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Abstract 

Writing Windows NT device drivers can be a daunting 
task.  Device drivers must be fully re-entrant, must use 
only limited resources and must be created with special 
development environments.  Executing device drivers 
in user-mode offers significant coding advantages.  
User-mode device drivers have access to all user-mode 
libraries and applications. They can be developed using 
standard development tools and debugged on a single 
machine.  Using the Proxy Driver to retrieve I/O 
requests from the kernel, user-mode drivers can export 
full device services to the kernel and applications.  
User-mode device drivers offer enormous flexibility for 
emulating devices and experimenting with new file 
systems.  Experimental results show that in many 
cases, the overhead of moving to user-mode for 
processing I/O can be masked by the inherent costs of 
accessing physical devices.  

1. Introduction 
The creation of device drivers is one of the most 
difficult challenges facing Windows NT developers.  
Device drivers are generally written with development 
environments and debuggers that differ from those 
used to create other NT programs.  Perhaps most 
challenging to many developers, NT device drivers 
must be fully re-entrant and must not block.   

NT file systems, a special class of NT device drivers, 
are particularly complex because the developer must 
anticipate interconnections between the NT Cache 
Manager, the NT Memory Manager and the file 
system. 

Writing device drivers is complicated because drivers 
operate as kernel-mode programs.  Device drivers have 
limited access to other OS services and must be 
conscious of kernel paging demands. Debugging 
kernel-mode device drivers normally requires two 
machines: one for the driver and another for the 
debugger. 

Device drivers run in kernel mode to optimize system 
performance. Kernel-mode device drivers have full 
access to hardware resources and the data of user-mode 
programs.  From kernel mode, device drivers can 
exploit operations such as DMA and page sharing to 
transfer data directly into application address spaces.  
Device drivers are placed in the kernel to minimize the 
number of times the CPU must cross the user/kernel 
boundary. 

User-mode device drivers offer significant development 
advantages over kernel-mode drivers with some loss in 
performance and direct access to hardware. User-mode 
drivers need not be re-entrant.  They have full access to 
user-mode libraries and applications.  User-mode 
drivers can be created with standard development envi-
ronments, including high-level languages such as Java 
or Visual Basic.  User-mode drivers can be tested and 
debugged on a single machine without special tools. 

User-mode device drivers are especially useful for 
emulating non-existent devices or implementing 
experimental systems.  They offer significant advan-
tages in cases where their additional overhead can be 
masked by I/O latency.  Particularly for file system 
development, user-mode device drivers give the devel-
oper great flexibility for developing and designing new 
systems. 

The next section describes the Proxy Driver system for 
creating user-mode device drivers. Section 3 contains 
descriptions of several sample user-mode device 
drivers.  Section 4 shows that for typical scenarios 
user-mode device drivers offer performance similar to 
kernel-mode drivers.  Section 5 lists related work, and 
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the last section concludes with a summary and 
suggestions for future work. 

2. The Proxy Driver 
Windows NT I/O is packet driven.  Upon entering the 
NT executive, individual I/O requests are encoded in 
an I/O Request Packet (IRP).  IRPs often pass through 
multiple drivers; winding, for example, from the 
executive to a file system driver to a hard disk driver 
and back.  IRPs are processed asynchronously. 

Execution enters a driver through a device entry that 
represents a logical device.  Figure 1 shows the compo-
sition of a kernel-mode device driver.  I/O requests 
from the application are converted to IRPs in the NT 
Executive and passed to the corresponding driver 
through the device entry. 

We implement user-mode drivers using a kernel-mode 
Proxy Driver, see Figure 2.  The Proxy Driver acts as a 
kernel agent for user-mode device drivers.  User-mode 
device drivers connect to the Proxy Driver using a 
device open request (through the File System API) to 
a special device entry called the host entry.  The host 
entry is the doorway to the Proxy Driver’s API.  The 
user-mode driver registers with Proxy Driver, 
informing it of the I/O requests it would like to 
process.  In response, the Proxy Driver creates a new 
entry in the device table for the user-mode driver called 
a stub entry.  The kernel and other device drivers 
access the user-mode driver through its stub entry.  
Hidden behind the stub entry, the user-mode device 
appears as a kernel-mode device. The user-mode driver 
communicates with the Proxy Driver via read and 
write operations on the host device entry. 

