
 1

The Coign Automatic Distributed Partitioning System

 Galen C. Hunt Michael L. Scott
 Microsoft Research Department of Computer Science
 One Microsoft Way University of Rochester
 Redmond, WA 98052 Rochester, NY 14627
 galenh@microsoft.com scott@cs.rochester.edu

Abstract

Although successive generations of middleware
(such as RPC, CORBA, and DCOM) have made it eas-
ier to connect distributed programs, the process of
distributed application decomposition has changed
little: programmers manually divide applications into
sub-programs and manually assign those sub-
programs to machines. Often the techniques used to
choose a distribution are ad hoc and create one-time
solutions biased to a specific combination of users,
machines, and networks.

We assert that system software, not the program-
mer, should manage the task of distributed decomposi-
tion. To validate our assertion we present Coign, an
automatic distributed partitioning system that signifi-
cantly eases the development of distributed applica-
tions.

Given an application (in binary form) built from
distributable COM components, Coign constructs a
graph model of the application’s inter-component
communication through scenario-based profiling.
Later, Coign applies a graph-cutting algorithm to par-
tition the application across a network and minimize
execution delay due to network communication. Using
Coign, even an end user (without access to source
code) can transform a non-distributed application into
an optimized, distributed application.

Coign has automatically distributed binaries from
over 2 million lines of application code, including Mi-
crosoft’s PhotoDraw 2000 image processor. To our
knowledge, Coign is the first system to automatically
partition and distribute binary applications.

1. Introduction

Distributed systems have been an area of open re-
search for more than two decades. Popular acceptance
of the Internet has fueled a renewed interest in distrib-
uted systems and applications. Distributed application
enable sharing of data, sharing of resources (such as
memory, processor cycles, or physical devices), col-
laboration between users, increased reliability through
redundancy, and increased security through physical
isolation.

However compelling the motivations, the creation
of distributed applications continues to be difficult. As
a rule, the creation of a distributed application is al-
ways harder than the creation of a functionally equiva-
lent non-distributed application. Complicating factors
include protection of data integrity and security, man-
agement of disjoint address spaces, increased latency
and reduced bandwidth between application compo-
nents, partial system failures caused by isolated ma-
chine or network outages, and practical engineering
issues such as debugging across multiple processes on
distributed computers.

One of the primary challenges to create a distrib-
uted application is the need to partition and place
pieces of the application. Although successive genera-
tions of middleware (such as RPC [4, 15, 34], CORBA
[35, 42], and DCOM [8]) have brought the advantages
of service-location transparency, dynamic object in-
stantiation, and object-oriented programming to dis-
tributed applications, the process of distributed
application decomposition has changed little: pro-
grammers manually divide applications into sub-
programs and manually assign those sub-programs to
machines. Often the techniques used to choose a dis-
tribution are ad hoc, creating solutions biased to a spe-
cific platform.

Given the effort required, applications are seldom
re-partitioned even in drastically different network
environments. Changes in underlying network, from
ISDN to 100BaseT to ATM to SAN, strain static dis-

The original publication of this paper was granted to
USENIX. Copyright to this work is retained by the au-
thors. Permission is granted for the noncommercial repro-
duction of the complete work for educational or research
purposes. Published in Proceedings of the 3rd Symposium
on Operating System Design and Implementation (OSDI
’99), pp. 187-200. New Orleans, LA, February 1999.

 2

tributions as bandwidth-to-latency tradeoffs change by
more than an order of magnitude. User usage patterns
can also severely stress a static application distribu-
tion. Nevertheless, programmers resist repartitioning
applications because doing so often requires extensive
modifications to program structure and source code.

We argue that system software, not the program-
mer, should partition and distribute applications. Fur-
thermore, we assert that existing applications can be
partitioned and distributed automatically without ac-
cess to source code, provided the applications are built
from binary components. To validate our claims, we
have built a working prototype system, the Coign
Automatic Distributed Partitioning System (ADPS).

Coign radically changes the development of dis-
tributed applications. Given an application built with
components conforming to Microsoft’s Component
Object Model (COM), Coign profiles inter-component
communication as the application is run through typi-
cal usage scenarios (a process known as scenario-
based profiling). Based on profiled information,
Coign selects a distribution of the application with
minimal communication time for a particular distrib-
uted environment. Coign then modifies the applica-
tion to produce the desired distribution.

Coign analyzes an application, chooses a distribu-
tion, and produces the desired distributed application
all with access to only the application binary files. By
solely analyzing application binaries, Coign produces
distributed applications automatically without violat-
ing the primary goal of commercial component sys-
tems: building applications from reusable, binary
components.

In the next two sections, we describe Coign and the
implementation of the Coign runtime. In Section 4,
we present experimental results demonstrating Coign’s
effectiveness in automatically distributing binaries
from over 2 million lines of application code. In Sec-
tion 5, we describe related work. Finally, in Section 6
we summarize our conclusions and discuss future
work.

2. System Description

Coign is an automatic distributed partitioning sys-
tem (ADPS) for applications built from COM compo-
nents. COM is a standard for packaging, instantiating,
and connecting reusable pieces of software in binary
form called components. Clients talk to components
through polymorphic interfaces. Abstractly, a COM
interface is a collection of semantically related func-
tion entry points. Concretely, COM defines a binary
standard representation of an interface as a virtual
function table. All first-class communication between

COM components passes through interfaces. Clients
reference a component through pointers to its inter-
faces.

Due to a strict binary standard, COM can transpar-
ently interpose proxies, stubs, and middleware layers
between communicating clients and components for
true location transparency. Application code remains
identical for in-process, cross-process, and cross-
machine communication. The DCOM protocol, a su-
perset of DCE RPC [18], transports messages between
machines by deep copy of message arguments. By
leveraging the COM binary standard, Coign can auto-
matically distribute an application without any knowl-
edge of the application source code.

The Coign ADPS consists of four major tools: the
Coign run-time, a binary rewriter, a network profiler,
and a profile analysis engine. Figure 1 contains an
overview of the Coign ADPS.

Coign
Runtime

Application
Binary

Instrumented
Binary

Binary
Rewriter

Profiling
Scenarios

Abstract
ICC Data

Profile
Analysis

Network
Profiler

Network
Data

Best
Distribution

Binary
Rewriter

Distributed
Application

Figure 1. The Coign ADPS.
An application is transformed into a distributed application
by inserting the Coign runtime, profiling the instrumented
application, and analyzing the profiles to cut the network-
based ICC graph.

Starting with the original binary files for an appli-
cation, the binary rewriter creates a Coign-
instrumented version of the application. The binary
rewriter makes two modifications to the application.
First, it inserts an entry into the first slot of the appli-
cation’s dynamic link library (DLL) import table to
load the Coign runtime. Second, it adds a data seg-
ment containing configuration information at the end
of application binary. The configuration information
tells the Coign runtime how to profile the application
and how to classify components during execution.

 3

Because it occupies the first slot in the application’s
DLL import table, the Coign runtime always loads and
executes before the application or any of its DLLs. At
load time, the Coign runtime inserts binary instrumen-
tation into the images of system libraries in the appli-
cation’s address space. The instrumentation traps all
component instantiation requests in the COM library.

The instrumented binary is run through a set of pro-
filing scenarios. Because the binary modifications are
transparent to the user (and to the application itself),
the instrumented binary behaves identically to the
original application. The instrumentation gathers pro-
filing information in the background while the user
controls the application. The only visible effect of
profiling is a small degradation in application per-
formance (of up to 85%). For advanced profiling, sce-
narios can be driven by an automated testing tool, such
as Visual Test [2].

During profiling, the Coign instrumentation sum-
marizes inter-component communication within the
application. Every inter-component call is executed
via a COM interface. Coign intercepts these interface
calls (by instrumenting all component interfaces) and
measures the amount of data communicated. The in-
strumentation measures the number of bytes that
would be transferred from one machine to another if
the two communicating components were distributed.
It does so by invoking portions of the DCOM code,
including interface proxies and stubs, within the appli-
cation’s address space. Coign measurement follows
precisely the deep-copy semantics of DCOM. After
quantifying communication (by number and size of
messages), Coign compresses and summarizes the data
online. Consequently, the overhead for storing com-
munication information does not grow linearly with
execution time. If desired, the application may be run
through profiling scenarios for days or even weeks to
more accurately track user usage patterns.

At the end of a profiling execution, Coign writes
the inter-component communication profiles to a file
for later analysis. In addition to information about the
number and size of messages and components in the
application, the profile log also contains information to
classify components and to determine component loca-
tion constraints. Log files from multiple profiling sce-
narios may be combined and summarized during later
analysis. Alternatively, at the end of each profiling
scenario, information from the log file may be com-
bined into the configuration record in the application
binary. The latter approach uses less storage because
summary information in the configuration record ac-
cumulates communication from similar interface calls
into a single entry.

The profile analysis engine combines component
communication profiles and component location con-
straints to create an abstract inter-component commu-
nication (ICC) graph of the application. Location
constraints can be acquired from the programmer,
from analysis of component communication records,
and from application binaries. For client-server
distributions, the analysis engine performs static
analysis on component binaries to determine which
Windows APIs are called by each component.
Components that access a set of known GUI or storage
APIs are placed on the client or server respectively.
Other components are distributed based on
communication analysis. The abstract ICC graph is combined with a net-
work profile to create a concrete graph of potential
communication time on the network. The network
profiler creates a network profile through statistically
sampling of communication time for a representative
set of DCOM messages.

Coign employs the lift-to-front minimum-cut graph-
cutting algorithm [9] to choose a distribution with
minimal communication time. In the future, the con-
crete graph could be constructed and cut at application
execution time, thus introducing the potential to pro-
duce a new distribution tailored to current network
characteristics for each execution.

The lift-to-front min-cut algorithm, in our current
implementation, can produce only two-machine, cli-
ent-server applications. The problem of partitioning
applications across three or more machines is provably
NP-hard [13]. Numerous heuristic algorithms exist for
multi-way graph cutting [7, 10, 12, 33, 38]. To more
accurately evaluate the rest of the system, we restrict
ourselves to an exact, two-way algorithm for client-
server computing.

After analysis, the application’s ICC graph and
component classification data (to be described later)
are written into the configuration record in the applica-
tion binary. The configuration record is also modified
to remove the profiling instrumentation. In its place, a
lightweight version of the instrumentation will be
loaded to realize (enforce) the distribution chosen by
the graph-cutting algorithm.

3. Coign Runtime Description

The Coign runtime is composed of a small collec-
tion of replaceable COM components (Figure 2). The
most important components are the Coign Runtime
Executive (RTE), the interface informer, the informa-
tion logger, the instance classifier, and the component
factory. The RTE provides low-level services to other
components in the Coign runtime. The interface in-

 4

former walks the parameters of interface function calls
and identifies the location and static type of compo-
nent interfaces. The information logger records data
necessary for post-profiling analysis. The instance
classifier identifies component instances with similar
communication profiles across multiple program exe-
cutions. The component factory decides where com-
ponent instantiation requests should be fulfilled and
relocates instantiation as needed to produce a chosen
distribution. The component structure of the Coign
runtime facilitates its use for a wide variety of applica-
tion analysis and adaptation.

Coign Runtime Executive (RTE)

Interface
Informer

Component
Classifier

Information
 Logger

Component
Factory

Figure 2. Coign Runtime Architecture.
Runtime components can be replaced to produce lightweight
instrumentation, to log component activity, or to remote
component instantiation.

3.1. Runtime Executive.

The Coign Runtime Executive (RTE) provides low-
level services to other components in the Coign run-
time. Services provided by the RTE include:

Interception of component instantiation requests.
The RTE traps all component instantiation requests
made by the application to the COM runtime. Instan-
tiation requests are trapped using inline redirection
(similar to the techniques pioneered by the Parasight
[1] parallel debugger)1. The RTE invokes the instance
classifier to identify the about-to-be-instantiated com-
ponent. The RTE then invokes the component factory,
which fulfills the instantiation request at the appropri-
ate location based on instance classification.

Interface wrapping. The RTE “wraps” all COM
interfaces by replacing each component interface
pointer with a pointer to a Coign instrumented inter-
face, which in turn forwards incoming calls through
the original interface pointer. Once an interface is
wrapped, the Coign runtime can trap all calls across
the interface. An interface is wrapped using static
information from the interface informer. The RTE
also invokes the interface informer to process the pa-
rameters of interface function calls.

1Our inline redirection and binary-rewriting tools for Win-
dows NT are available separately [21].

Address space and private stack management.
The RTE tracks all binaries (.DLL and .EXE files)
loaded into the application’s address space. The RTE
also provides distributed, thread-local stack storage for
contextual information across interface calls.

Access to configuration information stored in the
application binary. The RTE provides a set of func-
tions for accessing information in the configuration
record created by the binary rewriter. The RTE, in
cooperation with the information logger, provides
other Coign components with persistent storage
through the configuration record.

3.2. Interface Informer.

The interface informer manages static interface
metadata. Other Coign components use data from the
interface informer to determine the static type of COM
interfaces, and walk input and output parameters of
interface function calls. The interface informer also
aids the RTE to track the owner component for each
interface [20].

