authors.
Permission is granted for the noncommercial reproduction
of the complete work for educational or research purposes.
Published in Proceedings of the 3rd USENIX Windows NT
Symposium. Seattle, WA, July 1999.

 2

running at the same time. Unlike DLL re-linking
or static redirection, the interception techniques
used in the Detours library are guaranteed to work
regardless of the method used by application or
system code to locate the target function.

While others have used binary rewriting for
debugging and to inline instrumentation, Detours
is a general-purpose package. To our knowledge,
Detours is the first package on any platform to
logically preserve the un-instrumented target
function as a subroutine callable through the
trampoline. Prior systems logically prepended the
instrumentation to the target, but did not make the
original target’s functionality available as a
general subroutine. Our unique trampoline design
is crucial for extending existing binary software.

In addition to basic detour functionality,
Detours also includes functions to edit the DLL
import table of any binary, to attach arbitrary data
segments to existing binaries, and to inject a DLL
into either a new or an existing process. Once
injected into a process, the instrumentation DLL
can detour any Win32 function, whether in the
application or the system libraries.

The following section describes how Detours
works. Section 0 outlines the usage of the
Detours library. Section 4 describes alternative
function-interception techniques and presents a
micro-benchmark evaluation of Detours. Section
5 details the usage of Detours to produce
distributed applications from local applications, to
quantify DCOM overheads, to create a thunking
layer for a new COM-based Win32 API, and to
implement first chance exception handling. We
compare Detours with related work in Section 6
and summarize our contributions in Section 7.

2. Implementation

Detours provides three important sets of
functionality: the ability to intercept arbitrary
Win32 binary functions on x86 machines, the
ability to edit the import tables of binary files, and
the ability to attach arbitrary data segments to
binary files. We will describe the implementation
of each of these functionalities.

2.1. Interception of Binary Functions

The Detours library facilitates the interception
of function calls. Interception code is applied

dynamically at runtime. Detours replaces the first
few instructions of the target function with an
unconditional jump to the user-provided detour
function. Instructions from the target function are
preserved in a trampoline function. The
trampoline consists of the instructions removed
from the target function and an unconditional
branch to the remainder of the target function.

When execution reaches the target function,
control jumps directly to the user-supplied detour
function. The detour function performs whatever
interception preprocessing is appropriate. The
detour function can return control to the source
function or it can call the trampoline function,
which invokes the target function without
interception. When the target function completes,
it returns control to the detour function. The
detour function performs appropriate
postprocessing and returns control to the source
function. Figure 1 shows the logical flow of
control for function invocation with and without
interception.

Invocation without interception:

Invocation with interception:

Source
Function

Detour
Function

Trampoline
Function

Target
Function

1 2 3

4 5

Source
Function

Target
Function

1

2

Figure 1. Invocation with and without
interception.

The Detours library intercepts target functions
by rewriting their in-process binary image. For
each target function, Detours actual rewrites two
functions: the target function and the matching
trampoline function. The trampoline function can
be allocated either dynamically or statically. A
statically allocated trampoline always invokes the
target function without the detour. Prior to
insertion of a detour, the static trampoline
contains a single jump to the target. After
insertion, the trampoline contains the initial

 3

instructions from the target function and a jump to
the remainder of the target function.

Statically allocated trampolines are extremely
useful for instrumentation programmers. For
example, in Coign [7], invoking the Coign_Co-
CreateInstance trampoline is equivalent to
invoking the original CoCreateInstance
function without instrumentation. Coign internal
functions can call Count_CoCreate-
Instance at any time to create a new
component instance without concern for whether
or not the original function has been rerouted with
a detour.

 ;; Target Function
…

TargetFunction:
 jmp DetourFunction

TargetFunction+5:
 push edi

…

;; Trampoline
…

TrampolineFunction:
 push ebp
 mov ebp,esp
 push ebx
 push esi
 jmp TargetFunction+5

…

;; Target Function
…

TargetFunction:
 push ebp
 mov ebp,esp
 push ebx
 push esi
 push edi

…

;; Trampoline
…

TrampolineFunction:
 jmp TargetFunction

…

Figure 2. Trampoline and target functions, before
and after insertion of the detour (left and right).