When an application or the kernel makes an I/O 
request relevant to the user-mode driver, the IRP is 
routed through the kernel to the Proxy Driver using the 
stub entry.  The Proxy Driver marshals the IRP and 
forwards it to the user-mode driver through the host 
entry.  The user-mode driver first processes the request 
then returns the response to the Proxy Driver through 
the host entry.  The Proxy Driver returns the completed 
IRP to the kernel through the stub entry.   

To simplify user-mode driver development even 
further, drivers are implemented as Component Object 
Model (COM) components.  As shown in Figure 2, the 
Proxy Service sits between the NT Executive and the 
user-mode device driver. All user-mode device drivers 
share a single instantiation of the Proxy Driver and 
Proxy Service. The Proxy Service converts incoming 
IRPs to calls on the COM interfaces of user-mode 
drivers. User-mode drivers export COM interfaces for 
I/O requests they support. Drivers can even inherit 
functionality from other drivers through COM 
aggregation.  Appendix A lists the IDL definition for 
IDeviceFileSink, the interface used to deliver the 
most common file IRPs.  

The Proxy Service operates under control of the 
Windows NT Service Manager [4].  It can be stopped 
or started through the NT Service control panel.  At 
startup, the Proxy Service dynamically loads the Proxy 
Driver into the kernel.  It then looks for user-mode 
device driver components in the system registry under 
the key HKEY_LOCAL_MACHINE\SOFTWARE-
\URCS\ProxyDevices.  For each registered 
component, the service opens a handle on the Proxy 
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Figure 1, Composition of a Kernel-Mode Driver. 
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Figure 2, Composition of a User-Mode Driver. 
The kernel-mode proxy driver passes IRPs to the 
User-Mode driver through a host device entry and 
a COM service. 
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Driver and creates a stub entry in the NT Executive.  
Information stored in the system registry determines 
where the user-mode device will appear in the 
Windows NT I/O namespace.  System administrators 
control access to the Proxy Driver by restricting access 
to the ProxyDevices registry key. 

The Proxy Driver does not support the NT Fast I/O 
path or filter drivers.  The Fast I/O path is a 
mechanism by which the NT Executive passes non-
blocking I/O requests directly to device drivers without 
creating an IRP.  Filter drivers are drivers that sit 
between the NT executive and another driver. 

The user-mode driver lives in an ideal world.  It 
receives only IRPs destined for its device entry, the 
stub entry.  Because the user-mode driver runs in user-
mode, it has access to all traditional user-mode APIs 
and resources.  Finally, because it receives IRPs from 
the Proxy Driver only after a read, the user-mode 
driver can execute sequentially as a single-threaded 
program; it need not be re-entrant.  Sophisticated user-
mode drivers can handle multiple concurrent requests 
either through asynchronous I/O calls on the host entry 
or via multiple threads of execution.  User-mode driver 
programmers can choose a level of sophistication 
appropriate for their domain. 

3. Example Drivers 
We have created a number of example user-mode 
drivers.  Each is a COM component.   

• rawdev: A null device for testing user-mode 
driver performance, rawdev completes all IRPs 
successfully with no side effects. 

• vmdisk: Similar to a RAM disk, the Virtual-
Memory Disk uses a region of virtual memory to 
emulate a physical disk. 

• efs: The Echo File System acts as a proxy for 
another file system.  It converts incoming IRPs to 
Win32 File API calls on the “echoed” file system.   

• ftpfs: The FTP File System mounts a remote 
FTP server as a local file system.  Incoming IRPs 
are converted to outgoing FTP requests using the 
WinInet APIs. 

