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Abstract 

Although successive generations of middleware 
(such as RPC, CORBA, and DCOM) have made it eas-
ier to connect distributed programs, the process of 
distributed application decomposition has changed 
little: programmers manually divide applications into 
sub-programs and manually assign those sub-
programs to machines.  Often the techniques used to 
choose a distribution are ad hoc and create one-time 
solutions biased to a specific combination of users, 
machines, and networks.  

We assert that system software, not the program-
mer, should manage the task of distributed decomposi-
tion.  To validate our assertion we present Coign, an 
automatic distributed partitioning system that signifi-
cantly eases the development of distributed applica-
tions.   

Given an application (in binary form) built from 
distributable COM components, Coign constructs a 
graph model of the application’s inter-component 
communication through scenario-based profiling.  
Later, Coign applies a graph-cutting algorithm to par-
tition the application across a network and minimize 
execution delay due to network communication.  Using 
Coign, even an end user (without access to source 
code) can transform a non-distributed application into 
an optimized, distributed application. 

Coign has automatically distributed binaries from 
over 2 million lines of application code, including Mi-
crosoft’s PhotoDraw 2000 image processor.  To our 
knowledge, Coign is the first system to automatically 
partition and distribute binary applications. 

1. Introduction 

Distributed systems have been an area of open re-
search for more than two decades.  Popular acceptance 
of the Internet has fueled a renewed interest in distrib-
uted systems and applications.  Distributed application 
enable sharing of data, sharing of resources (such as 
memory, processor cycles, or physical devices), col-
laboration between users, increased reliability through 
redundancy, and increased security through physical 
isolation. 

However compelling the motivations, the creation 
of distributed applications continues to be difficult.  As 
a rule, the creation of a distributed application is al-
ways harder than the creation of a functionally equiva-
lent non-distributed application.  Complicating factors 
include protection of data integrity and security, man-
agement of disjoint address spaces, increased latency 
and reduced bandwidth between application compo-
nents, partial system failures caused by isolated ma-
chine or network outages, and practical engineering 
issues such as debugging across multiple processes on 
distributed computers. 

One of the primary challenges to create a distrib-
uted application is the need to partition and place 
pieces of the application.  Although successive genera-
tions of middleware (such as RPC [4, 15, 34], CORBA 
[35, 42], and DCOM [8]) have brought the advantages 
of service-location transparency, dynamic object in-
stantiation, and object-oriented programming to dis-
tributed applications, the process of distributed 
application decomposition has changed little: pro-
grammers manually divide applications into sub-
programs and manually assign those sub-programs to 
machines.  Often the techniques used to choose a dis-
tribution are ad hoc, creating solutions biased to a spe-
cific platform.  

Given the effort required, applications are seldom 
re-partitioned even in drastically different network 
environments.  Changes in underlying network, from 
ISDN to 100BaseT to ATM to SAN, strain static dis-
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tributions as bandwidth-to-latency tradeoffs change by 
more than an order of magnitude.  User usage patterns 
can also severely stress a static application distribu-
tion.  Nevertheless, programmers resist repartitioning 
applications because doing so often requires extensive 
modifications to program structure and source code.  

We argue that system software, not the program-
mer, should partition and distribute applications.  Fur-
thermore, we assert that existing applications can be 
partitioned and distributed automatically without ac-
cess to source code, provided the applications are built 
from binary components.  To validate our claims, we 
have built a working prototype system, the Coign 
Automatic Distributed Partitioning System (ADPS). 

Coign radically changes the development of dis-
tributed applications.  Given an application built with 
components conforming to Microsoft’s Component 
Object Model (COM), Coign profiles inter-component 
communication as the application is run through typi-
cal usage scenarios (a process known as scenario-
based profiling).  Based on profiled information, 
Coign selects a distribution of the application with 
minimal communication time for a particular distrib-
uted environment.  Coign then modifies the applica-
tion to produce the desired distribution. 

Coign analyzes an application, chooses a distribu-
tion, and produces the desired distributed application 
all with access to only the application binary files.  By 
solely analyzing application binaries, Coign produces 
distributed applications automatically without violat-
ing the primary goal of commercial component sys-
tems: building applications from reusable, binary 
components. 

In the next two sections, we describe Coign and the 
implementation of the Coign runtime.  In Section 4, 
we present experimental results demonstrating Coign’s 
effectiveness in automatically distributing binaries 
from over 2 million lines of application code.  In Sec-
tion 5, we describe related work.  Finally, in Section 6 
we summarize our conclusions and discuss future 
work. 

2. System Description 

Coign is an automatic distributed partitioning sys-
tem (ADPS) for applications built from COM compo-
nents.  COM is a standard for packaging, instantiating, 
and connecting reusable pieces of software in binary 
form called components.  Clients talk to components 
through polymorphic interfaces.  Abstractly, a COM 
interface is a collection of semantically related func-
tion entry points.  Concretely, COM defines a binary 
standard representation of an interface as a virtual 
function table.  All first-class communication between 

COM components passes through interfaces.  Clients 
reference a component through pointers to its inter-
faces.   

Due to a strict binary standard, COM can transpar-
ently interpose proxies, stubs, and middleware layers 
between communicating clients and components for 
true location transparency.  Application code remains 
identical for in-process, cross-process, and cross-
machine communication.  The DCOM protocol, a su-
perset of DCE RPC [18], transports messages between 
machines by deep copy of message arguments.  By 
leveraging the COM binary standard, Coign can auto-
matically distribute an application without any knowl-
edge of the application source code. 

The Coign ADPS consists of four major tools: the 
Coign run-time, a binary rewriter, a network profiler, 
and a profile analysis engine.  Figure 1 contains an 
overview of the Coign ADPS. 
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Figure 1.  The Coign ADPS.  
An application is transformed into a distributed application 
by inserting the Coign runtime, profiling the instrumented 
application, and analyzing the profiles to cut the network-
based ICC graph. 