The current Coign runtime contains two interface
informers. The first interface informer operates during
scenario-based profiling. The profiling informer uses
format strings and interface marshaling code generated
by the Microsoft IDL compiler [31] to analyze all
function call parameters and precisely measure inter-
component communication. Profiling currently adds
up to 85% to application execution time (although in
most cases the overhead is closer to 45%). Most of
this overhead is directly attributable to the interface
informer.

The second interface informer remains in the appli-
cation after profiling to produce the distributed appli-
cation. The distribution informer only examines
function call parameters enough to identify interface
pointers. Due to aggressive optimization of static in-
terface metadata, the distribution informer imposes an
overhead on execution time of less than 3%.

3.3. Information Logger

The information logger summarizes and records
data for distributed partitioning analysis. Under direc-
tion of the RTE, Coign components pass information
about application events to the information logger.
Events include component instantiations, component
destructions, interface instantiations, interface destruc-
tions, and interface calls. The logger is free to process
the events as needed. Depending on the logger’s im-
plementation, it may ignore the events, write the
events to a log file on disk, or accumulate information
about the events into in-memory data structures.

 5

The current implementation of the Coign runtime
contains three separate information loggers. The pro-
filing logger, summarizes data describing inter-
component communication into in-memory data struc-
tures. At the end of execution, these data structures
are written to disk for post-profiling analysis. The
profiling logger reduces memory overhead by summa-
rizing data for messages in common size ranges (suc-
cessive ranges grow in size exponentially).
Summarization preserves network independence while
significantly lowering storage requirements for com-
munication profiles. The event logger creates detailed
traces of all component-related events during applica-
tion execution. A colleague has used logs from the
event logger to drive detailed application simulations.
During distributed execution, the null logger ignores
all event log requests.

3.4. Instance classifier

The instance classifier identifies component in-
stances with similar communication profiles across
separate executions of an application. Automatic dis-
tributed partitioning depends on the accurate predic-
tion of instance communication behavior. Accurate
prediction is very difficult for dynamic, commercial
application. The classifier groups instances with simi-
lar instantiation histories. The classifier operates on
the theory that two instances created under similar
circumstances will exhibit similar behavior (i.e. com-
municate equivalently with the same peers). Part of
the output of the profile analysis engine is a map of
instance classifications to computers in the network.

Coign currently includes seven instance classifiers
although only one, the internal-function called-by
classifier, is typically used. The best classifiers group
instances of the same static type created from the same
stack back-trace (call chain). Figure 3 illustrates each
classifier.

The incremental classifier assigns each instance to
a different classification based on its order of instantia-
tion during application execution. Serving as a straw
man for comparison, the incremental classifier can be
expected to perform poorly on commercial, input-
driven applications.

The procedure called-by (PCB) classifier, similar
to Barrett and Zorn’s classifier for lifetime prediction
in memory allocators [3], groups instances with similar
static type and instantiation stack back-trace. When
walking the stack, the PCB classifier does not differen-
tiate between individual instances of the same compo-
nent class.

The static-type (ST) classifier groups instances with
common component class (static type). The ST classi-

fier cannot differentiate between instances of the same
class and must therefore assign all instances to the
same machine during distribution. This is a debilitat-
ing feature for all of the applications we examined.

Program Control Flow:

A::V() { ... a->W() ... }
A::W() { ... b1->X() ... }
B::X() { ... b2->Y() ... }
B::Y() { ... c->Z() ... }
C::Z() { ... CoCreateInstance(D) }

 where:
a is an instance of component class A,
b1 and b2 are instances of component class B,
c is an instance of component class C,

Classifier Descriptors:

Incremental Classifier:
[10] (for 10th call to CoCreateInstance)

Procedure Called-By (PCB) Classifier:
[C::Z, B::Y, B::X, A::W, A::V]

Static-Type (ST) Classifier:
[D]

Static-Type Called-By (STCB) Classifier:
[D, C, B, B, A]

Internal-Function Called-By (IFCB) Classifier:
[D, [c,Z], [b2,Y], [b1,X], [a,W], [a,V]]

Entry-Point Called-By (EPCB) Classifier:
[D, [c,Z], [b2,Y], [b1,X], [a,V]]

 Instantiated-By (IB) Classifier:
[D, c]

Figure 3. Summary of Classifiers.
Each instance classifier creates a descriptor at instantiation
time to uniquely identify groups of similar component in-
stances. Call-chain-based classifiers form a descriptor by
examining the execution call stack.

The static-type called-by (STCB) classifier groups
instances by component class and the component
classes of instances in the stack back-trace.

The internal-function called-by (IFCB) classifier
groups instances by their component class and the set
of function and instance-classification pairs in the
stack back-trace.

The entry-point called-by classifier groups in-
stances by their component class and the set of func-
tion and instance-classification pairs used to enter each
component instance on the stack back-trace.

The depth of the stack back-trace for the PCB,
STCB, IFCB, and EPCB classifiers can be tuned to
evaluate tradeoffs between accuracy and overhead.

The instantiated-by classifier groups instances by
their component class and their “parent” (the instance
classification from which they were instantiated). The

 6

instantiated-by classifier is functionally equivalent to
the IFCB classifier with a depth-1 stack back-trace.

3.5. Component Factory

The component factory produces a distributed ap-
plication by manipulating instance placement. Using
output from the instance classifier and the profile
analysis engine, the component factory moves each
component instantiation request to the appropriate
computer within the network. During distributed exe-
cution, a copy of the component factory is replicated
onto each machine. The component factories act as
peers. Each traps component instantiation requests on
its own machine, forwards requests to other machines
as appropriate, and fulfills instantiation requests des-
tined for its machine by invoking COM to create the
new component instance. The job of the component
factory is straightforward because the instance classi-
fier identifies components for remote placement and
DCOM handles message transport. Coign currently
contains a symbiotic pair of component factories.
Used simultaneously, the first factory handles commu-
nication with peer factories on remote machines while
the second factory interacts with the instance classifier
and the interface informer.

4. Experimental Results

Our experimental environment consists of a pair of
200 MHz Pentium PCs with 32MB of RAM, running
Windows NT 4.0 Service Pack 3. During distributed
experiments, the PCs were connected through an iso-
lated 10BaseT Ethernet with Intel EtherExpress Pro
cards.

4.1. Application and Scenario Suite

For our experiments, we use a suite of three exist-
ing applications built from COM components. The
applications employ between a dozen and 150 compo-
nent classes and range in size from approximate
40,000 to 1.8 million lines of source code. The appli-
cations apply a broad spectrum of COM implementa-
tion idioms. We believe that these applications
represent a wide class of COM applications.

Microsoft PhotoDraw 2000 [32]. PhotoDraw is a
consumer application for manipulating digital images.
Taking input from high-resolution, color-rich sources
such as scanners and digital cameras, PhotoDraw pro-
duces output such as publications, greeting cards, or
collages. PhotoDraw includes tools for selecting a
subset of an image, applying a set of transforms to the
subset, and inserting the transformed subset into an-
other image. PhotoDraw was a non-distributed appli-

cation composed of approximately 112 COM
component classes in 1.8 million lines of C++ source
code.

Octarine. Octarine is a word-processing applica-
tion developed by another group at Microsoft Re-
search. Designed as a prototype to explore the limits
of component granularity, Octarine contains approxi-
mately 150 classes of components. Octarine’s compo-
nents range in granularity from less than 32 bytes to
several megabytes. Components in Octarine range in
functionality from user-interface buttons to generic
object dictionaries to sheet music editors. Octarine
manipulates three major types of documents: word-
processing, sheet music, and table. Fragments of any
of the three document types can be combined into a
single document. Octarine is composed of approxi-
mately 120,000 lines of C and 500 lines of x86-
assembly source code.

Scenario Description

o_newdoc Create text document.
o_newmus Create music document.
o_newtbl Create table document.
o_oldtb0 View 5-page table.
o_oldtb3 View 150-page table.
o_oldwp0 View 5-page text document.
o_oldwp3 View 13-page text document.
o_oldwp7 View 208-page text document.
o_oldbth View 5-page text doc. with tables.
o_offtb3 o_newdoc then o_oldtb3.
o_offwp7 o_newdoc then o_oldwp3.

O
ct

ar
in

e

o_bigone All of the above in one scenario.
p_newdoc Create new image.
p_newmsr Create new composition.
p_oldcur View line drawing.
p_oldmsr View composition.
p_offcur p_newdoc then p_oldcur.
p_offmsr p_newdoc then p_oldmsr.P

ho
to

D
ra

w

p_bigone All of the above in one scenario.
b_vueone View records for an employee.
b_addone Add new employee.
b_delone Delete employee.

B
en

ef
it

s

b_bigone All of the above in one scenario.

Table 1. Profiling Scenarios.
Profiling scenarios represent major usage scenarios and in-
stantiate most component classes in each application.

Corporate Benefits Sample [30]. The Corporate
Benefits Sample is an application distributed by the
Microsoft Developer Network to demonstrate the use
of COM to create 3-tier client-server applications.
The Corporate Benefits Sample provides windows for
modifying, querying, and creating graphical reports on
a database of employees and their corporate human-
resource benefits. The entire application contains two
separate client front-ends and four alternative middle-

 7

tier servers. For our purposes, we use a client front-
end consisting of approximately 5,300 lines of Visual
Basic code and a middle tier server of approximately
32,000 lines of C++ source code with approximately
one dozen component classes. Benefits leverages
commercial components (distributed in binary form
only) such as the graphing component from Microsoft
Office [29].

Each of the applications in our test suite is dynamic
and user-driven. The number and type of components
instantiated in a given execution is determined by user
input during execution. For example, a scenario in
which a user inserts a sheet music component into an
Octarine document will instantiate different compo-
nents than a scenario in which the user inserts a table
component into the document.

To explore the effectiveness of automatic distribu-
tion partitioning on component-based applications, our
experimental suite consists of several different scenar-
ios for each application. Scenarios range from simple
to complex. The intent of the scenarios is to represent
realistic usage while fully exercising the components
found in the application. Table 1 describes each sce-
nario.

4.2. Instance Classification

As described in Section 3.4, the instance classifier
must correlate information from profiling with instan-
tiation requests during distributed execution.

Choosing a metric to evaluate the accuracy of an
instance classifier is difficult because we must evalu-
ate how well a profile from one instance (or group of
instances) correlates to another instance. In the con-
text of automatic distributed partitioning, a profile and
an instance correlate if they have similar resource us-
age and similar communication behavior (i.e. similar
peers and peer-communication patterns).

To quantify communication behavior, we introduce
the notion of an instance communication vector. An
instance communication vector is an ordered tuple of n
real numbers (one for each component instance in the
application). Each number quantifies the communica-
tion time with another component instance (assuming
that the other instance is located remotely). The
communication vector can be augmented with addi-
tional dimensions representing various resources such
as memory and CPU cycles. We compare the correla-
tion between two communication vectors with the vec-
tor dot product operator. Two vectors with a dot-
product correlation of one have equivalent communi-
cation behavior (i.e. they communicate equivalently
with the same peers). Two vectors with a dot-product

correlation of zero share no common communication
behavior.

For automatic distributed partitioning, an instance
classifier should identify as many unique instance
classifications as possible in profiling scenarios in or-
der to preserve distribution granularity. An instance
classifier should also be reliable and stable; it should
correctly identify instances with similar communica-
tion profiles and instantiation contexts.

Instance
Classifier

P
ro

fi
le

d
C

la
ss

if
ic

at
io

ns

N
ew

 (b
i
g
o
n
e

)
C

la
ss

if
ic

at
io

ns

A
ve

. I
ns

ta
nc

es
 /

C
la

ss
if

ic
at

io
n

A
ve

ra
ge

C

or
re

la
ti

on

ncremental 1090 2561 1.0 0.225

rocedure Called-By 1262 0 2.9 0.766

tatic-Type 80 0 45.6 0.574
tatic-Type Called-By 713 0 5.1 0.809

nternal-Func. Called-By 1434 0 2.6 0.848
ntry-Point Called-By 1032 0 3.5 0.829

nstantiated-By 590 0 6.2 0.809

Table 2. Classifier Accuracy.
Classifiers with a higher number of classifications recognize
more unique component instances. Those with a higher av-
erage correlation are more accurate.

To evaluate the instance classifiers, we ran classifi-
ers through all of the scenarios except the bigone
scenarios for each application to create the instance
profiles. We then ran classifiers for each application
through the bigone scenarios. The bigone scenar-
ios are a synthesis of the other scenarios for the appli-
cation. Because all component instances should
correlate closely to prior scenarios, no new instance
classifications should result from the bigone sce-
nario. Table 2 lists the number of classifications iden-
tified by each classifier, the number of new
classification identified in the bigone scenario, the
average number of instances per classification, and the
average correlation between instance behavior and
chosen profile for the Octarine bigone scenario.
Table 3 lists the same values for IFCB classifier with
limited depth stack walks. (The called-by classifiers
in Table 2 walk the complete stack.)