Figure 2 shows the insertion of a detour. To
detour a target function, Detours first allocates
memory for the dynamic trampoline function (if
no static trampoline is provided) and then enables
write access to both the target and the trampoline.
Starting with the first instruction, Detours copies
instructions from the target to the trampoline until
at least 5 bytes have been copied (enough for an
unconditional jump instruction). If the target
function is fewer than 5 bytes, Detours aborts and
returns an error code. To copy instructions,
Detours uses a simple table-driven disassembler.
Detours adds a jump instruction from the end of
the trampoline to the first non-copied instruction
of the target function. Detours writes an
unconditional jump instruction to the detour
function as the first instruction of the target
function. To finish, Detours restores the original
page permissions on both the target and

trampoline functions and flushes the CPU
instruction cache with a call to Flush-
InstructionCache.

2.2. Payloads and DLL Import Editing

While a number of tools exist for editing binary
files [10, 12, 13, 17], most systems research
doesn’t require such heavy-handed access to
binary files. Instead, it is often sufficient to add
an extra DLL or data segment to an application or
system binary file. In addition to detour
functions, the Detours library also contains fully
reversible support for attaching arbitrary data
segments, called payloads, to Win32 binary files
and for editing DLL import tables.

Figure 3 shows the basic structure of a Win32
Portable Executable (PE) binary file. The PE
format for Win32 binaries is an extension of
COFF (the Common Object File Format). A
Win32 binary consists of a DOS compatible
header, a PE header, a text section containing
program code, a data section containing initialized
data, an import table listing any imported DLLS
and functions, an export table listing functions
exported by the code, and debug symbols. With
the exception of the two headers, each of the other
sections of the file is optional and may not exist in
a given binary.

DOS Header

 PE (w/COFF) Header
 .text Section

Program Code

.data Section
Initialized Data

.idata Section
Import Table

.edata Section

Export Table

Debug Symbols

Start of File

End of File
Figure 3. Format of a Win32 PE binary file.

To modify a Win32 binary, Detours creates a
new .detours section between the export table
and the debug symbols. Note that debug symbols
must always reside last in a Win32 binary. The
new section contains a detours header record and

 4

a copy of the original PE header. If modifying the
import table, Detours creates the new import
table, appends it to the copied PE header, then
modifies the original PE header to point to the
new import table. Finally, Detours writes any
user payloads at the end of the .detours
section and appends the debug symbols to finish
the file. Detours can reverse modifications to the
Win32 binary by restoring the original PE header
from the .detours section and removing the
.detours section. Figure 4 shows the format of
a Detours-modified Win32 binary.

Creating a new import table serves two
purposes. First, it preserves the original import
table in case the programmer needs to reverse all
modifications to the Win32 file. Second, the new
import table can contain renamed import DLLs
and functions or entirely new DLLs and functions.
For example, Coign [7] uses Detours to insert an
initial entry for coignrte.dll into each
instrumented application. As the first entry in the
applications import table, coignrte.dll
always is the first DLL to run in the application’s
address space.

 Start of File

End of File

DOS Header
 PE (w/COFF) Header
 .text Section

Program Code

.data Section
Initialized Data

.idata Section
unused Import Table

.edata Section

Export Table

.detours Section
detour header

original PE header
new import table
user payloads

Debug Symbols

Figure 4. Format of a Detours-modified binary
file.

Detours provides functions for editing import
tables, adding payloads, enumerating payloads,
removing payloads, and rebinding binary files.
Detours also provides routines for enumerating
the binary files mapped into an address space and

locating payloads within those mapped binaries.
Each payload is identified by a 128-bit globally
unique identifier (GUID). Coign uses Detours to
attach per-application configuration data to
application binaries.

In cases where instrumentation need be
inserted into an application without modifying
binary files, Detours provides functions to inject a
DLL into either a new or an existing process. To
inject a DLL, Detours writes a LoadLibrary
call into the target process with the Virtual-
AllocEx and WriteProcessMemory APIs
then invokes the call with the CreateRemote-
Thread API.

3. Using Detours

The code fragment in Figure 5 illustrates the
usage of the Detours library. User code must
include the detours.h header file and link with
the detours.lib library.