Starting with the original binary files for an appli-
cation, the binary rewriter creates a Coign-
instrumented version of the application.  The binary 
rewriter makes two modifications to the application.  
First, it inserts an entry into the first slot of the appli-
cation’s dynamic link library (DLL) import table to 
load the Coign runtime.  Second, it adds a data seg-
ment containing configuration information at the end 
of application binary.  The configuration information 
tells the Coign runtime how to profile the application 
and how to classify components during execution. 
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Because it occupies the first slot in the application’s 
DLL import table, the Coign runtime always loads and 
executes before the application or any of its DLLs.  At 
load time, the Coign runtime inserts binary instrumen-
tation into the images of system libraries in the appli-
cation’s address space.  The instrumentation traps all 
component instantiation requests in the COM library. 

The instrumented binary is run through a set of pro-
filing scenarios.  Because the binary modifications are 
transparent to the user (and to the application itself), 
the instrumented binary behaves identically to the 
original application.  The instrumentation gathers pro-
filing information in the background while the user 
controls the application.  The only visible effect of 
profiling is a small degradation in application per-
formance (of up to 85%).  For advanced profiling, sce-
narios can be driven by an automated testing tool, such 
as Visual Test [2]. 

During profiling, the Coign instrumentation sum-
marizes inter-component communication within the 
application.  Every inter-component call is executed 
via a COM interface.  Coign intercepts these interface 
calls (by instrumenting all component interfaces) and 
measures the amount of data communicated.  The in-
strumentation measures the number of bytes that 
would be transferred from one machine to another if 
the two communicating components were distributed.  
It does so by invoking portions of the DCOM code, 
including interface proxies and stubs, within the appli-
cation’s address space.  Coign measurement follows 
precisely the deep-copy semantics of DCOM.  After 
quantifying communication (by number and size of 
messages), Coign compresses and summarizes the data 
online.  Consequently, the overhead for storing com-
munication information does not grow linearly with 
execution time.  If desired, the application may be run 
through profiling scenarios for days or even weeks to 
more accurately track user usage patterns. 

At the end of a profiling execution, Coign writes 
the inter-component communication profiles to a file 
for later analysis.  In addition to information about the 
number and size of messages and components in the 
application, the profile log also contains information to 
classify components and to determine component loca-
tion constraints.  Log files from multiple profiling sce-
narios may be combined and summarized during later 
analysis.  Alternatively, at the end of each profiling 
scenario, information from the log file may be com-
bined into the configuration record in the application 
binary.  The latter approach uses less storage because 
summary information in the configuration record ac-
cumulates communication from similar interface calls 
into a single entry. 

The profile analysis engine combines component 
communication profiles and component location con-
straints to create an abstract inter-component commu-
nication (ICC) graph of the application.  Location 
constraints can be acquired from the programmer, 
from analysis of component communication records, 
and from application binaries.  For client-server 
distributions, the analysis engine performs static 
analysis on component binaries to determine which 
Windows APIs are called by each component.  
Components that access a set of known GUI or storage 
APIs are placed on the client or server respectively.  
Other components are distributed based on 
communication analysis.  The abstract ICC graph is combined with a net-
work profile to create a concrete graph of potential 
communication time on the network.  The network 
profiler creates a network profile through statistically 
sampling of communication time for a representative 
set of DCOM messages. 

Coign employs the lift-to-front minimum-cut graph-
cutting algorithm [9] to choose a distribution with 
minimal communication time.  In the future, the con-
crete graph could be constructed and cut at application 
execution time, thus introducing the potential to pro-
duce a new distribution tailored to current network 
characteristics for each execution.  

The lift-to-front min-cut algorithm, in our current 
implementation, can produce only two-machine, cli-
ent-server applications.  The problem of partitioning 
applications across three or more machines is provably 
NP-hard [13].  Numerous heuristic algorithms exist for 
multi-way graph cutting [7, 10, 12, 33, 38].  To more 
accurately evaluate the rest of the system, we restrict 
ourselves to an exact, two-way algorithm for client-
server computing. 

After analysis, the application’s ICC graph and 
component classification data (to be described later) 
are written into the configuration record in the applica-
tion binary.  The configuration record is also modified 
to remove the profiling instrumentation.  In its place, a 
lightweight version of the instrumentation will be 
loaded to realize (enforce) the distribution chosen by 
the graph-cutting algorithm. 

3. Coign Runtime Description 

The Coign runtime is composed of a small collec-
tion of replaceable COM components (Figure 2).  The 
most important components are the Coign Runtime 
Executive (RTE), the interface informer, the informa-
tion logger, the instance classifier, and the component 
factory.  The RTE provides low-level services to other 
components in the Coign runtime.  The interface in-
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former walks the parameters of interface function calls 
and identifies the location and static type of compo-
nent interfaces.  The information logger records data 
necessary for post-profiling analysis.  The instance 
classifier identifies component instances with similar 
communication profiles across multiple program exe-
cutions.  The component factory decides where com-
ponent instantiation requests should be fulfilled and 
relocates instantiation as needed to produce a chosen 
distribution.  The component structure of the Coign 
runtime facilitates its use for a wide variety of applica-
tion analysis and adaptation.  
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Figure 2.  Coign Runtime Architecture.  
Runtime components can be replaced to produce lightweight 
instrumentation, to log component activity, or to remote 
component instantiation. 

3.1. Runtime Executive.   

The Coign Runtime Executive (RTE) provides low-
level services to other components in the Coign run-
time.  Services provided by the RTE include: 

Interception of component instantiation requests.  
The RTE traps all component instantiation requests 
made by the application to the COM runtime.  Instan-
tiation requests are trapped using inline redirection  
(similar to the techniques pioneered by the Parasight 
[1] parallel debugger)1.  The RTE invokes the instance 
classifier to identify the about-to-be-instantiated com-
ponent.  The RTE then invokes the component factory, 
which fulfills the instantiation request at the appropri-
ate location based on instance classification.  

Interface wrapping.  The RTE “wraps” all COM 
interfaces by replacing each component interface 
pointer with a pointer to a Coign instrumented inter-
face, which in turn forwards incoming calls through 
the original interface pointer.  Once an interface is 
wrapped, the Coign runtime can trap all calls across 
the interface.  An interface is wrapped using static 
information from the interface informer.  The RTE 
also invokes the interface informer to process the pa-
rameters of interface function calls. 