Given only the component’s static type as context,
the ST classifier cannot distinguish instantiations of
the same component class used in radically different
contexts. The “straw man” classifier, the incremental
classifier, fails to correlate instances in the bigone
scenarios with profiles from the earlier scenarios. It is
strictly limited by the order of application execution
and user input. Note that incremental classifier would

 8

perform well for static applications, but fails miserably
for dynamic, commercial applications.

The call-chain-based instance classifiers (PCB,
STCB, IFCB, EPCB, and IB) preserve more distribu-
tion granularity because they take into account contex-
tual information when classifying an instantiation.
The STCB, IFCB and EPCB classifiers are similar in
accuracy. They differ however, in the number of
unique component classifications they identify. As
would be expected, the IFCB classifier, which uses the
largest amount of contextual information, identifies
the largest number of classifications.

Fundamentally, our instance classifiers are limited
in their accuracy by the amount of contextual informa-
tion available before a component is instantiated.
They cannot differentiate two instances with identical
instantiation context, but vastly different communica-
tion profiles. However, experimental evidence sug-
gests the STCB, IFCB, EPCB, and IB classifiers
preserve distribution granularity and correlate profiles
with sufficient accuracy to enable automatic distrib-
uted partitioning of commercial applications.

Internal-
Function
Called-By
Classifier

Stack-Walk
Depth

P
ro

fi
le

d
C

la
ss

if
ic

at
io

ns

A
ve

. I
ns

ta
nc

es
 /

C
la

ss
if

ic
at

io
n

A
ve

ra
ge

C
or

re
la

ti
on

1 590 6.2 0.809
2 977 3.7 0.829

3 1184 3.1 0.848
4 1383 2.6 0.848
8 1434 2.6 0.848
16 1434 2.6 0.848

Complete 1434 2.6 0.848

Table 3. Accuracy as a Function of Stack Depth.
Both classifier accuracy (average correlation) and number of
classifications increase with the depth of the stack walked.

4.3. Distributions

Because Coign makes distribution decisions at
component boundaries, it success depends on pro-
grammers to build applications with significant num-
bers of components. To evaluate Coign’s
effectiveness in automatically creating distributed ap-
plications, we ran each application in the test suite
through a simple profiling scenario consisting of the
simplest practical usage of the application. After pro-
filing, Coign partitioned each application between a
client and server of equal compute power on an iso-

lated 10BaseT Ethernet network. For simplicity, we
assume there is no contention for the server.

Figure 4 plots the distribution of PhotoDraw. In the
profiling scenario, PhotoDraw loads a 3MB graphical
composition from storage, displays the image, and
exits. Of 295 components in the application, eight are
placed on the server. One of the components placed
on the server reads the document file. The other seven
components are high-level property sets created di-
rectly from data in the file; with larger input sets than
output sets, they are placed on the server to reduce
communication.

As can be seen in Figure 4, PhotoDraw contains
many significant interfaces (almost 50) that can not be
distributed (shown as solid black lines). The most
important non-distributable interfaces connect the
sprite cache components (on the bottom and right)
with user interface components (on the top left). Each
sprite cache manages the pixels for a hierarchical sub-
set of an image in the composition. Most of the data
passed between sprite caches moves through shared
memory regions. Pointers to the shared-memory re-
gions are passed opaquely through non-distributable
interfaces.

��*
8,

$S
S%D
VH

6\
VWH
P

3,�
:R
UNS
DQH
&WUO
�&OD
VV

3,�$
GG2
Q0J
U�&O
DVV

3,�:
RUN
SDQ
H0
JU�&
ODVV

3,�'
HFR
$SS
�&OD
VV

3,�&
RP
SRV
LWLRQ
V�&
ODVV

3,�'
HFR
:LQ
GRZ
�&OD
VV

3,�:
LQGR
ZV�
&OD
VV

3,�'
HFR
3ULQ
W2S
W�&O
DVV

3,�6
FDQ
8,�&
ODVV

3,�'
HFR
$SS
2S
W�&O
DVV

3,�&
DPH
UD8
,�&O
DVV

3,�2
WKHU

8,�&
ODVV

3,�&
R3D

LQW6
WUDWH

J\(
QXP

5JQ

3,�&
R3D

LQW6
WUDWH

J\(
QXP

5JQ

3,�,
PDJ

H

3,�6
FDQ

8,�&
ODVV

3,�&
DPH

UD8
,�&O

DVV

3,�2
WKH
U8,�

&OD
VV

3,�6
FDQ

8,�&
ODVV

3,�&
DPH

UD8
,�&O

DVV

)LOH
0RQ

LNHU '
RF
)L
OH

3,�(
YHQ

W�0D
QDJ

HU

3,�6
SULWH

&DF
KH2

/(

3,�6
SULW

H&D
FKH

2/(
3
,�3
UR
S6
H
W

3,�6
SULW

H&D
FKH

2/(

3,�6
SULWH

&DF
KH2

/(
3
,�3
UR
S6
HW

3,�6
SULWH

&DF
KH2

/(

3
,�6

SU
LWH

&
DF

K
H2

/
(3

,�3
UR
S6
HW

3
,�6

SU
LWH

&
DF

K
H2

/(

3
,�6

SU
LWH

&
DF

K
H2

/(

3
,�6

SU
LWH

&
DF

K
H2

/
(

3
,�
3
UR
S
6
H
W

3
,�6

SU
LWH

&
DF

K
H2

/(

3
,�3
UR
S
6
H
W

3
,�
3
UR
S
6
H
W

3
,�3
UR
S6
H
W

3
,�&

RP
SR

VL
WLR

Q
7U

DQ
VI

R
UP

3
,�3

UR
S6

HW

3
,�1

,)
9L

H
Z
2
/(

3
,�3

UR
S6

H
W

3
,�1

,)
9
LH

Z
2
/(

3,
�3

UR
S6

HW

3,
�1

,)
9
LHZ

2
/(

3,
�3

UR
S6

HW

3,�
$U

W)
[7

UD
QV

IRU
P

3,
�3

UR
S6

HW

3,
�1

,)
9L

HZ
2/

(

3,
�3

UR
S6

HW

'R
F)

LOH

3,
�3

UR
S6

HW

3,
�3

UR
S6

HW

3,�3UR
S6HW

3,�3UR
S6HW

3,�3URS
6HW

3,�3UR
S6HW

3,�3URS
6HW

3,�(YHQ
W�0DQD

JHU

3,�(YH
QW�0DQ

DJHU

3,�(YHQ
W�0DQD

JHU

3,�(YH
QW�0DQ

DJHU

3,�(YH
QW�0DQ

DJHU

3,�(YHQ
W�0DQD

JHU

3,�(YH
QW�0DQ

DJHU

3,�(YHQW�0DQDJHU
3,�(YHQW�0D

QDJHU
3,�(YHQW�0DQ

DJHU
3,�(YHQW�0DQDJHU
3,�(YHQW�0D

QDJHU
3,�(YHQW�0DQ

DJHU
3,�(YHQW�0D

QDJHU
3,�(YHQW�0DQDJHU
3,�(YHQW�0DQ

DJHU
3,�(YHQW�0D

QDJHU
3,�(YHQW�0DQ

DJHU
3,�(YHQW�0D

QDJHU
3,�(YHQW�0DQ

DJHU
3,�(YHQW�0DQDJHU 3,�(YHQW�0DQDJHU 3,�(YHQW�0DQDJHU 3,�(YHQW�0DQDJHU 3,�3URS6HW 3,�3URS6HW 3,�3URS6HW 3,�3URS6HW 3,�3URS6HW 3,�3URS6HW 3,�3URS6HW 3,�3URS6HW 3,�(YHQW�0DQDJHU 3,�(YHQW�0DQDJHU 3,�(YHQW�0DQDJHU 3,�(YHQW�0DQDJHU 3,�(YHQW�0DQDJHU 3,�(YHQW�0DQDJHU 3,�(YHQW�0DQDJHU 3,�(YHQW�0DQDJHU 3,�(YHQW�0DQDJHU 3,�(YHQW�0DQDJHU 3,�(YHQW�0DQDJHU 3,�(YHQW�0DQDJHU 3,�(YHQW�0DQDJHU 3,�(YHQW�0DQDJHU 3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU
3,�(YHQW�0DQDJHU
3,�(YHQW�0DQDJHU
3,�(YHQW�0DQDJHU
3,�(YHQW�0DQDJHU
3,�(YHQW�0DQDJHU
3,�(YHQW�0DQDJHU
3,�3URS6HW
3,�3URS6HW
3,�3URS6HW
3,�3URS6HW
3,�3URS6HW
3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�1,)9LHZ2/(

3,�3URS6HW

3,�6SULWH&DFKH2/(

3,�3URS6HW

3
,�&
RP
S
RVLWLRQ

7
UDQVIR
UP

3
,�3
UR
S6
H
W

3
,�1
,)
9
LH
Z
2
/(

3
,�3
URS
6
H
W

3
,�6
SULWH&
DFK
H2
/(

3
,�3
URS
6
H
W

3
,
�1
,
)
9
LH
Z
2
/
(

3
,
�3
UR
S
6
H
W

3
,
�6
S
ULWH
&
D
F
K
H
2

/
(

3
,
�3
UR
S
6
H
W

3
,
�1
,
)
9
LH
Z
2
/
(

3
,�3
U
R
S
6
H
W

3
,�
6
S
ULWH
&
D
F
K
H
2
/
(

3,�3URS6HW

3,�6SULWH&DFKH2/(

3,�3URS6HW

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�3URS6HW

3,�3URS6HW

3,�3URS6HW

3,�3URS6HW

3,�3URS6HW

3,�3URS6HW

3,�3URS6HW

3,�3URS6HW

3,�3URS6HW

3,�(YHQW�0DQDJHU

3,�'RPDLQ
3,�'RPDLQ
3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU

3 ,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU
3,�(YHQW�0DQDJHU
3,�(YHQW�0DQDJHU
3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU
3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU
3,�(YHQW�0DQDJHU

3,�(YHQW�0DQDJHU
3 ,�&R3DLQW6WUDWHJ\(QXP5JQ

)LOH0RQLNHU
)LOH0RQLNHU
3,�(YHQW�0DQDJHU
3,�(YHQW�0DQDJHU
3 ,�(YHQW�0DQDJHU
3,�(YHQW�0DQDJHU
3,�(YHQW�0DQDJHU
3,�(YHQW�0DQDJHU
3,�(YHQW�0DQDJHU
3 ,�1,)9LHZ2/(
3 ,�3URS6HW
3,�6 SULWH&DFKH2/(
3,�3 URS6HW
3,�&RPSRVLWLRQ7UDQVIR
3 ,�3URS6 HW
3 ,�1,)9LHZ2/(
3,�3 URS6HW
3 ,�6 SULWH&DFKH2/(
3 ,�3URS6HW
3 ,�1,)9LHZ2/(
3 ,�3 URS6 HW
3 , �6 SULWH&DFKH2/(
3, �3 URS6HW
3 ,�1,)9LHZ2/(
3 , �3URS6 HW
3 ,�6 SUL WH&DFKH2/(
3,�3 URS6 HW
3 , �6 SUL WH&DFKH2/(
3 ,�3URS6 HW3 ,�(YHQW�0DQDJHU3,�(YHQW�0DQDJH

U3,�(YHQW�0DQDJH
U3,�(YHQW�0DQDJHU3 ,�(YHQW�0DQDJH

U3,�(YHQW�0DQDJHU3 ,�(YHQW�0DQDJHU3,�(YHQW�0DQDJH
U3 ,�(YHQW�0DQDJHU3,�(YHQW�0DQDJH

U3 ,�(YHQW�0DQDJHU3,�(YHQW�
0DQDJHU3,�(YHQW�0
DQDJHU3,�(YHQW�

0DQDJHU3,�(YHQW�0
DQDJHU3,�(YHQW�0

DQDJHU3,�(YHQW�0
DQDJHU3 ,�(YHQW�0

DQDJHU3,�(YHQW�
0DQDJHU3,�(YHQW�

0DQDJHU3,�3URS6 H
W3,�3UR

S6HW3,�3UR
S6HW3,�3UR

S6HW3,�3UR
S6HW3,�3UR

S6HW3,�3UR
S6HW3,�3UR

S6HW3,�3UR
S6HW3,�(YH

QW�0DQ
DJHU

3,�(YH
QW�0DQ

DJHU

3,�(Y
HQW�0

DQDJ
HU

3,�(Y
HQW�0

DQDJH
U

3,�(Y
HQW�0

DQDJH
U

3,�(Y
HQW�0

DQDJH
U

3,�(Y
HQW�0

DQDJH
U

3,�(Y
HQW�0

DQDJH
U

3,�(Y
HQW�0

DQDJH
U

3,�(Y
HQW�0

DQDJH
U

3,�(
YHQW

�0DQ
DJHU

3,�(
YHQW
�0DQ

DJHU

3,�(
YHQW
�0DQ

DJH
U

3,�(
YHQW

�0DQ
DJHU

3,�(
YHQW
�0DQ

DJHU

3,�(
YHQW
�0DQ

DJHU

3,�(
YHQW
�0DQ

DJHU

3,�(
YHQW
�0DQ

DJH
U

3,�(
YHQW
�0DQ
DJH
U

)LOH0
RQLN
HU

�
�
6
WR
UD
J
H

= Component instances placed on Server.
Figure 4. PhotoDraw Distribution.
Of 295 components in the application, Coign places eight on
the server. Black lines represent non-distributable interfaces
between components. Gray lines represent distributable
interfaces.