#include <windows.h>
#include <detours.h>

VOID (*DynamicTrampoline)(VOID) = NULL;

DETOUR_TRAMPOLINE(
 VOID WINAPI SleepTrampoline(DWORD),
 Sleep
);

VOID WINAPI SleepDetour(DWORD dw)
{
 return SleepTrampoline(dw);
}

VOID DynamicDetour(VOID)
{
 return DynamicTrampoline();
}

void main(void)
{
 VOID (*DynamicTarget)(VOID) = SomeFunction;

 DynamicTrampoline
 =(FUNCPTR)DetourFunction(
 (PBYTE)DynamicTarget,
 (PBYTE)DynamicDetour);

 DetourFunctionWithTrampoline(
 (PBYTE)SleepTrampoline,
 (PBYTE)SleepDetour);

 // Execute the remainder of program.

 DetourRemoveTrampoline(SleepTrampoline);
 DetourRemoveTrampoline(DynamicTrampoline);
}
Figure 5. Sample Instrumentation Program.

 5

Trampolines may be created either statically or
dynamically. To intercept a target function with a
static trampoline, the application must create the
trampoline with the DETOUR_TRAMPOLINE
macro. DETOUR_TRAMPOLINE takes two
arguments: the prototype for the static trampoline
and the name of the target function.

Note that for proper interception the prototype,
target, trampoline, and detour functions must all
have exactly the same call signature including
number of arguments and calling convention. It is
the responsibility of the detour function to copy
arguments when invoking the target function
through the trampoline. This is intuitive as the
target function is just a subroutine callable by the
detour function.

Using the same calling convention insures that
registers will be properly preserved and that the
stack will be properly aligned between detour and
target functions.

Interception of the target function is enabled by
invoking the DetourFunctionWith-
Trampoline function with two arguments: the
trampoline and the pointer to the detour function.
The target function is not given as an argument
because it is already encoded in the trampoline.

A dynamic trampoline is created by calling
DetourFunction with two arguments: a
pointer to the target function and a pointer to the
detour function. DetourFunction allocates a
new trampoline and inserts the appropriate
interception code in the target function.

Static trampolines are extremely easy to use
when the target function is available as a link
symbol. When the target function is not available
for linking, a dynamic trampoline can be used.
Often a function pointer to the target function can
be acquired from a second function. For those
times, when a pointer to the target function is not
readily available, DetourFindFunction can
find the pointer to a function when it is either
exported from a known DLL, or if debugging
symbols are available for the target function’s
binary1.
DetourFindFunction accepts two

arguments, the name of the binary and the name

1 Microsoft ships debugging symbols for the entire Windows
NT operation system as part of the retail release. These
symbols can be found in the \support\symbols
directory on the OS distribution media.

of the function. DetourFindFunction returns
either a valid pointer to the function or NULL if
the symbol for the function could not be found.
DetourFindFunction first attempts to locate
the function using the Win32 LoadLibrary and
GetProcAddress APIs. If the function is not
found in the export table of the DLL, Detour-
FindFunction uses the ImageHlp library to
search available debugging symbols. The
function pointer returned by DetourFind-
Function can be given to DetourFunction
to create a dynamic trampoline.

Interception of a target function can be
removed by invoking the DetourRemove-
Trampoline function.

Note that because the functions in the Detours
library modify code in the application address
space, it is the programmer’s responsibility to
ensure that no other threads are executing in the
address space while a detour is inserted or
removed. An easy way to insure single-threaded
execution is to call functions in the Detours
library from a DllMain routine.

4. Evaluation

Several alternative techniques exist for
intercepting function calls. Alternative
interception techniques include:

Call replacement in application source code.
Calls to the target function are replaced with calls
to the detour function by modifying application
source code. The major drawback of this
technique is that it requires access to source code.

Call replacement in application binary code.
Calls to the target function are replaced with calls
to the detour function by modifying application
binaries. While this technique does not require
source code, replacement in the application binary
does require the ability to identify all applicable
call sites. This requires substantial symbolic
information that is not generally available for
binary software.