                                                                                                     
1Our inline redirection and binary-rewriting tools for Win-
dows NT are available separately [21]. 

Address space and private stack management.  
The RTE tracks all binaries (.DLL and .EXE files) 
loaded into the application’s address space.  The RTE 
also provides distributed, thread-local stack storage for 
contextual information across interface calls. 

Access to configuration information stored in the 
application binary.  The RTE provides a set of func-
tions for accessing information in the configuration 
record created by the binary rewriter.  The RTE, in 
cooperation with the information logger, provides 
other Coign components with persistent storage 
through the configuration record. 

3.2. Interface Informer. 

The interface informer manages static interface 
metadata.  Other Coign components use data from the 
interface informer to determine the static type of COM 
interfaces, and walk input and output parameters of 
interface function calls.  The interface informer also 
aids the RTE to track the owner component for each 
interface [20]. 

The current Coign runtime contains two interface 
informers.  The first interface informer operates during 
scenario-based profiling.  The profiling informer uses 
format strings and interface marshaling code generated 
by the Microsoft IDL compiler [31] to analyze all 
function call parameters and precisely measure inter-
component communication.  Profiling currently adds 
up to 85% to application execution time (although in 
most cases the overhead is closer to 45%).  Most of 
this overhead is directly attributable to the interface 
informer. 

The second interface informer remains in the appli-
cation after profiling to produce the distributed appli-
cation.  The distribution informer only examines 
function call parameters enough to identify interface 
pointers.  Due to aggressive optimization of static in-
terface metadata, the distribution informer imposes an 
overhead on execution time of less than 3%.  

3.3. Information Logger 

The information logger summarizes and records 
data for distributed partitioning analysis.  Under direc-
tion of the RTE, Coign components pass information 
about application events to the information logger.  
Events include component instantiations, component 
destructions, interface instantiations, interface destruc-
tions, and interface calls.  The logger is free to process 
the events as needed.  Depending on the logger’s im-
plementation, it may ignore the events, write the 
events to a log file on disk, or accumulate information 
about the events into in-memory data structures.   
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The current implementation of the Coign runtime 
contains three separate information loggers.  The pro-
filing logger, summarizes data describing inter-
component communication into in-memory data struc-
tures.  At the end of execution, these data structures 
are written to disk for post-profiling analysis.  The 
profiling logger reduces memory overhead by summa-
rizing data for messages in common size ranges (suc-
cessive ranges grow in size exponentially).  
Summarization preserves network independence while 
significantly lowering storage requirements for com-
munication profiles.  The event logger creates detailed 
traces of all component-related events during applica-
tion execution.  A colleague has used logs from the 
event logger to drive detailed application simulations.  
During distributed execution, the null logger ignores 
all event log requests.  

3.4. Instance classifier 

The instance classifier identifies component in-
stances with similar communication profiles across 
separate executions of an application.  Automatic dis-
tributed partitioning depends on the accurate predic-
tion of instance communication behavior.  Accurate 
prediction is very difficult for dynamic, commercial 
application. The classifier groups instances with simi-
lar instantiation histories.  The classifier operates on 
the theory that two instances created under similar 
circumstances will exhibit similar behavior (i.e. com-
municate equivalently with the same peers).  Part of 
the output of the profile analysis engine is a map of 
instance classifications to computers in the network. 

Coign currently includes seven instance classifiers 
although only one, the internal-function called-by 
classifier, is typically used.  The best classifiers group 
instances of the same static type created from the same 
stack back-trace (call chain).  Figure 3 illustrates each 
classifier. 

The incremental classifier assigns each instance to 
a different classification based on its order of instantia-
tion during application execution.  Serving as a straw 
man for comparison, the incremental classifier can be 
expected to perform poorly on commercial, input-
driven applications. 

The procedure called-by (PCB) classifier, similar 
to Barrett and Zorn’s classifier for lifetime prediction 
in memory allocators [3], groups instances with similar 
static type and instantiation stack back-trace.  When 
walking the stack, the PCB classifier does not differen-
tiate between individual instances of the same compo-
nent class. 

The static-type (ST) classifier groups instances with 
common component class (static type).  The ST classi-

fier cannot differentiate between instances of the same 
class and must therefore assign all instances to the 
same machine during distribution.  This is a debilitat-
ing feature for all of the applications we examined. 

Program Control Flow:

A::V() {  ... a->W() ... }
A::W() {  ... b1->X() ...  }
B::X() {  ... b2->Y() ... }
B::Y() {  ... c->Z() ...  }
C::Z() {  ... CoCreateInstance(D) }

 where:
a is an instance of component class A,
b1 and b2 are instances of component class B,
c is an instance of component class C,

Classifier Descriptors:

Incremental Classifier:
[10] (for 10th call to CoCreateInstance)

Procedure Called-By (PCB) Classifier:
[C::Z, B::Y, B::X, A::W, A::V]

Static-Type (ST) Classifier:
[D]

Static-Type Called-By (STCB) Classifier:
[D, C, B, B, A]

Internal-Function Called-By (IFCB) Classifier:
[D, [c,Z], [b2,Y], [b1,X], [a,W], [a,V]]

Entry-Point Called-By (EPCB) Classifier:
[D, [c,Z], [b2,Y], [b1,X], [a,V]]

 Instantiated-By (IB) Classifier:
[D, c]

 
Figure 3.  Summary of Classifiers.  
Each instance classifier creates a descriptor at instantiation 
time to uniquely identify groups of similar component in-
stances.  Call-chain-based classifiers form a descriptor by 
examining the execution call stack. 

The static-type called-by (STCB) classifier groups 
instances by component class and the component 
classes of instances in the stack back-trace.  

The internal-function called-by (IFCB) classifier 
groups instances by their component class and the set 
of function and instance-classification pairs in the 
stack back-trace.  

The entry-point called-by classifier groups in-
stances by their component class and the set of func-
tion and instance-classification pairs used to enter each 
component instance on the stack back-trace.   

The depth of the stack back-trace for the PCB, 
STCB, IFCB, and EPCB classifiers can be tuned to 
evaluate tradeoffs between accuracy and overhead. 

