
 1

Creating User-Mode Device Drivers with a Proxy

Galen C. Hunt
gchunt@cs.rochester.edu

Department of Computer Science

University of Rochester
Rochester, NY 14627-0226

Abstract

Writing Windows NT device drivers can be a daunting
task. Device drivers must be fully re-entrant, must use
only limited resources and must be created with special
development environments. Executing device drivers
in user-mode offers significant coding advantages.
User-mode device drivers have access to all user-mode
libraries and applications. They can be developed using
standard development tools and debugged on a single
machine. Using the Proxy Driver to retrieve I/O
requests from the kernel, user-mode drivers can export
full device services to the kernel and applications.
User-mode device drivers offer enormous flexibility for
emulating devices and experimenting with new file
systems. Experimental results show that in many
cases, the overhead of moving to user-mode for
processing I/O can be masked by the inherent costs of
accessing physical devices.

1. Introduction
The creation of device drivers is one of the most
difficult challenges facing Windows NT developers.
Device drivers are generally written with development
environments and debuggers that differ from those
used to create other NT programs. Perhaps most
challenging to many developers, NT device drivers
must be fully re-entrant and must not block.

NT file systems, a special class of NT device drivers,
are particularly complex because the developer must
anticipate interconnections between the NT Cache
Manager, the NT Memory Manager and the file
system.

Writing device drivers is complicated because drivers
operate as kernel-mode programs. Device drivers have
limited access to other OS services and must be
conscious of kernel paging demands. Debugging
kernel-mode device drivers normally requires two
machines: one for the driver and another for the
debugger.

Device drivers run in kernel mode to optimize system
performance. Kernel-mode device drivers have full
access to hardware resources and the data of user-mode
programs. From kernel mode, device drivers can
exploit operations such as DMA and page sharing to
transfer data directly into application address spaces.
Device drivers are placed in the kernel to minimize the
number of times the CPU must cross the user/kernel
boundary.

User-mode device drivers offer significant development
advantages over kernel-mode drivers with some loss in
performance and direct access to hardware. User-mode
drivers need not be re-entrant. They have full access to
user-mode libraries and applications. User-mode
drivers can be created with standard development envi-
ronments, including high-level languages such as Java
or Visual Basic. User-mode drivers can be tested and
debugged on a single machine without special tools.

User-mode device drivers are especially useful for
emulating non-existent devices or implementing
experimental systems. They offer significant advan-
tages in cases where their additional overhead can be
masked by I/O latency. Particularly for file system
development, user-mode device drivers give the devel-
oper great flexibility for developing and designing new
systems.

The next section describes the Proxy Driver system for
creating user-mode device drivers. Section 3 contains
descriptions of several sample user-mode device
drivers. Section 4 shows that for typical scenarios
user-mode device drivers offer performance similar to
kernel-mode drivers. Section 5 lists related work, and

The original publication of this paper was granted to
USENIX. Copyright to this work is retained by the
authors. Permission is granted for the noncommercial
reproduction of the complete work for educational or
research purposes. Published in Proceedings of the 1st
USENIX Windows NT Workshop. Seattle, WA, August
1999.

 2

the last section concludes with a summary and
suggestions for future work.

2. The Proxy Driver
Windows NT I/O is packet driven. Upon entering the
NT executive, individual I/O requests are encoded in
an I/O Request Packet (IRP). IRPs often pass through
multiple drivers; winding, for example, from the
executive to a file system driver to a hard disk driver
and back. IRPs are processed asynchronously.

Execution enters a driver through a device entry that
represents a logical device. Figure 1 shows the compo-
sition of a kernel-mode device driver. I/O requests
from the application are converted to IRPs in the NT
Executive and passed to the corresponding driver
through the device entry.

We implement user-mode drivers using a kernel-mode
Proxy Driver, see Figure 2. The Proxy Driver acts as a
kernel agent for user-mode device drivers. User-mode
device drivers connect to the Proxy Driver using a
device open request (through the File System API) to
a special device entry called the host entry. The host
entry is the doorway to the Proxy Driver’s API. The
user-mode driver registers with Proxy Driver,
informing it of the I/O requests it would like to
process. In response, the Proxy Driver creates a new
entry in the device table for the user-mode driver called
a stub entry. The kernel and other device drivers
access the user-mode driver through its stub entry.
Hidden behind the stub entry, the user-mode device
appears as a kernel-mode device. The user-mode driver
communicates with the Proxy Driver via read and
write operations on the host device entry.