While Coign can extract a functional distribution
from PhotoDraw, most of the distribution granularity
in the application is hidden by non-distributable inter-
faces. To enable other, potentially better distributions,
either the non-distributable interfaces in PhotoDraw
must be replaced with distributable IDL interfaces, or
Coign must be extended to support transparent migra-

 9

tion of shared memory regions; in essence leveraging
the features of software distributed-shared memory
[26].

��*
8,

$S
S%D
VH

6\
VWHP

2�'
RFX
PHQ
W

2�'
LFWLR
QDU
\

2�6
W\OH
�6K
HHW

2�,
QWH
JHU�
'LF
WLRQ
DU\

2�6
WRU\

2�&
RPS
RVLW
H�6
HTX
HQF
H

2�1
RWLI
LHU

2�6
W\OH
�0D
QDJ
HU

2�&
RPS
RXQ
G�3U
RSH
UWLHV

2�7
H[W�
3UR
SV

2�,Q
WHJH
U�'L
FWLR
QDU\

2�1
RWLIL
HU

2�3
DUDJ
UDSK
�3UR
SHUW
LHV

2�7
H[W�
3UR
SV

2�3
DUD
JUDS
K�3
URSH
UWLHV

2�7
H[W�
3UR
SV

2�6
W\OH
�0D
QDJ
HU

2�7
H[W�
3UR
SV

2�,Q
WHJH
U�'L
FWLR
QDU\

2�1
RWLIL
HU

2�1
RWLIL
HU

2�6
WRU\
2�&

RP
SRV
LWH�6

HTX
HQF
H

2�6
W\OH
�0D
QDJ
HU

2�&
RPS

RXQ
G�3
URSH

UWLHV

2�7
H[W�
3UR
SV

2�,Q
WHJH

U�'
LFWLR

QDU
\

2�1
RWLIL
HU

2�1
RWLIL
HU

2�3
DUD
JUDS

K�3
URSH

UWLHV

2�7
H[W�
3UR
SV

2�3
DUD
JUD
SK�3

URS
HUWLH

V

2�7
H[W�

3URS
V

2�6
W\OH�

0DQ
DJH

U

2�7
H[W�

3URS
V

2�,Q
WHJH

U�'L
FWLRQ

DU\

2�1
RWLILH

U

2�6
WRU\
2�&

RPS
RVLWH

�6HT
XHQ

FH

2�6
W\OH�

0DQ
DJH

U

2�&
RPS

RXQ
G�3U

RSH
UWLHV

2�7
H[W�

3URS
V

2�,Q
WHJH

U�'L
FWLRQ

DU\

2�1
RWLILH

U

2�1R
WLILHU

2�3D
UDJU

DSK�
3URS

HUWLH
V

2�7H
[W�3

URSV

2�3D
UDJUD

SK�3
URSH

UWLHV

2�7H
[W�3U

RSV

2�6W
\OH�0

DQDJ
HU

2�7H
[W�3U

RSV

2�,Q
WHJH

U�'LF
WLRQD

U\

2�1
RWLILH

U
2�'

LFWLRQ
DU\

2�3H
UVLVW

�+HOS
HU

'RF)
LOH
2�'L

FWLRQ
DU\

2�'L
FWLRQ

DU\

2�'L
FWLRQ

DU\

2�2/
(�&R

QWURO�
+HOSH

U

)LOH0
RQLNH

U

'RF
)LOH

2�8Q
LFRGH

2�8Q
LFRGH

2�1R
WLILHU

,WHP0
RQLNH

U

2�8Q
LFRGH

2�8Q
LFRGH

2�1R
WLILHU

,WHP0
RQLNH

U

2�8Q
LFRGH

2�8Q
LFRGH

2�1R
WLILHU

,WHP0
RQLNH

U

)LOH0
RQLNH

U

)LOH0
RQLNH

U

)LOH0
RQLNH

U

a&R*H
W,QVWDQ

FH)URP
)LOH

2�$FWLY
H�6HOH

FWLRQ

2�1RW
LILHU

)LOH0R
QLNHU

2�6ZL
WFKDEOH

�9LHZ

2�)RUP 2�8QN
QRZQ�

/LVW

2�)RUP
�%DFNG

URS�&R
QWUR

2�2/(
�&RQWUR

O�+HOSH
U

2�)RUP
�6LWH

2�&RQ
WURO�6LW

H
2�1RWL

ILHU
2�*DOO

H\�9LH
Z

2�6WDQ
GDUG�9

LHZ

2�)RUP 2�8QN
QRZQ�

/LVW

2�)RUP
�%DFNG

URS�&R

2�2/(
�&RQWUR

O�+HOSH

2�)RUP
�6LWH

2�&RQWURO�6LWH 2�1RWLILHU 2�2/(�&RQWUR
O�+H

2�)UDPH 2�7H[W�6HOHFW
LRQ

2�5DQJH�6HW 2�1RWLILHU 2�1RWLILHU 2�7H[W�.H\ER
DUG�

2�3URJ,'�0RQ
LN

)LOH0RQLNHU 2�$FWLYH�6HOH
F

,WHP0RQLNHU ,WHP0RQLNHU ,WHP0RQLNHU ,WHP0RQLNHU ,WHP0RQLNHU ,WHP0RQLNHU ,WHP0RQLNHU ,WHP0RQLNHU ,WHP0RQLNHU ,WHP0RQLNHU
,WHP0RQLNHU ,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU ,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU ,WHP0RQLNHU
,WHP0RQLNHU ,WHP0RQLNHU
,WHP0RQLNHU ,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU ,WHP0RQLNHU
,WHP0RQLNHU ,WHP0RQLNHU ,WHP0RQLNHU 2�3URJ,'�0RQLNHU ,WHP0RQLNHU ,WHP0RQLNHU ,WHP0RQLNHU ,WHP0RQLNHU ,WHP0RQLNHU 2�2/(�&RQWURO�+HOSHU

2�6FUROOEDU�&RQWURO
2�1RWLILHU 2�)RUP�6LWH 2�&RQWURO�6LWH 2�)RUP�6LWH 2�&RQWURO�6LWH 2�2/(�&RQWURO�+HOSHU

2�*DOOH\�/D\RXW 2�1RWLILHU 2�5DQJH�0RXVH�+DQGOHU
)LOH0RQLNHU
2�$FWLYH�6HOHFWLRQ
2�5XOHU 2�1RWLILHU
2�)RUP�6LWH
2�&RQWURO�6LWH
2�2/(�&RQWURO�+HOSHU

2�1RWLILHU
2�1RWLILHU
2�1RWLILHU
2�1RWLILHU 2�6WRU\�/D\RXW
2�1RWLILHU
2�)RUP�6LWH
2�&RQWURO�6LWH
2�*DOOH\�9LHZ
2�6WDQGDUG�9LHZ

2�)RUP
2�8QNQRZQ�/LVW

2�)RUP�%DFNGURS�&RQWURO

2�2/(�&RQWURO�+HOSHU

2�)RUP�6LWH
2�&RQWURO�6LWH

2�1RWLILHU
2�2/(�&RQWURO�+HOSHU

2�)UDPH
2�7H[W�6HOHFWLRQ

2�5DQJH�6HW

2�1RWLILHU
2�1RWLILHU
2�7H[W�.H\ERDUG�+DQGOHU

2�3URJ,'�0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP
0
RQLNHU

,WHP
0

RQLNHU

,WHP
0
RQLNHU

,WHP
0
RQ

LNHU

,WHP
0
RQLNHU

,WHP
0
RQLNHU

,WHP
0
RQLNHU

,WHP
0
RQLNHU

,WHP
0

RQLNHU

,WHP
0

RQLNHU

,WHP
0

RQLNHU

,WHP
0
RQLNHU

,WHP0
RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

2�3URJ,'�0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0
RQLNHU

2�2/(�&RQWURO�+HOSHU

2�6FUROOEDU�&RQWURO

2�1RWLILHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�)RUP�6LWH

2�&RQWURO�6LWH

2�2/(�&RQWURO�+HOSHU

2�*DOOH\�/D\RXW

2�1RWLILHU

2�5DQJH�0RXVH�+DQGOHU

2�5XOHU

2�1RWLILHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�2/(�&RQWURO�+HOSHU

)LOH0RQLNHU

2�$FWLYH�6HOHFWLRQ

2�)RUP�6LWH

2�&RQWURO�6LWH

2�$SSOLFDWLRQ�:LQGRZ

2�0',
2�)RUP
2�8QNQRZQ�/LVW

2�)RUP�%DFNGURS�&RQWURO

2�2/(�&RQWURO�+HOSHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�1RWLILHU

2�2/(�&RQWURO�+HOSHU

2�7RROEDU�'RFN

)LOH0RQLNHU

2�$FWLYH�6HOHFWLRQ

2�)RUP
2�8QNQRZQ�/LVW

2�)RUP�%DFNGURS�&RQWURO

2�2/(�&RQWURO�+HOSHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�1RWLILHU

2�)RUP
2�8QNQRZQ�/LVW

2�)RUP�%DFNGURS�&RQWURO

2�2/(�&RQWURO�+HOSHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�1RWLILHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�2/(�&RQWURO�+HOSHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�6WDQGDUG�0HQX

2�0HQX
2�6WULQJ�/LVW

2�8QNQRZQ�/LVW

2�3URJ,'�0RQLNHU

2�3URJ,'�0RQLNHU

2�0HQX
2�6WULQJ�/LVW

2�8QNQRZQ�/LVW

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU
,WHP0RQLNHU

,WHP0RQLNHU
,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU
2�3URJ,'�0RQLNHU

2�3URJ,'�0RQLNHU

2�0HQX
2�6WULQJ�/LVW
2�8QNQRZQ�/LVW

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
2�3URJ,'�0RQLNHU
2�3URJ,'�0RQLNHU
2�0HQX
2�6WULQJ�/LVW
2�8QNQRZQ�/LVW
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU,WHP0RQLNHU
2�3URJ,'�0RQLNHU
2�3URJ,'�0RQLNHU
2�0HQX2�6WULQJ�/LVW
2�8QNQRZQ�/LVW
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU,WHP0RQLNHU
2�3URJ,'�0RQLNHU
2�3URJ,'�0RQLNHU
2�0HQX2�6WULQJ�/LVW2�8QNQRZQ�/LVW,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU2�3 URJ,'�0RQLNHU2�3 URJ,'�0RQLNHU2�0HQX2�6 WULQJ�/LVW2�8QNQRZQ�/LVW,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU2�3URJ,'�0RQLN

HU2�3URJ,'�0RQLNH
U2�0HQX2�6WULQJ�/LVW2�8QNQRZQ�/LVW,WHP0RQLNHU2�3URJ,'�0RQLNH

U2�3URJ,'�0RQLN
HU2�0HQX2�6WULQJ�/LVW2�8QNQRZQ�/LVW2�2/(�&RQWURO�+
HOSHU2�:LQGRZ2�3DLQW2�:LQGRZ2�3DLQW2�1

RWLIL
HU

2�:
LQGR

Z
2�3

DLQW2�:
LQG
RZ

2�3
DLQ

W
2�1

RWLIL
HU

2�:
LQGR

Z
2�3

DLQ
W

2�:
LQGR

Z
2�3

DLQW2�1
RWLIL

HU
2�:

LQGR
Z

2�3
DLQW2�:
LQGR

Z
2�3

DLQ
W

2�:
LQGR

Z
2�3

DLQ
W2�:LQG
RZ2�3DLQ
W2�:LQG
RZ

2�3DLQ
W)LOH0R
QLNHU2�$FWLY
H�6HOH

FWLRQ

2�)RUP2�8QN
QRZQ�/

LVW
2�)RUP

�%DFNG
URS�&R

QWURO

2�2/(
�&RQWUR

O�+HOSH
U

2�)RUP
�6LWH2�&RQ

WURO�6LW
H

2�1RWL
ILHU2�/DE
HO�&RQ

WURO
2�)RUP

�6LWH
2�&R

QWURO�
6LWH

2�2/
(�&RQ

WURO�+
HOSHU

2�%X
WWRQ�&

RQWUR
O

2�)R
UP�6L

WH
2�&R

QWURO�
6LWH

2�2/
(�&RQ

WURO�+
HOSHU

2�&R
QWURO�

%LQGL
QJ

2�3UR
J,'�0

RQLNH
U

,WHP0
RQLNH

U
2�2/

(�&R
QWURO�+

HOSHU

2�)RU
P�6LWH

2�&R
QWURO�

6LWH

2�:
LQGR
Z

2�3D
LQW

2�:
LQGR
Z

2�3D
LQW

2�1R
WLILHU

2�:
LQGR
Z

2�3D
LQW

2�:
LQGR
Z

2�3D
LQW

2�)R
UP�6
LWH

2�&R
QWURO
�6LWH

2�2/
(�&R

QWURO
�+HOS

HU

2
�:
LQ
G
R
Z

2
�3
D
LQ
W

2
�:
LQ
G
R
Z

2
�3
D
LQ
W

2
�1
R
WL
ILH
U

2
�:
LQ
G
R
Z

2
�3
D
LQ
W

2
�:
LQ
GR
Z

2
�3
D
LQ
W

2
�1
R
WL
ILH
U

2
�:
LQ
G
RZ

2
�3
D
LQ
W

2
�:
LQ
G
R
Z

2
�3
D
LQ
W

2
�:
LQ
G
R
Z

2
�3
D
LQ
W

�
�
6
WR
UD
J
H

= Component instances placed on Server.
Figure 5. Octarine Distribution.
Of 458 components in the application, Coign places two on
the server. Most of the non-distributable interfaces in Oc-
tarine connect elements of the GUI.