The instantiated-by classifier groups instances by 
their component class and their “parent” (the instance 
classification from which they were instantiated).  The 
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instantiated-by classifier is functionally equivalent to 
the IFCB classifier with a depth-1 stack back-trace. 

3.5. Component Factory 

The component factory produces a distributed ap-
plication by manipulating instance placement.  Using 
output from the instance classifier and the profile 
analysis engine, the component factory moves each 
component instantiation request to the appropriate 
computer within the network.  During distributed exe-
cution, a copy of the component factory is replicated 
onto each machine.  The component factories act as 
peers.  Each traps component instantiation requests on 
its own machine, forwards requests to other machines 
as appropriate, and fulfills instantiation requests des-
tined for its machine by invoking COM to create the 
new component instance.  The job of the component 
factory is straightforward because the instance classi-
fier identifies components for remote placement and 
DCOM handles message transport.  Coign currently 
contains a symbiotic pair of component factories.  
Used simultaneously, the first factory handles commu-
nication with peer factories on remote machines while 
the second factory interacts with the instance classifier 
and the interface informer. 

4. Experimental Results 

Our experimental environment consists of a pair of 
200 MHz Pentium PCs with 32MB of RAM, running 
Windows NT 4.0 Service Pack 3.  During distributed 
experiments, the PCs were connected through an iso-
lated 10BaseT Ethernet with Intel EtherExpress Pro 
cards. 

4.1. Application and Scenario Suite 

For our experiments, we use a suite of three exist-
ing applications built from COM components.  The 
applications employ between a dozen and 150 compo-
nent classes and range in size from approximate 
40,000 to 1.8 million lines of source code.  The appli-
cations apply a broad spectrum of COM implementa-
tion idioms.  We believe that these applications 
represent a wide class of COM applications. 

Microsoft PhotoDraw 2000 [32].  PhotoDraw is a 
consumer application for manipulating digital images.  
Taking input from high-resolution, color-rich sources 
such as scanners and digital cameras, PhotoDraw pro-
duces output such as publications, greeting cards, or 
collages.  PhotoDraw includes tools for selecting a 
subset of an image, applying a set of transforms to the 
subset, and inserting the transformed subset into an-
other image.  PhotoDraw was a non-distributed appli-

cation composed of approximately 112 COM 
component classes in 1.8 million lines of C++ source 
code. 

Octarine.  Octarine is a word-processing applica-
tion developed by another group at Microsoft Re-
search.  Designed as a prototype to explore the limits 
of component granularity, Octarine contains approxi-
mately 150 classes of components.  Octarine’s compo-
nents range in granularity from less than 32 bytes to 
several megabytes.  Components in Octarine range in 
functionality from user-interface buttons to generic 
object dictionaries to sheet music editors.  Octarine 
manipulates three major types of documents: word-
processing, sheet music, and table.  Fragments of any 
of the three document types can be combined into a 
single document.  Octarine is composed of approxi-
mately 120,000 lines of C and 500 lines of x86-
assembly source code. 

Scenario Description

o_newdoc Create text document.
o_newmus Create music document.
o_newtbl Create table document.
o_oldtb0 View 5-page table.
o_oldtb3 View 150-page table.
o_oldwp0 View 5-page text document.
o_oldwp3 View 13-page text document.
o_oldwp7 View 208-page text document.
o_oldbth View 5-page text doc. with tables.
o_offtb3 o_newdoc then o_oldtb3.
o_offwp7 o_newdoc then o_oldwp3.

O
ct

ar
in

e

o_bigone All of the above in one scenario.
p_newdoc Create new image.
p_newmsr Create new composition.
p_oldcur View line drawing.
p_oldmsr View composition.
p_offcur p_newdoc then p_oldcur.
p_offmsr p_newdoc then p_oldmsr.P

ho
to

D
ra

w

p_bigone All of the above in one scenario.
b_vueone View records for an employee.
b_addone Add new employee.
b_delone Delete employee.

B
en

ef
it

s

b_bigone All of the above in one scenario.
 

Table 1.  Profiling Scenarios.   
Profiling scenarios represent major usage scenarios and in-
stantiate most component classes in each application. 

Corporate Benefits Sample [30].  The Corporate 
Benefits Sample is an application distributed by the 
Microsoft Developer Network to demonstrate the use 
of COM to create 3-tier client-server applications.  
The Corporate Benefits Sample provides windows for 
modifying, querying, and creating graphical reports on 
a database of employees and their corporate human-
resource benefits.  The entire application contains two 
separate client front-ends and four alternative middle-
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tier servers.  For our purposes, we use a client front-
end consisting of approximately 5,300 lines of Visual 
Basic code and a middle tier server of approximately 
32,000 lines of C++ source code with approximately 
one dozen component classes.  Benefits leverages 
commercial components (distributed in binary form 
only) such as the graphing component from Microsoft 
Office [29]. 

Each of the applications in our test suite is dynamic 
and user-driven.  The number and type of components 
instantiated in a given execution is determined by user 
input during execution.  For example, a scenario in 
which a user inserts a sheet music component into an 
Octarine document will instantiate different compo-
nents than a scenario in which the user inserts a table 
component into the document. 

To explore the effectiveness of automatic distribu-
tion partitioning on component-based applications, our 
experimental suite consists of several different scenar-
ios for each application.  Scenarios range from simple 
to complex.  The intent of the scenarios is to represent 
realistic usage while fully exercising the components 
found in the application.  Table 1 describes each sce-
nario. 

4.2. Instance Classification 

As described in Section 3.4, the instance classifier 
must correlate information from profiling with instan-
tiation requests during distributed execution.   

Choosing a metric to evaluate the accuracy of an 
instance classifier is difficult because we must evalu-
ate how well a profile from one instance (or group of 
instances) correlates to another instance.  In the con-
text of automatic distributed partitioning, a profile and 
an instance correlate if they have similar resource us-
age and similar communication behavior (i.e. similar 
peers and peer-communication patterns). 