When an application or the kernel makes an I/O
request relevant to the user-mode driver, the IRP is
routed through the kernel to the Proxy Driver using the
stub entry. The Proxy Driver marshals the IRP and
forwards it to the user-mode driver through the host
entry. The user-mode driver first processes the request
then returns the response to the Proxy Driver through
the host entry. The Proxy Driver returns the completed
IRP to the kernel through the stub entry.

To simplify user-mode driver development even
further, drivers are implemented as Component Object
Model (COM) components. As shown in Figure 2, the
Proxy Service sits between the NT Executive and the
user-mode device driver. All user-mode device drivers
share a single instantiation of the Proxy Driver and
Proxy Service. The Proxy Service converts incoming
IRPs to calls on the COM interfaces of user-mode
drivers. User-mode drivers export COM interfaces for
I/O requests they support. Drivers can even inherit
functionality from other drivers through COM
aggregation. Appendix A lists the IDL definition for
IDeviceFileSink, the interface used to deliver the
most common file IRPs.

The Proxy Service operates under control of the
Windows NT Service Manager [4]. It can be stopped
or started through the NT Service control panel. At
startup, the Proxy Service dynamically loads the Proxy
Driver into the kernel. It then looks for user-mode
device driver components in the system registry under
the key HKEY_LOCAL_MACHINE\SOFTWARE-
\URCS\ProxyDevices. For each registered
component, the service opens a handle on the Proxy

Application

NT Executive

Device Entry

Device Driver

Figure 1, Composition of a Kernel-Mode Driver.

Application

NT Executive

Stub Entry

Proxy Driver

User-Mode
Driver

Proxy Service

Host Entry

Figure 2, Composition of a User-Mode Driver.
The kernel-mode proxy driver passes IRPs to the
User-Mode driver through a host device entry and
a COM service.

 3

Driver and creates a stub entry in the NT Executive.
Information stored in the system registry determines
where the user-mode device will appear in the
Windows NT I/O namespace. System administrators
control access to the Proxy Driver by restricting access
to the ProxyDevices registry key.

The Proxy Driver does not support the NT Fast I/O
path or filter drivers. The Fast I/O path is a
mechanism by which the NT Executive passes non-
blocking I/O requests directly to device drivers without
creating an IRP. Filter drivers are drivers that sit
between the NT executive and another driver.

The user-mode driver lives in an ideal world. It
receives only IRPs destined for its device entry, the
stub entry. Because the user-mode driver runs in user-
mode, it has access to all traditional user-mode APIs
and resources. Finally, because it receives IRPs from
the Proxy Driver only after a read, the user-mode
driver can execute sequentially as a single-threaded
program; it need not be re-entrant. Sophisticated user-
mode drivers can handle multiple concurrent requests
either through asynchronous I/O calls on the host entry
or via multiple threads of execution. User-mode driver
programmers can choose a level of sophistication
appropriate for their domain.

3. Example Drivers
We have created a number of example user-mode
drivers. Each is a COM component.

• rawdev: A null device for testing user-mode
driver performance, rawdev completes all IRPs
successfully with no side effects.

• vmdisk: Similar to a RAM disk, the Virtual-
Memory Disk uses a region of virtual memory to
emulate a physical disk.

• efs: The Echo File System acts as a proxy for
another file system. It converts incoming IRPs to
Win32 File API calls on the “echoed” file system.

• ftpfs: The FTP File System mounts a remote
FTP server as a local file system. Incoming IRPs
are converted to outgoing FTP requests using the
WinInet APIs.

4. Performance
User-mode device drivers trade performance for code
simplicity. Whereas a request on a kernel-mode driver
would cross the user/kernel boundary twice, each
request on a user-mode driver must cross the
user/kernel boundary at least four times. In this
section we present performance results gathered from
the Proxy Driver implementation on Windows NT 4.0
Workstation using a 133MHz Pentium processor.

In Figure 3, raw driver throughput is shown for two
functionally equivalent device drivers: one a kernel-
mode driver and the other a user-mode driver using the
Proxy Driver. Each driver reads, but doesn’t copy, the
data in an incoming IRP. The great disparity between
performance for the two drivers is a result of two
factors. First, requests for the user-mode driver must
cross the user/kernel boundary twice as often as
requests for the equivalent kernel-mode driver.
Second, although kernel-mode drivers can directly
access IRP data, data bound for user-mode drivers must
be copied from the stub IRP to the host IRP. As would
be expected, total throughput increases with larger
packets as the cost of crossing the user/kernel boundary
is amortized. Kernel-mode throughput decreases
below 4K as sub-page requests require additional
alignment processing.