Figure 5 shows the distribution of the Octarine
word processor. In this scenario, Octarine loads and
displays the first page of a 35-page, text-only docu-
ment. Coign places only two components of 458 on
the server. One of the components reads the document
from storage; the other provides information about the
properties of the text to the rest of the application.
While Figure 5 contains many non-distributable inter-
faces, these interfaces connect components of the GUI,
and are not directly related to the document file.
Unlike the other applications in our test suite, Oc-
tarine’s GUI is composed of literally hundreds of
components. It is highly unlikely that these GUI com-
ponents would ever be located on the server. Direct
document-related processing for this scenario is lim-
ited to just 24 components.

Figure 6 contains the distribution for the MSDN
Corporate Benefits Sample. As shipped, Benefits can
be distributed as either a 2-tier or a 3-tier client-server
application. The 2-tier implementation places the
Visual Basic front-end and the business-logic compo-
nents on the client and the database, accessed through
ODBC [28], on the server. The 3-tier implementation
places the front-end on the client, the business-logic on
the middle tier, and the database on the server. Coign
cannot analyze proprietary connections between the
ODBC driver and the database server. We therefore
focus our analysis on the distribution of components in

the front end and middle tier of the 3-tier implementa-
tion.

��*
8,

$S
S%D
VH

6\
VWHP

%HQHILWV�$GPLQ�&ODVV��9HU����� '$2�'%(QJLQH���

'RF
)LOH

9LVX
DO�%
DVLF
�6LG
H%D
U�&R
QW

6WDQ
GDUG
�)RQ
W

6WDQ
GDUG
�)RQ
W

&KD
UW�&
RQWU
RO��Y
HUV
LRQ�
���

6WD
WXV%
DU�&
RQWU
RO��Y
HUVL
RQ��
���

,PD
JH/
LVW�&
RQWU
RO��Y
HUVL
RQ��
����

%HQ
HILWV

�/LV
W�%H

QHIL
W�&OD

VV��9
HU��

%HQ
HILWV

�%HQ
HILW�

&ODV
V��9

HU��
���

%HQ
HILWV

�%H
QHILW

�&OD
VV��9

HU��
���

%HQ
HILWV

�%H
QHILW

�&OD
VV��

9HU
����

�

%HQ
HILWV

�%HQ
HILW�&

ODVV
��9H

U����
�

%HQ
HILWV

�%HQ
HILW�&

ODVV
��9H

U����
�

%HQ
HILWV

�%HQ
HILW�&

ODVV
��9HU

����
�

%HQH
ILWV�%

HQHI
LW�&O

DVV�
�9HU

�����

%HQ
HILWV

�%HQ
HILW�&

ODVV
��9H

U����
�

%HQ
HILWV

�%HQ
HILW�&

ODVV
��9H

U����
�

%HQ
HILWV

�%HQ
HILW�&

ODVV
��9H

U����
�

%HQH
ILWV�/

LVW�&
ODVV�

�9HU
�����

%HQH
ILWV�/

LVW�&
ODVV

��9HU
�����

%HQ
HILWV�

/LVW�&
ODVV

��9H
U����

�

%HQ
HILWV�

/LVW�
&ODV

V��9
HU���

��

%HQH
ILWV�/

LVW�&
ODVV�

�9HU
�����

%HQH
ILWV�/

LVW�&
ODVV�

�9HU
�����

%HQH
ILWV�/L

VW�&OD
VV��9H

U�����

%HQHI
LWV�/LV

W�&ODV
V��9HU

�����

%HQH
ILWV�/L

VW�&OD
VV��9H

U�����

%HQHI
LWV�/LV

W�&ODV
V��9H

U�����

%HQHI
LWV�/LV

W�&ODV
V��9H

U�����

%HQH
ILWV�/LV

W�&ODV
V��9H

U�����

%HQHI
LWV�/LV

W�&ODV
V��9H

U�����

%HQHILWV
�/LVW�&OD

VV��9HU�
����

%HQHILWV
�/LVW�&OD

VV��9HU�
����

%HQHILWV
�/LVW�&OD

VV��9HU�
����

%HQHILWV
�/LVW�&OD

VV��9HU�
����

%HQHILWV
�/LVW�&OD

VV��9HU�
����

%HQHILWV
�/LVW�&OD

VV��9HU�
����

%HQHILWV
�/LVW�&OD

VV��9HU�
����

%HQHILWV
�/LVW�&OD

VV��9HU�
����

%HQHILWV�/LVW�&ODVV��9HU�����
%HQHILWV�/LVW�&ODVV��9HU�����
%HQHILWV�/LVW�&ODVV��9HU�����
%HQHILWV�/LVW�&ODVV��9HU�����
%HQHILWV�/LVW�&ODVV��9HU�����
%HQHILWV�/LVW�&ODVV��9HU�����
%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�%
HQHILW�&

ODVV��9H
U�����

%HQHILWV�/LVW�&ODVV��9HU�����
%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�(PSOR\HH�&ODVV��9HU�����

%HQHILWV�(PSOR\HH�&ODVV��9HU�����

%HQHILWV�(PSOR\HH�&ODVV��9HU�����

%HQHILWV�(PSOR\HH�&ODVV��9HU�����

%HQHILWV�(PSOR\HH�&ODVV��9HU�����

%HQHILWV�(PSOR\HH�&ODVV��9HU�����

%HQHILWV�(PSOR\HH�&ODVV��9HU�����

%HQHILWV�(PSOR\HH�&ODVV��9HU�����

%HQHILWV�(PSOR\HH�&ODVV��9HU�����

%HQHILWV�(PSOR\
HH�&ODVV��9HU��

���

%HQHILWV�(PSOR\HH�&ODVV��9HU�����

%HQHILWV�/LVW�%DQN�&ODVV��9HU�����

%HQHILWV�%DQN�&ODVV��9HU�����

%HQHILWV�%DQN�&ODVV��9HU�����

%HQHILWV�%DQN�&ODVV��9HU�����

%HQHILWV�%DQN�&
ODVV��9HU�����

%HQHILWV�%DQN�&ODVV��9HU�����

%HQHILWV�%DQN�&ODVV��9HU�����

%HQHILWV�%DQN�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&O
DVV��9HU�����

%HQHILWV�/LVW�&O
DVV��9HU�����

%HQHILWV�/LVW�&OD
VV��9HU�����

%HQHILWV�/LVW�&O
DVV��9HU�����

%HQHILWV�/LVW�&OD
VV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�'HSHQGDQW�&ODVV��9HU�����

%HQHILWV�/LVW�%HQHILW�/LQN�&ODVV��9HU�����

%HQHILWV�%HQHILW�/LQN�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�'HSHQGDQW�&ODVV��9HU�����

%HQHILWV�'HSHQGDQW�&ODVV��9HU�����

%HQHILWV�'HSHQGDQW�&ODVV��9HU�����

%HQHILWV�/LVW�%HQHILW�/LQN�&ODVV��9HU�����

%HQHILWV�%HQHILW�/LQN�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�'HSHQGDQW�&ODVV��9HU�����

%HQHILWV�/LVW�%HQHILW�/LQN�&ODVV��9HU�����

%HQHILWV�%HQHILW�/LQN�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�'HSHQGDQW�&ODVV��9HU�����

%HQHILWV�/LVW�%HQHILW�/LQN�&ODVV��9HU�����

%HQHILWV�%HQHILW�/LQN�&ODVV��9HU�����

%HQHILWV�%HQHILW�/LQN�&ODVV��9HU�����

%HQHILWV�%HQHILW�/LQN�&ODVV��9HU�����

%HQHILWV�%HQHILW�/LQN�&ODVV��9HU�����

%HQHILWV�%HQHILW�/LQN�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV�/LVW�'HSHQGDQW�&ODVV��9HU�����

%HQHILWV�'HSHQGDQW�&ODVV��9HU�����

%HQHILWV�'HSHQGDQW�&ODVV��9HU�����

%HQHILWV�'HSHQGDQW�&ODVV��9HU�����

%HQHILWV�/LVW�%HQHILW�/LQN�&ODVV��9HU�����

%HQHILWV�%HQHILW�/LQN�&ODVV��9HU�����
%HQHILWV�%HQHILW�/LQN�&ODVV��9HU�����

%HQHILWV�%HQHILW�/LQN�&ODVV��9HU�����

%HQHILWV�%HQHILW�/LQN�&ODVV��9HU�����

%HQHILWV�%HQHILW�/LQN�&ODVV��9HU�����
%HQHILWV�/LVW�&ODVV��9HU�����
%HQHILWV�/LVW�&ODVV��9HU�����
%HQHILWV�/LVW�'HSHQGDQW�&ODVV��9HU��%HQHILWV�'HSHQGDQW�&ODVV��9HU�����%HQHILWV�/LVW�%HQHILW�/LQN�&ODVV��9HU�%HQHILWV�/LVW�&ODVV��9HU�����%HQHILWV�/LVW�&ODVV��9HU�����%HQHILWV�/LVW�'HSHQGDQW�&ODVV��9HU���%HQHILWV�'HSHQGDQW�&ODVV��9HU�����%HQHILWV�/LVW�%HQHILW�/LQN�&ODVV��9HU���%HQHILWV�/LVW�&ODVV��9HU�����%HQHILWV�/LVW�&ODVV�

�9HU�����%HQHILWV�/LVW�'HSHQG
DQW�&ODVV��9HU�����%HQHILWV�/LVW�%HQHILW�
/LQN�&ODVV��9HU�����

%HQHILWV�/LVW�&OD
VV��9HU�����

%HQHILWV�/LVW�&ODVV��9HU����� %HQHILWV�/LVW�'HSHQGDQW�&ODVV��

%HQHILWV�'HSHQGDQW�
&ODVV��9HU�����%HQHILWV�'HSHQGDQW�

&ODVV��9HU�����%HQHILWV�'HSHQGDQW
�&ODVV��9HU�����

%HQHILWV�'HSHQGDQW�&ODVV��9HU�

%HQHILWV�'HSHQGDQW
�&ODVV��9HU�����

%HQHILWV�/LVW�%HQHILW�/LQN�&ODVV��

%HQHILWV�/LVW�&ODVV�
�9HU�����%HQHILWV�/LVW�&ODVV��
9HU�����%HQHILWV�/L

VW�'HSHQG
DQW�&ODVV��

9HU�����

%HQHILWV�'
HSHQGDQW�

&ODVV��9HU
�����

%HQHILWV�/L
VW�%HQHILW�/

LQN�&ODVV��
9HU�����

%HQHILWV�/L
VW�&ODVV��9

HU�����
%HQHILWV�/

LVW�&ODVV��9
HU�����

%HQHILWV�/L
VW�(PSOR\

HH�&ODVV��9
HU�����

%HQHILWV�/
LVW�&ODVV��9

HU�����
%HQHILWV

�/LVW�&OD
VV��9HU

�����

%HQHILW
V�/LVW�(

PSOR\H
H�&ODVV

��9HU���
��

%HQHILW
V�/LVW�&

ODVV��9
HU�����

%HQHILW
V�/LVW�&

ODVV��9
HU�����

%HQHILW
V�/LVW�(

PSOR\H
H�&ODVV

��9HU���
��

%HQHILWV�/LVW�&ODVV��9HU�����

%HQHILWV
�/LVW�&O

DVV��9H
U�����

%HQHILWV�/LVW�(PSOR\HH�&ODVV��9H�

%HQH
ILWV�/L

VW�&OD
VV��9

HU����
�

%HQH
ILWV�/L

VW�&OD
VV��9

HU����
�

%HQH
ILWV�/L

VW�(P
SOR\H

H�&OD
VV��9H

U�����

%HQH
ILWV�/L

VW�&OD
VV��9

HU����
�

%HQH
ILWV�/L

VW�&OD
VV��9H

U�����

%HQH
ILWV�/L

VW�(P
SOR\H

H�&OD
VV��9

HU����
�

%HQH
ILWV�/
LVW�&O

DVV��
9HU��

���

%HQH
ILWV�/L

VW�&OD
VV��9

HU����
�

%HQH
ILWV�/L

VW�(P
SOR\H

H�&OD
VV��9

HU����
�

%HQH
ILWV�/

LVW�&O
DVV��

9HU��
���

%HQH
ILWV�/
LVW�&O

DVV��
9HU��

���

%HQH
ILWV�/
LVW�&
ODVV�
�9HU
�����

%HQ
HILWV�
/LVW�&
ODVV�
�9HU
�����

%HQ
HILWV�
/LVW�&
ODVV�
�9HU
�����

%HQH
ILWV�/
LVW�&
ODVV�
�9HU�
����

%HQHILWV�/LVW�&ODVV��9HU�����

%HQH
ILWV�/
LVW�&
ODVV�
�9HU
�����

%HQ
HILWV
�/LVW
�&OD
VV��9
HU���
��

%HQH
ILWV�/
LVW�&
ODVV
��9H
U����
�

��6
WRUD
JH

= Component instances placed on Server.
Figure 6. Corporate Benefits Distribution.
Of 196 components in the client and middle tier, Coign
places 135 of the components on the middle tier where the
programmer placed 187.