To quantify communication behavior, we introduce 
the notion of an instance communication vector.  An 
instance communication vector is an ordered tuple of n 
real numbers (one for each component instance in the 
application).  Each number quantifies the communica-
tion time with another component instance (assuming 
that the other instance is located remotely).  The 
communication vector can be augmented with addi-
tional dimensions representing various resources such 
as memory and CPU cycles.  We compare the correla-
tion between two communication vectors with the vec-
tor dot product operator.  Two vectors with a dot-
product correlation of one have equivalent communi-
cation behavior (i.e. they communicate equivalently 
with the same peers).  Two vectors with a dot-product 

correlation of zero share no common communication 
behavior. 

For automatic distributed partitioning, an instance 
classifier should identify as many unique instance 
classifications as possible in profiling scenarios in or-
der to preserve distribution granularity.  An instance 
classifier should also be reliable and stable; it should 
correctly identify instances with similar communica-
tion profiles and instantiation contexts.  

Instance 
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ncremental 1090 2561 1.0 0.225 

rocedure Called-By 1262 0 2.9 0.766 

tatic-Type 80 0 45.6 0.574 
tatic-Type Called-By 713 0 5.1 0.809 

nternal-Func. Called-By 1434 0 2.6 0.848 
ntry-Point Called-By 1032 0 3.5 0.829 

nstantiated-By 590 0 6.2 0.809 
 
 
  

Table 2.  Classifier Accuracy. 
Classifiers with a higher number of classifications recognize 
more unique component instances.  Those with a higher av-
erage correlation are more accurate. 

To evaluate the instance classifiers, we ran classifi-
ers through all of the scenarios except the bigone 
scenarios for each application to create the instance 
profiles.  We then ran classifiers for each application 
through the bigone scenarios.  The bigone scenar-
ios are a synthesis of the other scenarios for the appli-
cation.  Because all component instances should 
correlate closely to prior scenarios, no new instance 
classifications should result from the bigone sce-
nario. Table 2 lists the number of classifications iden-
tified by each classifier, the number of new 
classification identified in the bigone scenario, the 
average number of instances per classification, and the 
average correlation between instance behavior and 
chosen profile for the Octarine bigone scenario.  
Table 3 lists the same values for IFCB classifier with 
limited depth stack walks.  (The called-by classifiers 
in Table 2 walk the complete stack.) 

Given only the component’s static type as context, 
the ST classifier cannot distinguish instantiations of 
the same component class used in radically different 
contexts.  The “straw man” classifier, the incremental 
classifier, fails to correlate instances in the bigone 
scenarios with profiles from the earlier scenarios.  It is 
strictly limited by the order of application execution 
and user input.  Note that incremental classifier would 
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perform well for static applications, but fails miserably 
for dynamic, commercial applications. 

The call-chain-based instance classifiers (PCB, 
STCB, IFCB, EPCB, and IB) preserve more distribu-
tion granularity because they take into account contex-
tual information when classifying an instantiation.  
The STCB, IFCB and EPCB classifiers are similar in 
accuracy.  They differ however, in the number of 
unique component classifications they identify.  As 
would be expected, the IFCB classifier, which uses the 
largest amount of contextual information, identifies 
the largest number of classifications.  

Fundamentally, our instance classifiers are limited 
in their accuracy by the amount of contextual informa-
tion available before a component is instantiated.  
They cannot differentiate two instances with identical 
instantiation context, but vastly different communica-
tion profiles.  However, experimental evidence sug-
gests the STCB, IFCB, EPCB, and IB classifiers 
preserve distribution granularity and correlate profiles 
with sufficient accuracy to enable automatic distrib-
uted partitioning of commercial applications. 

Internal-
Function
Called-By
Classifier

Stack-Walk
Depth

P
ro

fi
le

d
C

la
ss

if
ic

at
io

ns

A
ve

. I
ns

ta
nc

es
 /

C
la

ss
if

ic
at

io
n

A
ve

ra
ge

C
or

re
la

ti
on

1 590 6.2 0.809
2 977 3.7 0.829

3 1184 3.1 0.848
4 1383 2.6 0.848
8 1434 2.6 0.848
16 1434 2.6 0.848

Complete 1434 2.6 0.848
 

Table 3.  Accuracy as a Function of Stack Depth.   
Both classifier accuracy (average correlation) and number of 
classifications increase with the depth of the stack walked. 

4.3. Distributions 

Because Coign makes distribution decisions at 
component boundaries, it success depends on pro-
grammers to build applications with significant num-
bers of components.  To evaluate Coign’s 
effectiveness in automatically creating distributed ap-
plications, we ran each application in the test suite 
through a simple profiling scenario consisting of the 
simplest practical usage of the application.  After pro-
filing, Coign partitioned each application between a 
client and server of equal compute power on an iso-

lated 10BaseT Ethernet network.  For simplicity, we 
assume there is no contention for the server. 

Figure 4 plots the distribution of PhotoDraw.  In the 
profiling scenario, PhotoDraw loads a 3MB graphical 
composition from storage, displays the image, and 
exits.  Of 295 components in the application, eight are 
placed on the server.  One of the components placed 
on the server reads the document file.  The other seven 
components are high-level property sets created di-
rectly from data in the file; with larger input sets than 
output sets, they are placed on the server to reduce 
communication. 

As can be seen in Figure 4, PhotoDraw contains 
many significant interfaces (almost 50) that can not be 
distributed (shown as solid black lines).  The most 
important non-distributable interfaces connect the 
sprite cache components (on the bottom and right) 
with user interface components (on the top left).  Each 
sprite cache manages the pixels for a hierarchical sub-
set of an image in the composition.  Most of the data 
passed between sprite caches moves through shared 
memory regions.  Pointers to the shared-memory re-
gions are passed opaquely through non-distributable 
interfaces. 
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Figure 4.  PhotoDraw Distribution. 
Of 295 components in the application, Coign places eight on 
the server.  Black lines represent non-distributable interfaces 
between components.  Gray lines represent distributable 
interfaces. 