DLL redirection. If the target function resides
in a DLL, the DLL import entries in the binary
can be modified to point to a detour DLL.
Redirection to the detour DLL can be achieved by
either replacing the name of the original DLL in
the import table before load time or replacing the
function addresses in the indirect import jump

 6

table after load [2]. Unfortunately, redirecting to
the detour DLL through the import table fails to
intercept DLL internal calls and calls on pointers
obtained from the LoadLibrary and
GetProcAddress APIs early in an applications
execution.

Breakpoint trapping. Rather than replace the
DLL, the target function can be intercepted by
inserting a debugging breakpoint into the target
function. The debugging exception handler can
then invoke the detour function. The major
drawback to breakpoint trapping is that debugging
exceptions suspend all application threads. In
addition, the debug exception must be caught in a
second operating-system process. Interception via
break-point trapping has a high performance
penalty.

Table 1 lists times for intercepting either an
empty function or the CoCreateInstance
API. Times are on a 200 MHz Pentium Pro.
Rows list the time to invoke the functions without
interception, with interception through call
replacement, with interception through DLL
redirection, with interception using the Detours
library, or with interception through breakpoint
trapping. As can be seen, function interception
with Detours library has only minimal overhead
(less than 400 ns in either case).

Intercepted Function Interception
Technique

Empty
Function

CoCreate-
Instance

Direct 0.113µs 14.836µs
Call Replacement 0.143µs 15.193µs
DLL Redirection 0.143µs 15.193µs
Detours Library 0.145µs 15.194µs
Breakpoint Trap 229.564µs 265.851µs

Table 1. Comparison of Interception Techniques.

5. Experience

The Detours package has been used extensively
in Microsoft Research over the last two years to
instrument and extend Win32 applications and the
Windows NT operating system.

Detours was originally developed for the Coign
Automatic Distributed Partition System [7].
Coign converts local desktop applications built
from COM components into distributed client-

server applications. During profiling, Coign uses
Detours to intercept calls to COM instantiation
functions such as CoCreateInstance. The
detour functions invoke the original library
functions through trampolines, then wrap output
interface pointers in an additional instrumentation
layer (for more details see [8]). The
instrumentation layer measures inter-component
communication to determine how application
components should be partitioned across a
network. During distributed executions, new
Coign detour functions intercept calls to COM
instantiation functions and re-route those calls to
distributed machines. In essence, Coign extends
the COM library to support intelligent remote
invocation. Whereas DCOM supports remote
invocation of a few COM instantiation functions,
Coign supports remote invocation for
approximately 50 COM functions through detour
extensions. Coign uses Detours’ DLL redirection
functions to attach a runtime loader and the
payload functions to attach profiling data to
application binaries.

Our colleagues have used Detours to
instrument the user-mode portion of the DCOM
protocol stack including marshaling proxies,
DCOM runtime, RPC runtime, WinSock runtime,
and marshaling stubs [11]. The resultant detailed
analysis was then used to drive a re-architecture
of DCOM for fast user-mode networks. While
they could have used source code modifications to
produce a special profiling version of DCOM, the
source-based instrumentation would have been
version dependent and shared by all DCOM
applications on the profiling machine. With
binary instrumentation based on Detours, the
profiling tool can be attached to any Windows NT
4 build of DCOM and only effects the process
being profiled.

In another extension exercise, Detours was
used to create a thunking layer for COP (the
Component-based Operating System Proxy) [14].
COP is a COM-based version of the Win32 API.
COP aware applications access operating system
functionality through COM interfaces, such as
IWin32FileHandle. Because the COP
interfaces are distributable with DCOM, a COP
application can use OS resources, including file
systems, keyboards, mice, displays, registries,
etc., from any machine in a network. To provide
support for legacy applications, COP uses detour

 7

functions to intercept all application calls to the
Win32 APIs. Native application API calls are
converted to calls on COP interfaces. At the
bottom, the COP implementation communicates
with the underlying operating system through
trampoline functions. COP requires no
modifications to application binaries. At load
time, the COP DLL is injected into the
application’s address space with Detours’
injection functions. Through its simple
interception, Detours has facilitated this massive
extension of the Win32 API.