4. Performance 
User-mode device drivers trade performance for code 
simplicity.  Whereas a request on a kernel-mode driver 
would cross the user/kernel boundary twice, each 
request on a user-mode driver must cross the 
user/kernel boundary at least four times.  In this 
section we present performance results gathered from 
the Proxy Driver implementation on Windows NT 4.0 
Workstation using a 133MHz Pentium processor. 

In Figure 3, raw driver throughput is shown for two 
functionally equivalent device drivers: one a kernel-
mode driver and the other a user-mode driver using the 
Proxy Driver.  Each driver reads, but doesn’t copy, the 
data in an incoming IRP.  The great disparity between 
performance for the two drivers is a result of two 
factors.  First, requests for the user-mode driver must 
cross the user/kernel boundary twice as often as 
requests for the equivalent kernel-mode driver.  
Second, although kernel-mode drivers can directly 
access IRP data, data bound for user-mode drivers must 
be copied from the stub IRP to the host IRP.  As would 
be expected, total throughput increases with larger 
packets as the cost of crossing the user/kernel boundary 
is amortized.  Kernel-mode throughput decreases 
below 4K as sub-page requests require additional 
alignment processing. 
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Figure 3, Raw Driver Throughput.  IRPs are 
completed with no side effects. 
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Figure 4 compares the difference in performance for 
an application writing to a kernel-mode RAM disk 
device versus a user-mode virtual memory disk device.  
Performance for the user-mode driver is better than 
that in Figure 3 for small requests due to aggregation 
by the NT Cache Manager. Overall performance for 
the kernel-mode driver decreases from Figure 3 
because the driver must now copy data from the IRP to 
the RAM disk.  Note that the Proxy Driver was already 
making a copy from the kernel’s address space into 
that of the driver. 

The relative performance of file system drivers is 
shown in Figure 5.  The kernel-mode file system is 
Microsoft’s NTFS on a physical disk.  The user-mode 
file system, efs, forwards I/O requests to NTFS using 
the Win32 file APIs.  Total system throughput is 
reduced primarily as a result of accessing the physical 
disk.  The difference in performance between the two 
drivers is essentially the cost of using a user-mode 
device driver. 

Figure 5 demonstrates that particularly when using an 
external device, such as a disk or network, the impact 
of using a user-mode driver is minimal.  By exploiting 
full access to user-mode resources, user-mode device 
drivers can achieve better performance than kernel-
mode drivers.  The ftpfs driver, for example, shares 
the WinInet cache with user-mode applications, such 
as Internet Explorer, to reduce network traffic and 
optimize performance. 

5. Related Work 
Other researchers have noted the benefits of supporting 
user-mode device drivers. 

Frigate [8] supports user-mode file servers using a 
dispatch layer in the UCLA Stackable Layers file 
system [6].  Applications issue file I/O requests either 

through kernel calls to user-mode servers or directly 
through a server backdoor.  A contemporary of the 
Proxy Driver, Frigate requires a kernel supporting 
UCLA Stackable Layers.  Frigate has been used to 
implement an Enigma encryption layer above SunOS 
file systems. 

Bershad and Pinkerton’s watchdogs [1] are user-mode 
file-system components.  A watchdog is attached to a 
particular point in the file-system namespace.  File I/O 
requests at the point of the watchdog are intercepted.  
The watchdog may refuse the I/O operation, perform it 
on behalf of the system, or return the request to the 
underlying file system.  Watchdogs are intended to 
allow unsophisticated users to modify the behavior of 
isolated file system functions.  Bershad and Pinkerton 
use a special communication channel to pass I/O 
requests to watchdogs.   

The HURD system [2] supports the concept of user-
mode file systems via a mechanism called translators.  
All files requests are sent through Mach ports.  User 
file systems are just providers of “file” ports.  Sample 
systems proposed include a file system level FTP client 
and a /proc file system similar to [7]. 

Unlike watchdogs and the HURD system, the Proxy 
Driver makes no modifications to the NT kernel.  It 
exploits the NT I/O architecture, particularly IRPs, to 
provide simple, efficient user-mode device drivers for 
either file system or device operations. 