While Coign can extract a functional distribution 
from PhotoDraw, most of the distribution granularity 
in the application is hidden by non-distributable inter-
faces.  To enable other, potentially better distributions, 
either the non-distributable interfaces in PhotoDraw 
must be replaced with distributable IDL interfaces, or 
Coign must be extended to support transparent migra-
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tion of shared memory regions; in essence leveraging 
the features of software distributed-shared memory 
[26]. 
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Figure 5.  Octarine Distribution. 
Of 458 components in the application, Coign places two on 
the server.  Most of the non-distributable interfaces in Oc-
tarine connect elements of the GUI. 

Figure 5 shows the distribution of the Octarine 
word processor.  In this scenario, Octarine loads and 
displays the first page of a 35-page, text-only docu-
ment.  Coign places only two components of 458 on 
the server.  One of the components reads the document 
from storage; the other provides information about the 
properties of the text to the rest of the application.  
While Figure 5 contains many non-distributable inter-
faces, these interfaces connect components of the GUI, 
and are not directly related to the document file.  
Unlike the other applications in our test suite, Oc-
tarine’s GUI is composed of literally hundreds of 
components.  It is highly unlikely that these GUI com-
ponents would ever be located on the server.  Direct 
document-related processing for this scenario is lim-
ited to just 24 components. 

Figure 6 contains the distribution for the MSDN 
Corporate Benefits Sample.  As shipped, Benefits can 
be distributed as either a 2-tier or a 3-tier client-server 
application.  The 2-tier implementation places the 
Visual Basic front-end and the business-logic compo-
nents on the client and the database, accessed through 
ODBC [28], on the server.  The 3-tier implementation 
places the front-end on the client, the business-logic on 
the middle tier, and the database on the server.  Coign 
cannot analyze proprietary connections between the 
ODBC driver and the database server.  We therefore 
focus our analysis on the distribution of components in 

the front end and middle tier of the 3-tier implementa-
tion.  
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Figure 6.  Corporate Benefits Distribution. 
Of 196 components in the client and middle tier, Coign 
places 135 of the components on the middle tier where the 
programmer placed 187. 

Coign analysis shows that application performance 
can be improved by moving some of the middle-tier 
components into the client.  The distribution chosen by 
Coign is quite surprising.  Of 196 components in the 
client and middle tier, Coign places 135 on the middle 
tier versus 187 chosen by the programmer.  The new 
distribution reduces communication by 35%. 

The intuition behind the new distribution is that 
many of the middle-tier components cache results for 
the client.  Coign moves the caching components, but 
not the business-logic itself, from the middle-tier to 
the client.  Although not used in this analysis, the pro-
grammer can place two kinds of explicit location con-
straints on components to guarantee data integrity and 
security requirements.  Absolute constraints explicitly 
force an instance to a designated machine.  Pair-wise 
constraints force the co-location of two component 
instances. 

The programmer’s distribution is a result of two de-
sign decisions.  First, the middle tier represents a con-
ceptually clean separation of business logic from the 
other pieces of the application.  Second, the front-end 
is written in Visual Basic, an extremely popular lan-
guage for rapid development of GUI applications, 
while the business logic is written in C++.  It would be 
awkward for the programmer to create the distribution 
easily created by Coign. 

The Corporate Benefits Sample demonstrates that 
Coign can improve the distribution of applications 
designed by experienced client-server programmers.  
In addition to direct program decomposition, Coign 
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can also selectively enable per-interface caching (as 
appropriate) through COM’s semi-custom marshaling 
mechanism. 

4.4. Changing Scenarios and Distributions 

The simple scenarios in the previous section dem-
onstrate that Coign can automatically choose a parti-
tion and distribute an application.  The Benefits 
example notwithstanding, one could argue that an ex-
perienced programmer with appropriate tools could 
partition the application at least as well manually.  
Unfortunately, a programmer’s best-effort manual dis-
tribution is static; it cannot readily adapt to changes in 
network performance or user-driven usage patterns.  In 
the realm of changing environments, Coign has a dis-
tinct advantage as it can repartition and distribute the 
application arbitrarily often.  In the limit, Coign can 
create a new distributed version of the application for 
each execution. 
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Figure 7.  Octarine with Multi-page Table. 
With a document containing a five-page table, Coign locates 
only a single component on the server. 

The merits of a distribution customized to a particu-
lar usage pattern are not merely theoretical.  Figure 7 
plots the optimized distribution for Octarine loading a 
document containing a single, 5-page table.  For this 
scenario, Coign places only a single component out of 
476 on the server.  The results are comparable to those 
of Octarine loading a document containing strictly text 
(Figure 5).  However, if fewer than a dozen small ta-
bles are added to the 5-page text document, the opti-
mal distribution changes radically.  As can be seen in 
Figure 8, Coign places 281 out of 786 components on 
the server.  The difference in distribution is due to the 
complex negotiations for page placement between the 

table components and the text components.  Output 
from the page-placement negotiation to the rest of the 
application is minimal. 

In a traditional distributed system, the programmer 
would likely optimize the application for the most 
common usage pattern.  At best, the programmer could 
embed a minimal number of distribution alternatives 
into the application.  With Coign, the programmer 
need not favor one distribution over another.  The ap-
plication can be distributed with an inter-component 
communication model optimized for the most common 
scenarios.  Over the installed lifetime of the applica-
tion, Coign can periodically re-profile the application 
and adjust the distribution accordingly.  Even without 
updating the inter-component communication model, 
Coign can adjust to changes in application infrastruc-
ture, such as the relative computation power of the 
client and server, or network latency and bandwidth. 
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Figure 8.  Octarine with Tables and Text. 
With a five-page document containing fewer than a dozen 
embedded tables, Coign places 281 of 786 application com-
ponents on the server. 

4.5. Performance of Chosen Distributions 

Table 4 lists the communication time for each of 
the application scenarios. The default distribution is 
the distribution of the application as configured by the 
developer without Coign.  For both the default and 
Coign-chosen distributions, data files are placed on the 
server.  As can be seen, Coign never chooses a worse 
distribution than the default.  In the best case, Coign 
reduces communication time by 99%.  The Corporate 
Benefits Application has significant room for im-
provement as suggested by the change in its distribu-
tion in Section 0. 