Coign analysis shows that application performance
can be improved by moving some of the middle-tier
components into the client. The distribution chosen by
Coign is quite surprising. Of 196 components in the
client and middle tier, Coign places 135 on the middle
tier versus 187 chosen by the programmer. The new
distribution reduces communication by 35%.

The intuition behind the new distribution is that
many of the middle-tier components cache results for
the client. Coign moves the caching components, but
not the business-logic itself, from the middle-tier to
the client. Although not used in this analysis, the pro-
grammer can place two kinds of explicit location con-
straints on components to guarantee data integrity and
security requirements. Absolute constraints explicitly
force an instance to a designated machine. Pair-wise
constraints force the co-location of two component
instances.

The programmer’s distribution is a result of two de-
sign decisions. First, the middle tier represents a con-
ceptually clean separation of business logic from the
other pieces of the application. Second, the front-end
is written in Visual Basic, an extremely popular lan-
guage for rapid development of GUI applications,
while the business logic is written in C++. It would be
awkward for the programmer to create the distribution
easily created by Coign.

The Corporate Benefits Sample demonstrates that
Coign can improve the distribution of applications
designed by experienced client-server programmers.
In addition to direct program decomposition, Coign

 10

can also selectively enable per-interface caching (as
appropriate) through COM’s semi-custom marshaling
mechanism.

4.4. Changing Scenarios and Distributions

The simple scenarios in the previous section dem-
onstrate that Coign can automatically choose a parti-
tion and distribute an application. The Benefits
example notwithstanding, one could argue that an ex-
perienced programmer with appropriate tools could
partition the application at least as well manually.
Unfortunately, a programmer’s best-effort manual dis-
tribution is static; it cannot readily adapt to changes in
network performance or user-driven usage patterns. In
the realm of changing environments, Coign has a dis-
tinct advantage as it can repartition and distribute the
application arbitrarily often. In the limit, Coign can
create a new distributed version of the application for
each execution.

��*
8,

$S
S%D
VH

6\
VWHP

2�'
RFX
PHQ
W

2�'
LFWLR
QDU
\

2�6
W\OH
�6K
HHW

2�,Q
WHJ
HU�'
LFWLR
QDU
\

2�6
WRU\

2�&
RPS
RVLW
H�6
HTX
HQF
H

2�1
RWLIL
HU

2�6
W\OH
�0D
QDJ
HU

2�&
RPS
RXQ
G�3
URSH
UWLHV

2�7
H[W�
3UR
SV

2�,Q
WHJH
U�'L
FWLRQ
DU\

2�1
RWLIL
HU

2�3
DUD
JUDS
K�3
URSH
UWLHV

2�7
H[W�
3UR
SV

2�3
DUD
JUDS
K�3U
RSH
UWLHV

2�7
H[W�
3UR
SV

2�6
W\OH
�0D
QDJ
HU

2�7
H[W�
3UR
SV

2�,Q
WHJH
U�'L
FWLR
QDU
\

2�1
RWLIL
HU

2�1
RWLIL
HU

2�6
WRU\
2�&

RPS
RVLW
H�6
HTX
HQF
H

2�6
W\OH
�0D
QDJ
HU

2�&
RP
SRX
QG�3

URS
HUWL
HV

2�7
H[W�
3UR
SV

2�,Q
WHJ
HU�'
LFWLR

QDU
\

2�1
RWLIL
HU

2�1
RWLIL
HU

2�3
DUD
JUD
SK�3

URSH
UWLH
V

2�7
H[W�
3UR
SV

2�3
DUD
JUD
SK�3

URS
HUWLH

V

2�7
H[W�

3URS
V

2�6
W\OH

�0D
QDJ

HU

2�7
H[W�

3URS
V

2�,Q
WHJH

U�'L
FWLRQ

DU\

2�1
RWLILH

U

2�6
WRU\
2�&

RPS
RVLW

H�6H
TXH

QFH

2�6
W\OH

�0D
QDJ

HU

2�&
RPS

RXQ
G�3U

RSH
UWLHV

2�7
H[W�3

URS
V

2�,Q
WHJH

U�'L
FWLRQ

DU\

2�1
RWLILH

U

2�1
RWLILH

U

2�3D
UDJUD

SK�3
URSH

UWLHV

2�7H
[W�3

URSV

2�3D
UDJUD

SK�3
URSH

UWLHV

2�7H
[W�3U

RSV

2�6W
\OH�0

DQDJ
HU

2�7
H[W�3

URSV

2�,Q
WHJH

U�'LF
WLRQD

U\

2�1R
WLILHU
2�'

LFWLRQ
DU\

2�3H
UVLVW�

+HOS
HU

'RF)
LOH
2�'L

FWLRQ
DU\

2�'L
FWLRQ

DU\

2�'L
FWLRQ

DU\

2�2/
(�&R

QWURO
�+HOS

HU

)LOH0
RQLNH

U

'
R
F
)
LOH

2�7D
EOH

2�6W
RU\

2�&R
PSR

VLWH�6
HTXH

QFH

2�1R
WLILHU

2�7D
EOH�/

D\RX
W

2�6W
RU\�/

D\RX
W

2�6W
\OH�0

DQDJ
HU

2�&R
PSR

XQG�
3URS

HUWLH
V

2�7H
[W�3U

RSV

2�,Q
WHJHU

�'LFW
LRQD

U\

2�1
RWLILH

U
2�3D

UDJUD
SK�3

URSH
UWLHV

2�7H
[W�3U

RSV

2�3D
UDJU

DSK�3
URSH

UWLHV

2�7H
[W�3U

RSV

2�6W
\OH�0

DQDJ
HU

2�7H
[W�3U

RSV

2�,QWHJ
HU�'LFWLR

QDU\

2�1RWLIL
HU

2�1RWLI
LHU

2�1RWLI
LHU

2�1RWLIL
HU

'DWD$G
YLVH+RO

GHU

2�'LFWLR
QDU\

2�8QLFR
GH

2�8QLF
RGH

2�1RWLI
LHU

,WHP0R
QLNHU

2�1RWLI
LHU

,WHP0R
QLNHU

)LOH0R
QLNHU

)LOH0RQ
LNHU

)LOH0R
QLNHU

a&R*H
W,QVWDQF

H)URP

2�$FWLY
H�6HOHF

WLRQ

2�1RWLI
LHU

)LOH0RQLNHU 2�6ZLWFKDEOH
�9LHZ

2�)RUP 2�8QNQRZQ
�/LVW

2�)RUP�%DFN
GURS�

2�2/(�&RQWU
RO�+H

2�)RUP�6LWH 2�&RQWURO�6
LWH

2�1RWLILHU 2�*DOOH\�9LH
Z

2�6WDQGDUG�
9LHZ

2�)RUP 2�8QNQRZQ
�/LVW

2�)RUP�%DFN
GUR�

2�2/(�&RQW
URO�

2�)RUP�6LWH 2�&RQWURO�6
LWH

2�1RWLILHU 2�2/(�&RQ
WURO�

2�)UDPH 2�7H[W�6HOHF
WLR

2�5DQJH�6HW 2�1RWLILHU 2�1RWLILHU 2�7H[W�.H\ERD� 2�3URJ,'�0RQ)LOH0RQLNHU 2�$FWLYH�6HOHF ,WHP0RQLNHU 2�3URJ,'�0RQLNHU
,WHP0RQLNHU ,WHP0RQLNHU ,WHP0RQLNHU ,WHP0RQLNHU
,WHP0RQLNHU
2�2/(�&RQWURO�+HOSHU

2�6FUROOEDU�&RQWURO

2�1RWLILHU 2�)RUP�6LWH
2�&RQWURO�6LWH
2�)RUP�6LWH
2�&RQWURO�6LWH
2�2/(�&RQWURO�+HOSHU

2�*DOOH\�/D\RXW
2�1RWLILHU 2�5DQJH�0RXVH�+DQGOHU

)LOH0RQLNHU
2�$FWLYH�6HOHFWLRQ
2�5XOHU 2�1RWLILHU
2�)RUP�6LWH
2�&RQWURO�6LWH

2�2/(�&RQWURO�+HOSHU

2�1RWLILHU
2�1RWLILHU
2�1RWLILHU
2�1RWLILHU
2�6WRU\�/D\RXW

2�1RWLILHU
2�)RUP�6LWH

2�&RQWURO�6LWH

2�*DOOH\�9LHZ

2�6WDQGDUG�9LHZ

2�)RUP
2�8QNQRZQ�/LVW

2�)RUP�%DFNGURS�&RQWURO

2�2/(�&RQWURO�+HOSHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�1RWLILHU

2�2/(�&RQWURO�+HOSHU

2�)UDPH
2�7H[W�6HOHFWLRQ

2�5DQJH�6HW

2�1RWLILHU
2�1RWLILHU

2�7H[W�.H\ERDUG�+DQGOHU

2�3URJ,'�0RQLNHU

,WHP0RQLNHU

,WHP
0
RQLNH

U

,WHP
0
RQLNHU

,WHP
0
RQLNHU

,WHP
0
RQLNHU

,WHP
0
RQLNHU

,WHP
0
RQLNH

U

,WHP
0
RQ

LNHU

,WHP
0
RQLNHU

,WHP
0

RQLNHU

,WHP
0

RQLNHU

,WHP
0
RQLNHU

,WHP
0
RQ

LNHU

,WHP
0
RQ
LNH
U

,WHP
0
RQ
LNHU

,WHP
0
RQLNH

U

,WHP
0
RQLNHU

,WHP
0
RQ
LNHU

,WHP
0
RQLNHU

,WHP
0
RQLNH

U

,WHP
0
RQLNHU

,WHP
0
RQLNHU

,WHP
0
RQLNH

U

,WHP
0
RQ
LNH
U

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0
RQLNHU

,WHP0
RQLNHU

,WHP0RQLNHU

2�3URJ,'�0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

2�2/(�&RQWURO�+HOSHU

2�6FUROOEDU�&RQWURO

2�1RWLILHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�)RUP�6LWH

2�&RQWURO�6LWH

2�2/(�&RQWURO�+HOSHU

2�*DOOH\�/D\RXW

2�1RWLILHU

2�5DQJH�0RXVH�+DQGOHU

2�5XOHU

2�1RWLILHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�2/(�&RQWURO�+HOSHU

)LOH0RQLNHU

2�$FWLYH�6HOHFWLRQ

2�)RUP�6LWH

2�&RQWURO�6LWH

2�$SSOLFDWLRQ�:LQGRZ

2�0',
2�)RUP
2�8QNQRZQ�/LVW

2�)RUP�%DFNGURS�&RQWURO

2�2/(�&RQWURO�+HOSHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�1RWLILHU

2�2/(�&RQWURO�+HOSHU

2�7RROEDU�'RFN

)LOH0RQLNHU

2�$FWLYH�6HOHFWLRQ

2�)RUP
2�8QNQRZQ�/LVW

2�)RUP�%DFNGURS�&RQWURO

2�2/(�&RQWURO�+HOSHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�1RWLILHU

2�)RUP
2�8QNQRZQ�/LVW

2�)RUP�%DFNGURS�&RQWURO

2�2/(�&RQWURO�+HOSHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�1RWLILHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�2/(�&RQWURO�+HOSHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�6WDQGDUG�0HQX

2�0HQX
2�6WULQJ�/LVW

2�8QNQRZQ�/LVW

2�3URJ,'�0RQLNHU

2�3URJ,'�0RQLNHU

2�0HQX
2�6WULQJ�/LVW

2�8QNQRZQ�/LVW

,WHP0RQLNHU

,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU

,WHP0RQLNHU
,WHP0RQLNHU

,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU

,WHP0RQLNHU
,WHP0RQLNHU

,WHP0RQLNHU
,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

2�3URJ,'�0RQLNHU

2�3URJ,'�0RQLNHU

2�0HQX
2�6WULQJ�/LVW
2�8QNQRZQ�/LVW
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
2�3URJ,'�0RQLNHU