0

10

20

30

40

50

60

1K 2K 4K 8K 16K 32K 64K
IRP Data Size

M
B

/s Kernel-Mode

User-Mode

Figure 3, Raw Driver Throughput. IRPs are
completed with no side effects.

 4

Figure 4 compares the difference in performance for
an application writing to a kernel-mode RAM disk
device versus a user-mode virtual memory disk device.
Performance for the user-mode driver is better than
that in Figure 3 for small requests due to aggregation
by the NT Cache Manager. Overall performance for
the kernel-mode driver decreases from Figure 3
because the driver must now copy data from the IRP to
the RAM disk. Note that the Proxy Driver was already
making a copy from the kernel’s address space into
that of the driver.

The relative performance of file system drivers is
shown in Figure 5. The kernel-mode file system is
Microsoft’s NTFS on a physical disk. The user-mode
file system, efs, forwards I/O requests to NTFS using
the Win32 file APIs. Total system throughput is
reduced primarily as a result of accessing the physical
disk. The difference in performance between the two
drivers is essentially the cost of using a user-mode
device driver.

Figure 5 demonstrates that particularly when using an
external device, such as a disk or network, the impact
of using a user-mode driver is minimal. By exploiting
full access to user-mode resources, user-mode device
drivers can achieve better performance than kernel-
mode drivers. The ftpfs driver, for example, shares
the WinInet cache with user-mode applications, such
as Internet Explorer, to reduce network traffic and
optimize performance.

5. Related Work
Other researchers have noted the benefits of supporting
user-mode device drivers.

Frigate [8] supports user-mode file servers using a
dispatch layer in the UCLA Stackable Layers file
system [6]. Applications issue file I/O requests either

through kernel calls to user-mode servers or directly
through a server backdoor. A contemporary of the
Proxy Driver, Frigate requires a kernel supporting
UCLA Stackable Layers. Frigate has been used to
implement an Enigma encryption layer above SunOS
file systems.

Bershad and Pinkerton’s watchdogs [1] are user-mode
file-system components. A watchdog is attached to a
particular point in the file-system namespace. File I/O
requests at the point of the watchdog are intercepted.
The watchdog may refuse the I/O operation, perform it
on behalf of the system, or return the request to the
underlying file system. Watchdogs are intended to
allow unsophisticated users to modify the behavior of
isolated file system functions. Bershad and Pinkerton
use a special communication channel to pass I/O
requests to watchdogs.

The HURD system [2] supports the concept of user-
mode file systems via a mechanism called translators.
All files requests are sent through Mach ports. User
file systems are just providers of “file” ports. Sample
systems proposed include a file system level FTP client
and a /proc file system similar to [7].

Unlike watchdogs and the HURD system, the Proxy
Driver makes no modifications to the NT kernel. It
exploits the NT I/O architecture, particularly IRPs, to
provide simple, efficient user-mode device drivers for
either file system or device operations.

The Semantic File System (SFS) [5] is a user-mode file
system that creates dynamic directories based on
indexed search criteria. For example, the SFS
/subject:report directory contains one file for
each email message with the word “report” in the
subject line. Client machines connect to an SFS
server using the NFS protocol.

0

5

10

15

20

25

1K 2K 4K 8K 16K 32K 64K
IRP Data Size

M
B

/s
ec

Kernel-Mode

User-Mode

Figure 4, Writing data into either a kernel-mode
RAM disk or a user-mode virtual memory disk.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1K 2K 4K 8K 16K 32K 64K
IRP Data Size

M
B

/s
ec

Kernel-Mode

User-Mode

Figure 5, File system throughput.

 5

Similar in principle to our ftpfs, the Alex file system
[3] provides access to FTP archives using the NFS
protocol. NFS requests on the Alex server are
converted to FTP requests and forwarded to the
appropriate server.

SNFS [9] is a generalized NFS server that supports an
internal Scheme interpreter. File requests on the NFS
server are processed through user-loaded modules
written in a version of Scheme. Proposed modules
include union file systems, copy-on-write file systems,
and FTP and HTTP file systems.