The Semantic File System (SFS) [5] is a user-mode file 
system that creates dynamic directories based on 
indexed search criteria. For example, the SFS 
/subject:report directory contains one file for 
each email message with the word “report” in the 
subject line.   Client machines connect to an SFS 
server using the NFS protocol. 
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Figure 4, Writing data into either a kernel-mode 
RAM disk or a user-mode virtual memory disk. 
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Figure 5, File system throughput. 
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Similar in principle to our ftpfs, the Alex file system 
[3] provides access to FTP archives using the NFS 
protocol.  NFS requests on the Alex server are 
converted to FTP requests and forwarded to the 
appropriate server. 

SNFS [9] is a generalized NFS server that supports an 
internal Scheme interpreter.  File requests on the NFS 
server are processed through user-loaded modules 
written in a version of Scheme.  Proposed modules 
include union file systems, copy-on-write file systems, 
and FTP and HTTP file systems. 

The Proxy Driver is more efficient than NFS-based 
user-mode file systems.  By exporting native IRPs, the 
Proxy Driver avoids costly re-marshaling to a foreign 
I/O model such as NFS. 

6. Conclusions 
We have described our Proxy Driver system for 
creating user-mode device drivers.  The Proxy Driver 
resides in the kernel and passes I/O requests to user-
mode drivers through a host device entry.  User-mode 
drivers are much easier to write and debug than kernel-
mode drivers.  Although limited in scope to drivers 
needing no kernel-mode hardware access, user-mode 
drivers offer the programmer great flexibility.  User-
mode device drivers are particularly effective in cases 
where physical I/O dominates driver computation. 

We are currently developing a toolkit for creating user-
mode file system drivers.  The toolkit will provide 
COM components for volatile and persistent cache 
management, name-space manipulation, and file 
system layering.  With the toolkit, developers will be 
able to create simple file watchdogs or fully functional 
file systems in as little as a few hundred lines of code. 
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Appendix A 

The IDeviceFileSink interface is used to deliver 
common file IRPs to user-mode drivers. 

interface IDeviceFileSink : IUnknown 
{ 
 HRESULT Create( 
  [in] IDevIrp *pIrp, 
  [in] IDevSecurityContext 
*pCtxt, 
  ULONG Disposition, 
  ULONG Options, 
  ULONG FileAttributes, 
  ULONG ShareAccess, 
  ULONG EaLength, 
  LARGE_INTEGER AllocationSize); 
 
 HRESULT Cleanup( 
  [in] IDevIrp *pIrp); 
 
 HRESULT Close( 
  [in] IDevIrp *pIrp); 
 
 HRESULT Shutdown( 
  [in] IDevIrp *pIrp); 
 
 HRESULT Read( 
  [in] IDevIrp *pIrp, 
  LARGE_INTEGER ByteOffset, 
  ULONG Length, 
  ULONG Key); 
 
 HRESULT Write( 
  [in] IDevIrp *pIrp, 
  LARGE_INTEGER ByteOffset, 
  ULONG Length, 
  ULONG Key); 
 
 HRESULT DeviceControl( 
  [in] IDevIrp *pIrp, 
  ULONG IoControlCode, 
  ULONG InputBufferLength, 
  ULONG OutputBufferLength); 
 
 HRESULT QueryInformation( 
  [in] IDevIrp *pIrp, 
  ULONG Length, 
  FILE_INFORMATION_CLASS 
FIClass);  
 
 HRESULT SetInformation( 
  [in] IDevIrp *pIrp, 
  ULONG Length, 
  FILE_INFORMATION_CLASS FIClass, 
  [in] IDevFileObject *pFileObj, 
  BOOL ReplaceIfExists, 
  BOOL AdvanceOnly, 
  ULONG ClusterCount, 
  ULONG DeleteHandle); 
 
 HRESULT FlushBuffers( 
  [in] IDevIrp *pIrp); 
}; 