Finally, to support Software Distributed Shared
Memory (SDSM) systems, we have implemented
a first chance exception filter for Win32
structured exception handling. The Win32 API
contains an API, SetUnhandledException-
Filter, through which an application can
specify an exception filter to execute should no
other filter handle an application exception. For
applications such as SDSM systems, the
programmer would like to insert a first-chance
exception filter to remove page faults caused by
the SDSM’s manipulation of VM page
permissions. Windows NT does not provide such
a first-chance exception filter mechanism. A
simple detour intercepts the exception entry point
from kernel mode to user mode (KiUser-
ExceptionDispatcher). With only a few
lines of code, the detour function calls a user-
provided first-chance exception filter and then
forwards the exception, if unhandled, to the
default exception mechanism through a
trampoline.

6. Related Work

Detours are an extension of the general
technique of code patching. To intercept
execution, an unconditional branch or jump is
inserted into the desired point of interception in
the target function. Code overwritten by the
unconditional branch is moved to a code patch.
The code patch consists of either the
instrumentation code or a call to the
instrumentation code followed by the instructions
moved to insert the unconditional branch and a
jump to the first instruction in the target function
after the unconditional branch. Logically, a code
patch can be prepended to the beginning of a

function, inserted at some arbitrary point in a
function, or appended to the end of a function.

Whereas a code patch invokes instrumentation
then continues the target function, our technique
transfers control completely to the detour function
which can invoke the original target function
through the trampoline at its leisure. The
trampoline gives instrumentation complete
freedom to invoke the semantics of the original
function as a callable subroutine at any time.

Techniques for code patching have existed
since the dawn of digital computing [3-5, 9, 15].
Code patching has been applied to insert
debugging or profiling code. In the distant past,
code patching was generally considered to be a
much more practical update method than re-
compiling the entire application. In addition to
debugging and profiling, Detours has also been
used to resourcefully extend the functionality of
existing systems [7, 14].

While recent systems have extended code
patching to parallel applications [1] and system
kernels [16], Detours is to our knowledge the only
code patching system that preserves the semantics
of the target function as a callable subroutine.
The detour function replaces the target function,
but can invoke its functionality at any point
through the trampoline. Our unique trampoline
design makes it trivial to extend the functionality
of existing binary functions.

Recent research has produced a class of
detailed binary rewriting tools including Atom
[13], Etch [12], EEL [10], and Morph [17]. In
general, these tools take as input an application
binary and an instrumentation script. The
instrumentation script passes over the binary
inserting code between instructions, basic blocks,
or functions. The output of the script is a new,
instrumented binary. In a departure for earlier
systems, DyninstAPI [6] can modify applications
dynamically.

Detours’ primary advantage over detailed
binary rewriters is its size. Detours adds less than
18KB to an instrumentation package whereas
detailed binary rewriters add at least a few
hundred KB. The cost of Detours small size is an
inability to insert code between instructions or
basic blocks. Detailed binary rewriters can insert
instrumentation around any instruction through
sophisticated features such as free register
discovery. Detours relies on adherence to calling

 8

conventions in order to preserve register values.
While detailed binary rewriters support insertion
of code before or after any basic instruction unit,
they do not preserve the semantics of the
uninstrumented target function as a callable
subroutine.

7. Conclusions

The Detours library provides an import set of
tools to the arsenal of the systems researcher.
Detour functions are fast, flexible, and friendly.
A detour of CoCreateInstance function has
less than a 3% overhead, which is an order of
magnitude smaller than the penalty for breakpoint
trapping. The Detours library is very small. The
runtime consists of less than 40KB of compiled
code although typically less than 18KB of code is
added to the users instrumentation.

We are currently working on versions of
Detours for Windows 98 and the Alpha
processors. The Alpha port should be trivial due
to the uniform size of instructions in the Alpha’s
RISC architecture.

Unlike DLL redirection, the Detours library
intercepts both statically and dynamically bound
invocations. Finally, the Detours library is much
more flexible than DLL redirection or application
code modification. Interception of any function
can be selectively enabled or disabled for each
process individually at execution time.

Our unique trampoline preserves the semantics
of the original, uninstrumented target function for
use as a subroutine of the detour function. Using
detour functions and trampolines, it is trivial to
produce compelling system extensions without
access to system source code and without
recompiling the underlying binary files. Detours
makes possible a whole new generation of
innovative systems research on the Windows NT
platform.