The Proxy Driver is more efficient than NFS-based
user-mode file systems. By exporting native IRPs, the
Proxy Driver avoids costly re-marshaling to a foreign
I/O model such as NFS.

6. Conclusions
We have described our Proxy Driver system for
creating user-mode device drivers. The Proxy Driver
resides in the kernel and passes I/O requests to user-
mode drivers through a host device entry. User-mode
drivers are much easier to write and debug than kernel-
mode drivers. Although limited in scope to drivers
needing no kernel-mode hardware access, user-mode
drivers offer the programmer great flexibility. User-
mode device drivers are particularly effective in cases
where physical I/O dominates driver computation.

We are currently developing a toolkit for creating user-
mode file system drivers. The toolkit will provide
COM components for volatile and persistent cache
management, name-space manipulation, and file
system layering. With the toolkit, developers will be
able to create simple file watchdogs or fully functional
file systems in as little as a few hundred lines of code.

Acknowledgments

During the development of the Proxy Driver, the
author was supported by a research fellowship from
Microsoft Corporation.

Bibliography

[1] B. N. Bershad and C. B. Pinkerton. Watchdogs:
Extending the UNIX File System. In Computing
Systems, Spring, 1988.

[2] M. Bushnell. Towards a New Strategy of OS
Design. In GNU’s Bulletin, January 1994.

[3] V. Cate. Alex- a Global Filesystem. In
Proceedings of the USENIX File System
Workshop, pp. 1-11. Ann Arbor, MI, May 1992.

[4] H. Custer. Inside Windows NT. Microsoft Press,
Redmond, WA, 1993.

[5] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J.
W. O’Toole, Jr. Semantic File Systems. In
Proceedings of the Thirteenth ACM Symposium
on Operating Systems Principles, pp. 16-25.
Pacific Grove, CA, October 1991.

[6] J. S. Heidemann and G. J. Popek. File-System
Development with Stackable Layers. In ACM
Transactions on Computer Systems, vol. 12(1),
pp. 58-89, 1994.

[7] T. J. Killian. Processes as Files. In Proceedings
of the USENIX Software Tools Users Group
Summer Conference, pp. 203-207, 12-15 June
1984.

[8] T. H. Kim and G. J. Popek. Frigate: An Object-
Oriented File System for Ordinary Users. In
Proceedings of the 3rd Conference on Object-
Oriented Technologies and Systems, pp. 115-129.
Portland, OR, June 1997.

[9] T. Lord. Extensible Linux NFS server soon to be
available. In comp.os.linux.announce,
September 1996.

 6

Appendix A

The IDeviceFileSink interface is used to deliver
common file IRPs to user-mode drivers.

interface IDeviceFileSink : IUnknown
{
 HRESULT Create(
 [in] IDevIrp *pIrp,
 [in] IDevSecurityContext
*pCtxt,
 ULONG Disposition,
 ULONG Options,
 ULONG FileAttributes,
 ULONG ShareAccess,
 ULONG EaLength,
 LARGE_INTEGER AllocationSize);

 HRESULT Cleanup(
 [in] IDevIrp *pIrp);

 HRESULT Close(
 [in] IDevIrp *pIrp);

 HRESULT Shutdown(
 [in] IDevIrp *pIrp);

 HRESULT Read(
 [in] IDevIrp *pIrp,
 LARGE_INTEGER ByteOffset,
 ULONG Length,
 ULONG Key);

 HRESULT Write(
 [in] IDevIrp *pIrp,
 LARGE_INTEGER ByteOffset,
 ULONG Length,
 ULONG Key);

 HRESULT DeviceControl(
 [in] IDevIrp *pIrp,
 ULONG IoControlCode,
 ULONG InputBufferLength,
 ULONG OutputBufferLength);

 HRESULT QueryInformation(
 [in] IDevIrp *pIrp,
 ULONG Length,
 FILE_INFORMATION_CLASS
FIClass);

 HRESULT SetInformation(
 [in] IDevIrp *pIrp,
 ULONG Length,
 FILE_INFORMATION_CLASS FIClass,
 [in] IDevFileObject *pFileObj,
 BOOL ReplaceIfExists,
 BOOL AdvanceOnly,
 ULONG ClusterCount,
 ULONG DeleteHandle);

 HRESULT FlushBuffers(
 [in] IDevIrp *pIrp);
};