2�3URJ,'�0RQLNHU

2�0HQX2�6WULQJ�/LVW2�8QNQRZQ�/LVW
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU,WHP0RQLNHU
2�3URJ,'�0RQLNHU
2�3URJ,'�0RQLNHU
2�0HQX2�6WULQJ�/LVW
2�8QNQRZQ�/LVW
,WHP0RQLNHU,WHP0RQLNHU
,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU2�3URJ,'�0RQLNH2�3URJ,'�0RQLNH2�0HQX2�6 WULQJ�/LVW2�8QNQRZQ�/LVW, WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU2�3URJ,'�0RQLNHU2�3URJ,'�0RQLNHU2�0HQX2�6WULQJ�/LVW2�8QNQRZQ�/LVW,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU,WHP0RQLNHU2�3URJ,'�0RQLNH

U2�3URJ,'�0RQLNHU2�0HQX2�6WULQJ�/LVW2�8QNQRZQ�/LVW,WHP0RQLNHU2�3URJ,'�0RQLNHU2�3URJ,'�0RQLNHU2�0HQX2�6WULQJ�/LVW2�8QNQRZQ�/LVW2�2/(�&RQWURO�+H
OSHU

2�:
LQGR

Z
2�3

DLQ
W

2�:
LQGR

Z
2�3

DLQ
W

2�1
RWLIL

HU
2�:

LQGR
Z

2�3
DLQW2�:
LQGR

Z
2�3

DLQW2�1
RWLIL

HU
2�:

LQGR
Z

2�3
DLQ

W
2�:

LQGR
Z

2�3
DLQW2�1
RWLIL

HU
2�:

LQGR
Z

2�3
DLQW2�:
LQG
RZ2�3DLQ

W2�:LQG
RZ

2�3DLQ
W2�:LQG
RZ2�3DLQ

W2�:LQ
GRZ2�3DLQ
W)LOH0R
QLNHU2�$FWLY
H�6HOH

FWLRQ

2�)RUP2�8QNQ
RZQ�/L

VW
2�)RUP

�%DFNG
URS�&R

QWURO

2�2/(
�&RQWUR

O�+HOSH
U

2�)RUP
�6LWH2�&RQ

WURO�6LW
H

2�1R
WLILHU2�/DE
HO�&R

QWURO

2�)R
UP�6L

WH
2�&R

QWURO�
6LWH

2�2/
(�&R

QWURO�+
HOSHU

2�%X
WWRQ�&

RQWUR
O

2�)RU
P�6LWH

2�&R
QWURO�

6LWH

2�2/
(�&RQ

WURO�+
HOSHU

2�&R
QWURO�%

LQGLQJ

2�3UR
J,'�0

RQLNH
U

,WHP0
RQLNH

U
2�2/

(�&R
QWURO�+

HOSHU

2�)R
UP�6
LWH

2�&
RQWUR

O�6LWH

2�:
LQGRZ2�3D
LQW

2�:
LQGR
Z

2�3D
LQW

2�1R
WLILHU

2�:
LQGR
Z

2�3D
LQW

2�:
LQGRZ

2�3D
LQW

2�)R
UP�6

LWH

2�&
RQWUR
O�6LWH

2�2
/(�&
RQWU
RO�+
HOSH
U

2�:
LQGR
Z

2�3
DLQW2�:
LQGR
Z

2�3
DLQW2�1

RWLILH
U

2�:
LQGR
Z

2�3
DLQW2�:
LQGR
Z

2�3
DLQW

2�1
RWLILH
U

2
�:
LQ
G
R
Z

2
�3
D
LQ
W

2
�:
LQ
GR
Z

2
�3
D
LQ
W

2
�:

LQ
G
R
Z

2
�3
D
LQ
W

�
�
6
WR
UD
J
H

= Component instances placed on Server.
Figure 7. Octarine with Multi-page Table.
With a document containing a five-page table, Coign locates
only a single component on the server.

The merits of a distribution customized to a particu-
lar usage pattern are not merely theoretical. Figure 7
plots the optimized distribution for Octarine loading a
document containing a single, 5-page table. For this
scenario, Coign places only a single component out of
476 on the server. The results are comparable to those
of Octarine loading a document containing strictly text
(Figure 5). However, if fewer than a dozen small ta-
bles are added to the 5-page text document, the opti-
mal distribution changes radically. As can be seen in
Figure 8, Coign places 281 out of 786 components on
the server. The difference in distribution is due to the
complex negotiations for page placement between the

table components and the text components. Output
from the page-placement negotiation to the rest of the
application is minimal.

In a traditional distributed system, the programmer
would likely optimize the application for the most
common usage pattern. At best, the programmer could
embed a minimal number of distribution alternatives
into the application. With Coign, the programmer
need not favor one distribution over another. The ap-
plication can be distributed with an inter-component
communication model optimized for the most common
scenarios. Over the installed lifetime of the applica-
tion, Coign can periodically re-profile the application
and adjust the distribution accordingly. Even without
updating the inter-component communication model,
Coign can adjust to changes in application infrastruc-
ture, such as the relative computation power of the
client and server, or network latency and bandwidth.

��*
8,

$S
S%D
VH

6\
VWHP

2�'
RFX
PHQ
W

2�'
LFWLR
QDU\

2�6
W\OH
�6K
HHW

2�,Q
WHJH
U�'LF
WLRQ
DU\

2�6
WRU\
2�&
RPS
RVLW
H�6
HTX
HQF
H

2�1
RWLIL
HU

2�6
W\OH
�0D
QDJ
HU

2�&
RPS
RXQ
G�3
URSH
UWLHV

2�7
H[W�
3UR
SV

2�,Q
WHJH
U�'L
FWLR
QDU\

2�1
RWLIL
HU

2�3
DUDJ
UDS
K�3U
RSH
UWLHV

2�7
H[W�
3UR
SV

2�3
DUDJ
UDSK
�3UR
SHUW
LHV

2�7
H[W�
3UR
SV

2�6
W\OH
�0DQ
DJH
U

2�7
H[W�
3URS
V

2�,Q
WHJH
U�'L
FWLRQ
DU\

2�1
RWLILH
U
2�1
RWLILH
U
2�6
WRU\
2�&
RPS
RVLWH
�6HT
XHQ
FH

2�6
W\OH�
0DQ
DJH
U

2�&
RPS
RXQ
G�3U
RSH
UWLHV

2�7
H[W�
3URS
V

2�,Q
WHJH
U�'L
FWLRQ
DU\

2�1
RWLILH
U

2�1
RWLILH
U
2�3
DUD
JUDS
K�3U
RSH
UWLHV

2�7
H[W�
3URS
V

2�3
DUD
JUDS
K�3
URSH
UWLHV

2�7
H[W�3
URSV

2�6
W\OH
�0DQ
DJH
U

2�7
H[W�3

URSV

2�,Q
WHJH

U�'L
FWLRQ

DU\

2�1
RWLILH

U
2�6
WRU\
2�&

RPS
RVLWH

�6HT
XHQ
FH

2�6
W\OH�

0DQ
DJHU

2�&
RPS
RXQ
G�3U
RSH
UWLHV

2�7
H[W�3

URSV

2�,Q
WHJH

U�'LF
WLRQD

U\

2�1
RWLILH

U
2�1
RWLILH

U
2�3D

UDJU
DSK�
3UR
SHUWL
HV

2�7
H[W�3

URSV

2�3
DUDJ

UDSK
�3UR

SHUWL
HV

2�7H
[W�3
URSV

2�6
W\OH�

0DQ
DJH
U

2�7
H[W�3

URSV

2�,Q
WHJH

U�'LF
WLRQD

U\

2�1
RWLILH

U
2�'

LFWLR
QDU\

2�3H
UVLVW�

+HOS
HU

'RF)
LOH
2�'L

FWLRQ
DU\

2�'
LFWLRQ

DU\

2�'L
FWLRQ

DU\

2�2/
(�&R

QWURO
�+HOS

HU

)LOH0
RQLNH

U

'RF)LOH

2�8Q
LFRG

H
2�8

QLFRG
H

2�1R
WLILHU
,WHP

0RQ
LNHU

2�7DEOH
2�6WRU\
2�&RPSRVLWH�6HTXHQFH

2�1RWLILHU
2�7DEOH�/D\RXW

2�6WRU\�/D\RXW

2�6W\OH�0DQDJHU

2�&RPSRXQG�3URSHUWLHV

2�7H[W�3URSV
2�,QWHJHU�'LFWLRQDU\

2�1RWLILHU
2�3DUDJUDSK�3URSHUWLHV

2�7H[W�3URSV
2�3DUDJUDSK�3URSHUWLHV

2�7H[W�3URSV
2�6W\OH�0DQDJHU

2�7H[W�3URSV
2�,QWHJHU�'LFWLRQDU\

2�1RWLILHU
2�1RWLILHU
2�1RWLILHU
2�1RWLILHU
'DWD$GYLVH+ROGHU
2�'LFWLRQDU\
2�8QLFRGH
2�8QLFRGH
2�1RWLILHU
,WHP0RQLNHU

2�1R
WLILHU
,WHP

0RQ
LNHU

2�8Q
LFRG

H
2�8

QLFRG
H

2�1R
WLILHU
,WHP

0RQ
LNHU

2�7DEOH2�6WRU\2�&RPSRVLWH�6HTXHQFH

2�1RWLILHU
2�7DEOH�/D\RXW
2�6WRU\�/D\RXW
2�6W\OH�0DQDJHU
2�&RPSRXQG�3URSHUWLHV

2�7H[W�3URSV
2�,QWHJHU�'LFWLRQDU\
2�1RWLILHU
2�3DUDJUDSK�3URSHUWLHV

2�7H[W�3URSV
2�3DUDJUDSK�3URSHUWLHV

2�7H[W�3URSV
2�6W\OH�0DQDJHU
2�7H[W�3URSV
2�,QWHJHU�'LFWLRQDU\
2�1RWLILHU
2�1RWLILHU
2�1RWLILHU
2�1RWLILHU
'DWD$GYLVH+ROGHU
2�'LFWLRQDU\2�8QLFRGH2�8QLFRGH2�1RWLILHU,WHP0RQLNHU

2�1R
WLILHU
,WHP

0RQ
LNHU

2�8Q
LFRG

H
2�8Q

LFRGH
2�1

RWLILH
U

,WH
P
0

RQ
LN
HU

2�7DEOH2�6WRU\2�&RPSRVLWH�6HTXHQFH
2�1RWLILHU2�7DEOH�/D\RXW
2�6WRU\�/D\RXW2�6W\OH�0DQDJHU
2�&RPSRXQG�3URSHUWLHV
2�7H[W�3URSV2�,QWHJHU�'LFWLRQDU\
2�1RWLILHU2�3DUDJUDSK�3URSHUWLHV
2�7H[W�3URSV2�3DUDJUDSK�3URSHUWLHV
2�7H[W�3URSV2�6W\OH�0DQDJHU2�7H[W�3URSV2�,QWHJHU�'LFWLRQDU\
2�1RWLILHU2�1RWLILHU2�1RWLILHU2�1RWLILHU'DWD$GYLVH+ROGHU
2�'LFWLRQDU\2�8QLFRGH2�8QLFRGH2�1RWLILHU,WHP0RQLNHU

2
�1

RW
LIL
HU

,WH
P
0

RQ
LN
HU

2
�8

QL
FR

G
H

2
�8

QL
FR

GH

2
�1

RW
LILH

U

,WH
P
0

RQ
LN
HU

2�7DEOH2�6 WRU\2�&RPSRVLWH�6HTXHQFH2�1RWLILHU2�7DEOH�/D\RXW2�6 WRU\�/D\RXW2�6 W\OH�0DQDJHU2�&RPSRXQG�3 URSHUWLHV2�7H[W�3URSV2�,QWHJHU�'LFWLRQDU\2�1RWLILHU2�3DUDJUDSK�3URSHUWLHV2�7H[W�3URSV2�3DUDJUDSK�3URSHUWLHV2�7H[W�3URSV2�6 W\OH�0DQDJHU2�7H[W�3URSV2�,QWHJHU�'LFWLRQDU\2�1RWLILHU2�1RWLILHU2�1RWLILHU2�1RWLILHU'DWD$GYLVH+ROGHU2�'LFWLRQDU\2�8QLFRGH2�8QLFRGH2�1RWLILHU,WHP0RQLNHU