Availability

The Detours library is freely available for
research purposes. It can be found in either
source form or as a compiled library at
http://research.microsoft.com/sn/detours.

Bibliography

[1] Aral, Ziya, Illya Gertner, and Greg Schaffer. Efficient
Debugging Primitives for Multiprocessors.
Proceedings of the Third International Conference on
Architectural Support for Programming Languages
and Operating Systems, pp. 87-95. Boston, MA, April
1989.

[2] Balzer, Robert and Neil Goldman. Mediating
Connectors. Proceedings of the 19th IEEE
International Conference on Distributed Computing
Systems Workshop, pp. 73-77. Austin, TX, June 1999.

[3] Digital Equipment Corporation. DDT Reference
Manual, 1972.

[4] Evans, Thomas G. and D. Lucille Darley. DEBUG -
An Extension to Current Online Debugging
Techniques. Communications of the ACM, 8(5), pp.
321-326, May 1965.

[5] Gill, S. The Diagnosis of Mistakes in Programmes on
the EDSAC. Proceedings of the Royal Society, Series
A, 206, pp. 538-554, May 1951.

[6] Hollingsworth, Jeffrey K. and Bryan Buck.
DyninstAPI Programmer’s Guide, Release 1.2.
Computer Science Department, University of
Maryland, College Park, MD, September 1998.

[7] Hunt, Galen C. and Michael L. Scott. The Coign
Automatic Distributed Partitioning System.
Proceedings of the Third Symposium on Operating
System Design and Implementation (OSDI ’99), pp.
187-200. New Orleans, LA, February 1999. USENIX.

[8] Hunt, Galen C. and Michael L. Scott. Intercepting and
Instrumenting COM Applications. Proceedings of the
Fifth Conference on Object-Oriented Technologies and
Systems (COOTS’99), pp. 45-56. San Diego, CA, May
1999. USENIX.

[9] Kessler, Peter. Fast Breakpoints: Design and
Implementation. Proceedings of the ACM SIGPLAN
’90 Conference on Programming Language Design and
Implementation, pp. 78-84. White Plains, NY, June
1990.

[10] Larus, James R. and Eric Schnarr. EEL: Machine-
Independent Executable Editing. Proceedings of the
ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 291-300. La
Jolla, CA, June 1995.

[11] Li, Li, Alessandro Forin, Galen Hunt, and Yi-Min
Wang. High-Performance Distributed Objects over a
System Area Network. Proceedings of the Third
USENIX NT Symposium. Seattle, WA, July 1999.

[12] Romer, Ted, Geoff Voelker, Dennis Lee, Alec
Wolman, Wayne Wong, Hank Levy, Brian Bershad,
and J. Bradley Chen. Instrumentation and
Optimization of Win32/Intel Executables Using Etch.

 9

Proceedings of the USENIX Windows NT Workshop
1997, pp. 1-7. Seattle, WA, August 1997. USENIX.

[13] Srivastava, Amitabh and Alan Eustace. ATOM: A
System for Building Customized Program Analysis
Tools. Proceedings of the SIGPLAN ’94 Conference
on Programming Language Design and
Implementation, pp. 196-205. Orlando, FL, June 1994.

[14] Stets, Robert J., Galen C. Hunt, and Michael L. Scott.
Component-based Operating System APIs: A
Versioning and Distributed Resource Solution. IEEE
Computer, 32(7), July 1999.

[15] Stockham, T.G. and J.B. Dennis. FLIT- Flexowriter
Interrogation Tape: A Symbolic Utility Program for the

TX-0. Department of Electical Engineering, MIT,
Cambridge, MA, Memo 5001-23, July 1960.

[16] Tamches, Ariel and Barton P. Miller. Fine-Grained
Dynamic Instrumentation of Commodity Operating
System Kernels. Proceedings of the Third Symposium
on Operating Systems Design and Implementation
(OSDI ’99), pp. 117-130. New Orleans, LA, February
1999. USENIX.

[17] Zhang, Xiaolan, Zheng Wang, Nicholas Gloy, J.
Bradley Chen, and Michael D. Smith. System Support
for Automated Profiling and Optimization.
Proceedings of the Sixteenth ACM Symposium on
Operating System Principles. Saint-Malo, France,
October 1997.