The results suggest that Coign is better at optimiz-
ing existing distributed applications than creating new 
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distributed applications from desktop applications.  
The distribution of desktop COM-based applications is 
limited by the extensive use of non-remotable inter-
faces.  For PhotoDraw in particular, Coign is severely 
constrained by the large number of non-remotable in-
terfaces.  It is important to note that the distributions 
available in Octarine and PhotoDraw are not limited 
by the granularity of their components, but by their 
interfaces.  We believe that as the development of 
component-based applications matures, developers 
will learn to create interfaces with better distribution 
properties, thus strengthening the benefits of Coign. 

Comm. Time (secs.)

Scenario Default Coign Savings
o_newdoc 0.152 0.152 0%
o_newmus 0.149 0.149 0%
o_newtbl 0.006 0.006 0%
o_oldtb0 1.058 1.048 1%
o_oldtb3 15.064 0.042 99%
o_oldwp0 0.143 0.143 0%
o_oldwp3 0.696 0.696 0%
o_oldwp7 21.089 1.099 95%
o_oldbth 1.734 0.562 68%
o_offtb3 15.079 0.037 99%
o_offwp7 20.878 1.090 95%
o_bigone 27.497 22.630 18%
p_newdoc 4.726 4.496 5%
p_newmsr 17.016 15.014 12%
p_oldcur 2.384 1.613 32%
p_oldmsr 14.517 11.482 21%
p_offcur 1.583 0.722 54%
p_offmsr 14.650 11.497 22%
p_bigone 33.032 27.084 18%
b_vueone 1.465 0.954 35%
b_addone 2.322 1.601 31%
b_delone 3.414 2.834 17%
b_bigone 1.754 1.414 19%  

Table 4.  Reduction in Communication Time.   
Communication time for the default distribution of the appli-
cation (as shipped by the developer) and for the Coign-
chosen distribution. 

4.6. Accuracy of Prediction Models 

To verify the accuracy of Coign’s model of applica-
tion communication time and execution time, we 
compare the predicted execution time for each sce-
nario with the measured execution time (Table 5).  In 
each case, the application is optimized for the chosen 
scenario before execution.  Many of the scenarios had 
no significant difference between predicted and actual 
execution time; only seven had an error of 5% or 
greater, and none varied by more than 8%.  From these 
measurements, we conclude that Coign’s model of 

application communication and execution time is suf-
ficiently accurate to warrant confidence in the distribu-
tions chosen by Coign’s graph-cutting algorithm. 

5. Related Work 

The idea of automatically partitioning and distribut-
ing applications is not new.  The Interconnected Proc-
essor System (ICOPS) [27, 40, 41] supported 
distributed application partitioning in the 1970’s.  
ICOPS pioneered the use of compiler-generated stubs 
for inter-process communication.  ICOPS was the first 
system to use scenario-based profiling to gather statis-
tics for distributed partitioning; the first system to sup-
port multiple distributions per application based on 
host-processor load; and the first system to use a 
minimum-cut algorithm [11] to choose distributions. 
ICOPS distributed HUGS, a co-developed, two-
dimensional drafting program.  HUGS consisted of 
seven modules.  Three of these—consisting of 20 pro-
cedures in all—could be located on either the client or 
the server.   

Execution Time (sec.)
Scenario Predicted Measured Error
o_newdoc 10.7 10.7 0%
o_newmus 10.9 10.9 0%
o_newtbl 9.3 9.3 0%
o_oldtb0 19.0 19.1 0%
o_oldtb3 231.1 231.1 0%
o_oldwp0 5.5 5.7 -3%
o_oldwp3 7.2 7.3 -2%
o_oldwp7 33.4 33.6 -1%
o_oldbth 33.6 33.6 0%
o_offtb3 232.7 232.7 0%
o_offwp7 67.2 65.6 2%
o_bigone 416.1 429.7 -3%
p_newdoc 14.3 14.3 0%
p_newmsr 76.8 72.9 5%
p_oldcur 18.8 18.8 0%
p_oldmsr 49.0 49.5 -1%
p_offcur 18.1 18.1 0%
p_offmsr 53.8 54.2 -1%
p_bigone 139.6 136.3 2%
b_vueone 9.4 8.9 6%
b_addone 14.6 13.9 5%
b_delone 8.9 8.4 7%
b_bigone 5.6 5.2 8%  

Table 5. Accuracy of Prediction Models.   
Predicted application execution time and measured applica-
tion execution time for Coign distributions. 

Unlike Coign, which can distributed individual 
component instances, ICOPS was procedure-oriented.  
ICOPS placed all instances of a specific class on the 
same machine; a serious deficiency for commercial 
applications.  Tied to a single language and compiler, 
ICOPS relied on metadata generated by the compiler 



 12

to facilitate transfer of data and control between com-
puters.  Modules compiled in another language (or by 
another compiler) could not be distributed because 
they did not contain appropriate metadata.  ICOPS 
gave the application the luxury of location transpar-
ency, but still required the programmer or user to ex-
plicitly select a distribution based on machine load. 

Configurable Applications for Graphics Employing 
Satellites (CAGES) [16, 17] allowed a programmer to 
develop an application for a single computer and later 
distribute the application across a client/server system.  
Unlike ICOPS, CAGES did not support automatic dis-
tributed partitioning.  Instead, the programmer pro-
vided a pre-processor with directions about where to 
place each program module.  The programmer could 
change a distribution only after recompiling the appli-
cation with a new placement description file.  Like 
ICOPS, CAGES was procedure-oriented; programs 
could be distributed at the granularity of procedural 
modules in the PL/I language.  The largest application 
distributed by CAGES consisted of 28 modules.  To 
aid the programmer in choosing a distribution, CAGES 
produced a “nearness” matrix through static analysis.  
The “nearness” matrix quantified the communication 
between modules, thus hinting how “near” the mod-
ules should be placed to each other. 

One important advantage of CAGES over ICOPS 
was its support for simultaneous computation on both 
the satellite and the host computers.  CAGES provided 
the programmer with the abstraction of one dual-
processor computer on top of two physically disjoint 
single-processor computers.  The CAGES runtime 
provided support for RPC and asynchronous signals. 

Both ICOPS and CAGES were severely constrained 
by their granularity of distribution: the PL/I or AL-
GOL-W procedural module.  Neither system ever dis-
tributed an application with more than a few dozen 
modules.  However, despite their weaknesses, each 
system provided some degree of support for automatic 
or semi-automatic distributed application partitioning. 

The Intelligent Dynamic Application Partitioning 
(IDAP) system [22, 25], an ADPS for CORBA appli-
cations, is an add-on to IBM’s VisualAge Generator.  
Using VisualAge Generator’s visual builder, a pro-
grammer designs an application by instantiating and 
connecting components in a graphical environment.  
The builder emits code for the created application. 

The “dynamic” IDAP name refers to the usage of 
scenario-based profiling as an alternative to static 
analysis.  IDAP first generates a version of the applica-
tion with an instrumented message-passing system.  
IDAP runs the instrumented application under control 
of a test facility with the VisualAge system.  After 
application execution, the programmer either manually 

partitions the components or invokes an automatic 
graph-partitioning algorithm.  The algorithm used is an 
approximation algorithm capable of multi-way cuts for 
two or more hosts [10].  After choosing a distribution, 
VisualAge generates a new version of the application.  
The IDAP developers have tested their system on sev-
eral real applications, but in each case, the application 
had “far fewer than 100” components [25]. 

IDAP supports distributed partitioning only for 
statically instantiated components.  IDAP requires full 
access to source code.  Another potential restriction is 
the natural granularity of CORBA applications.  
CORBA components tend to be large-grained objects 
whereas COM components in the applications we ex-
amined have a much smaller granularity.  Often each 
CORBA component must reside in a separate server 
process.  In essence, IDAP helps the programmer de-
cide where CORBA servers should be placed in a net-
work, but does not facilitate program decomposition.  
The IDAP programmer must be very aware of distribu-
tion choices.  IDAP helps the user to optimize the dis-
tribution, but does not raise the level of abstraction 
above the distribution mechanisms.  With a full-
featured ADPS, such as Coign, the programmer can 
focus on component development and leave distribu-
tion to the system. 

5.1. Distributed Object Systems 

Emerald [5, 6] combines a language and operating 
system to create an object-oriented system with first 
class support for distribution.  Emerald objects can 
migrate between machines during execution; they can 
also be fixed to a particular machine, or be co-located 
under programmer control through language operators 
[23].  Emerald is limited to a single language and does 
not attempt to automatically place objects to minimize 
application communication. 

The SOS [39], Globe [19], and Legion [14] distrib-
uted object systems provide true location-transparent 
objects and direct programmer control over object lo-
cation.  Globe and Legion each anticipate scaling to 
the entire Internet.  However, none of these systems 
supports automatic program modification to minimize 
communication.  

5.2. Parallel Partitioning and Scheduling 

Strictly speaking, the problem of distributed parti-
tioning is a proper subset of the general problem of 
parallel partitioning and scheduling.  Our work differs 
from similar work in parallel scheduling ([24, 36-38]) 
in two primary respects.  First, Coign accommodates 
applications in which components are instantiated and 
destroyed dynamically throughout program execution.  
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Traditional parallel partitioning focuses on static ap-
plications.  Second, because Coign operates on binary 
applications, it can optimize application without ac-
cess to source code (a necessary feature in the domain 
of commercial component-based applications).   

Coign does not increase the parallelism in applica-
tion code, nor does it perform horizontal load-
balancing between peer servers.  Instead, Coign fo-
cuses on “vertical” load-balancing within the applica-
tion.  The question of how to minimize 
communication and maximize parallelism in large 
dynamic, commercial applications remains open.  

6. Conclusions and Future Work 

Coign is the first ADPS to distribute binary applica-
tions and the first ADPS to partition applications with 
dynamically instantiated components of any kind (ei-
ther binary or source).  Dynamic component instantia-
tion is an integral feature of modern desktop 
applications.  One of the major contributions of our 
work is a set of dynamic instance classifiers that corre-
late newly instantiated components to similar instances 
identified during scenario-based profiling. 

Evaluation of Coign shows that it minimizes dis-
tributed communication time for each of the applica-
tions and scenarios in our test suite.  Surprisingly, the 
greatest reduction in communication time occurs in the 
distributed Corporate Benefits Sample where Coign 
places almost half of the middle-tier components on 
the client without violating application security.  Re-
sults from Octarine demonstrate the potential for more 
than one distribution of an application depending on 
the user’s predominant document type. 

We envision two models for Coign to create dis-
tributed applications.  In the first model, Coign is used 
with other profiling tools as part of the development 
process.  Coign shows the developer how to distribute 
the application optimally and provides the developer 
with feedback about which interfaces are communica-
tion “hot spots.”  The programmer fine-tunes the dis-
tribution by enabling custom marshaling and caching 
on communication intensive interfaces.  The pro-
grammer can also enable or disable specific distribu-
tions by inserting or removing location constraints on 
specific components and interfaces.  Alternatively, the 
programmer can create a distributed application with 
minimal effort simply by running the application 
through profiling scenarios and writing the correspond-
ing distribution model into the application binary 
without modifying application sources. 

In the second usage model, Coign is applied onsite 
by the application user or system administrator.  The 
user enables application profiling through a simple 

GUI to Coign.  After “training” the application to the 
user’s usage patterns—by running the application 
through representative tasks with profiling—the GUI 
triggers post-profiling analysis and writes the distribu-
tion model into the application.  In essence, the user 
has created a customized version of the distributed 
application without any knowledge of the underlying 
details.   

In the future, Coign could automatically decide 
when usage differs significantly from profiled scenar-
ios and silently enable profiling to re-optimize the dis-
tribution.  The Coign runtime already contains 
sufficient infrastructure to allow “fully automatic” 
distribution optimization.  The lightweight version of 
the runtime, which relocates component instantiation 
requests to produce the chosen distribution, could 
count messages between components with only slight 
additional overhead.  Run time message counts could 
be compared with related message counts from the 
profiling scenarios to recognize changes in application 
usage. 
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