2
�1

RW
LIL
HU

,W
HP

0
RQ

LN
HU

2
�8

QL
FR

GH

2
�8

QL
FR

GH

2
�1

RW
LIL
HU

,W
HP

0
RQ

LN
HU

2�7DEOH2�6WRU\2�&RPSRVLWH�6HTXHQFH2�1RWLILHU2�7DEOH�/D\RXW2�6 WRU\�/D\RXW2�6W\OH�0DQDJHU2�&RPSRXQG�3URSHU
WLHV2�7H[W�3URSV2�,QWHJHU�'LFWLRQDU\2�1RWLILHU2�3DUDJUDSK�3URSHUWL
HV2�7H[W�3URSV2�3DUDJUDSK�3URSHUWL
HV2�7H[W�3URSV2�6W\OH�0DQDJHU2�7H[W�3URSV2�,QWHJHU�'LFWLRQDU\2�1RWLILHU2�1RWLILHU2�1RWLILHU2�1RWLILHU'DWD$GYLVH+ROGHU2�'LFWLRQDU\2�8QLFRGH2�8QLFRGH2�1RWLILHU,WHP0RQLNHU

2
�1

RW
LIL
HU

,WH
P
0

RQ
LN
HU

2
�8

QL
FR

G
H

2
�8

QL
FR

G
H

2
�1

RW
LIL
HU

,WH
P

0
RQ

LNH
U

2�7DEOH2�6WRU\2�&RPSRVLWH�6HTXHQ
FH2�1RWLILHU2�7DEOH�/D\RXW2�6WRU\�/D\RXW2�6W\OH�0DQDJHU2�&RPSRXQG�3URSH

UWLHV2�7H[W�3URSV2�,QWHJHU�'LFWLRQDU\2�1RWLILHU2�3DUDJUDS
K�3URSHUWLH

V
2�7H[W�3UR

SV2�3DUDJUDS
K�3URSHUWLH

V
2�7H[W�3UR

SV2�6W\OH�0D
QDJHU2�7H[W�3UR
SV2�,QWHJHU�'
LFWLRQDU\2�1RWLILHU2�1RWLILHU2�1RWLILHU2�1RWLILHU'DWD$GYLV

H+ROGHU2�'LFWLRQDU
\2�8QLFRGH2�8QLFRGH2�1RWLILHU,WHP0RQLN

HU2
�1

RW
LIL
HU

,WH
P

0
RQ

LN
HU

2
�8

QL
FR

GH

2
�8

QL
FR

GH

2
�1

RW
LILH

U

,W
HP

0
RQ

LN
HU

2�7DEOH2�6WRU\2�&RPSRVL
WH�6HTXHQF

H
2�1RWLILHU2�7DEOH�/D

\RXW2�6WRU\�/D
\RXW2�6W\OH�0D
QDJHU2�&RPSRX
QG�3URSHUWL

HV
2�7H[W�3UR

SV2�,QWHJHU�'
LFWLRQDU\

2�1RWLILHU2�3DUD
JUDSK�3

URSHUWLH
V

2�7H[W�
3URSV2�3DUD
JUDSK�3

URSHUWLH
V

2�7H[W�
3URSV2�6W\OH
�0DQDJ

HU
2�7H[W�

3URSV2�,QWHJ
HU�'LFWLR

QDU\

2�1RWLIL
HU2�1RWLIL
HU2�1RWLIL
HU2�1RWLI
LHU'DWD$G
YLVH+ROG

HU
2�'LFWLR

QDU\
2�8QLF

RGH2�8QLFR
GH

2�1RWLIL
HU,WHP0R
QLNHU

2�1RW
LILHU

,WHP0
RQLNHU

2�8QLF
RGH

2�8QL
FRGH

2�1RW
LILHU

,WHP0
RQLNHU

2�7DEOH2�6WRU\2�&RPS
RVLWH�6H

TXHQFH

2�1RWLIL
HU

2�7DEOH
�/D\RXW2�6WRU\
�/D\RXW2�6W\OH
�0DQDJH

U
2�&RPS

RXQG�3U
RSHUWLHV

2�7H[
W�3URS

V
2�,QWH

JHU�'
LFWLRQ

DU\

2�1RW
LILHU

2�3D
UDJUDS

K�3UR
SHUWLH

V

2�7H[
W�3URS

V
2�3D

UDJUDS
K�3UR

SHUWLH
V

2�7H[
W�3URS

V
2�6W\

OH�0D
QDJHU

2�7H[
W�3URS

V
2�,QWH

JHU�'
LFWLRQD

U\

2�1RW
LILHU2�1RW
LILHU

2�1R
WLILHU2�1RW
LILHU

'DWD$
GYLVH+

ROGHU

2�'LF
WLRQDU

\
2�8Q

LFRGH2�8QL
FRGH

2�1R
WLILHU,WHP0
RQLNHU

2�1RW
LILHU

,WHP0
RQLNHU

2�8QL
FRGH

2�8QL
FRGH

2�1RW
LILHU

,WHP0
RQLNHU

2�7DE
OH

2�6WR
U\

2�&R
PSRV

LWH�6H
TXHQ
FH

2�1R
WLILHU

2�7D
EOH�/D

\RXW

2�6WR
U\�/D\

RXW

2�6W\
OH�0D

QDJH
U

2�&R
PSRX

QG�3U
RSHUW
LHV

2�7H
[W�3UR
SV

2�,QW
HJHU�
'LFWLR

QDU\

2�1R
WLILHU

2�3D
UDJUD
SK�3U
RSHUW
LHV

2�7H[
W�3URS

V

2�3D
UDJUD
SK�3
URSHU
WLHV

2�7H
[W�3UR

SV

2�6W\
OH�0D
QDJH
U

2�7H
[W�3UR

SV
2�,QWH

JHU�'
LFWLRQ
DU\

2�1R
WLILHU

2�1R
WLILHU

2�1R
WLILHU2�1R
WLILHU

'DWD
$GYL
VH+R
OGHU

2�'LF
WLRQD
U\

2�8Q
LFRGH

2�8Q
LFRGH

2�1R
WLILHU

,WHP0
RQLNH
U

2�1RW
LILHU

,WHP0
RQLNHU

2�8QL
FRGH

2�8QL
FRGH

2�1RW
LILHU

,WHP0
RQLNH

U

2�7D
EOH

2�6W
RU\

2�&R
PSR
VLWH�6
HTXH
QFH

2�1R
WLILHU

2�7D
EOH�/
D\RX
W

2�6W
RU\�/
D\RX
W

2�6W\
OH�0D
QDJH
U

2�&R
PSR
XQG�3
URSH
UWLHV

2�7H
[W�3U
RSV

2�,QW
HJHU
�'LFW
LRQDU
\

2�1R
WLILHU

2�3D
UDJUD
SK�3
URSH
UWLHV

2�7H
[W�3U
RSV

2�3D
UDJU
DSK�
3URS
HUWLH
V

2�7
H[W�3
URSV

2�6W
\OH�0
DQDJ
HU

2�7H
[W�3
URSV

2�,Q
WHJH
U�'LF
WLRQD
U\

2�1
RWLILH
U

2�1
RWLILH
U

2�1
RWLILH
U

2�1
RWLILH
U

'DWD
$GYL
VH+
ROGH
U

2�'
LFWLR
QDU\

2�8
QLFR
GH

2�8
QLFR
GH

2�1
RWLILH
U

,WHP
0RQ
LNHU

2�1RW
LILHU

,WHP0
RQLNHU

)LOH0R
QLNHU

)LOH0
RQLNHU

)LOH0R
QLNHU

a&R*H
W,QVWDQ

FH)URP
)LOH

2�$FWL
YH�6H

OHFWLRQ

2�1RW
LILHU

)LOH0R
QLNHU

2�6ZL
WFKDEO

H�9LHZ

2�)RUP 2�8QNQR
ZQ�/LVW

2�)RUP�
%DFNGUR

S�&RQWUR
O

2�2/(�&
RQWURO�+

HOSHU

2�)RUP�
6LWH

2�&RQWUR
O�6LWH

2�1RWLILH
U

2�*DOOH\
�9LHZ

2�6WDQG
DUG�9LHZ

2�)RUP 2�8QNQR
ZQ�/LVW

2�)RUP�
%DFNGURS

�&RQW

2�2/(�&
RQWURO�+H

OSHU

2�)RUP�6
LWH

2�&RQWUR
O�6LWH

2�1RWLILH
U

2�2/(�&
RQWURO�+H

OSHU

2�)UDPH 2�7H[W�6
HOHFWLRQ

2�5DQJH
�6HW

2�1RWLILH
U

2�1RWLILH
U

2�7H[W�.
H\ERDUG

�+D

2�3URJ,'
�0RQLNHU

)LOH0RQL
NHU

2�$FWLYH
�6HOHFWLR

Q
,WHP0RQ

LNHU
,WHP0RQ

LNHU
,WHP0RQ

LNHU
,WHP0RQ

LNHU
,WHP0RQ

LNHU
,WHP0RQ

LNHU
,WHP0RQLNHU 2�3URJ,'�0R ,WHP0RQLNHU ,WHP0RQLNH ,WHP0RQLNH ,WHP0RQLNH ,WHP0RQLNH 2�2/(�&RQ

�
2�6FUROOEDU�& 2�1RWLILHU 2�)RUP�6LWH 2�&RQWURO�6 2�)RUP�6LWH 2�&RQWURO�6 2�2/(�&RQ� 2�*DOOH\�/D 2�1RWLILHU 2�5DQJH�0R�)LOH0RQLNHU 2�$FWLYH�6H 2�5XOHU 2�1RWLILHU 2�)RUP�6LWH 2�&RQWURO�6 2�2/(�&RQW� 2�1RWLILHU 2�1RWLILHU 2�1RWLILHU 2�1RWLILHU 2�6WRU\�/D\R 2�1RWLILHU 2�)RUP�6LWH 2�&RQWURO�6LWH 2�*DOOH\�9LHZ 2�6WDQGDUG�9 2�)RUP 2�8QNQRZQ�/ 2�)RUP�%DFNG� 2�2/(�&RQWUR� 2�)RUP�6LWH 2�&RQWURO�6LWH 2�1RWLILHU 2�2/(�&RQWUR� 2�)UDPH 2�7H[W�6HOHFWLR 2�5DQJH�6HW 2�1RWLILHU 2�1RWLILHU 2�7H[W�.H\ERDUG� 2�3URJ,'�0RQLNH

,WHP0RQLNHU ,WHP0RQLNHU
,WHP0RQLNHU
2�3URJ,'�0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
,WHP0RQLNHU
2�2/(�&RQWURO�+HOSHU

2�6FUROOEDU�&RQWURO

2�1RWLILHU
2�)RUP�6LWH
2�&RQWURO�6LWH
2�)RUP�6LWH
2�&RQWURO�6LWH
2�2/(�&RQWURO�+HOSHU

2�*DOOH\�/D\RXW
2�1RWLILHU 2�5DQJH�0RXVH�+DQGOHU

2�5XOHU 2�1RWLILHU
2�)RUP�6LWH
2�&RQWURO�6LWH
2�2/(�&RQWURO�+HOSHU

)LOH0RQLNHU
2�$FWLYH�6HOHFWLRQ
2�)RUP�6LWH
2�&RQWURO�6LWH
2�$SSOLFDWLRQ�:LQGRZ

2�0',
2�)RUP
2�8QNQRZQ�/LVW

2�)RUP�%DFNGURS�&RQWURO

2�2/(�&RQWURO�+HOSHU

2�)RUP�6LWH
2�&RQWURO�6LWH

2�1RWLILHU
2�2/(�&RQWURO�+HOSHU

2�7RROEDU�'RFN

)LOH0RQLNHU
2�$FWLYH�6HOHFWLRQ

2�)RUP
2�8QNQRZQ�/LVW

2�)RUP�%DFNGURS�&RQWURO

2�2/(�&RQWURO�+HOSHU

2�)RUP�6LWH
2�&RQWURO�6LWH

2�1RWLILHU
2�)RUP
2�8QNQRZQ�/LVW

2�)RUP�%DFNGURS�&RQWURO

2�2/(�&RQWURO�+HOSHU

2�)RUP�6LWH
2�&RQWURO�6LWH

2�1RWLILHU
2�)RUP�6LWH

2�&RQWURO�6LWH

2�2/(�&RQWURO�+HOSHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�6WDQGDUG�0HQX

2�0HQX
2�6WULQJ�/LVW

2�8QNQRZQ�/LVW

2�3URJ,'�0RQLNHU

2�3URJ,'�0RQLNHU

2�0HQX
2�6WULQJ�/LVW

2�8QNQRZQ�/LVW

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

2�3URJ,'�0RQLNHU

2�3URJ,'�0RQLNHU

2�0HQX
2�6WULQJ�/LVW

2�8QNQRZQ�/LVW

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

2�3URJ,'�0RQLNHU

2�3URJ,'�0RQLNHU

2�0HQX
2�6WULQJ�/LVW

2�8QNQRZQ�/LVW

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

2�3URJ,'�0RQLNHU

2�3URJ,'�0RQLNHU

2�0HQX

2�6WULQJ�/LVW

2�8QNQRZQ�/LVW

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

2�3URJ,'�0RQLNHU

2�3URJ,'�0RQLNHU

2�0HQX

2�6WULQJ�/LVW

2�8QNQRZQ�/LVW

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

2�3URJ,'�0RQLNHU

2�3URJ,'�0RQLNHU

2�0HQX

2�6WULQJ�/LVW

2�8QNQRZQ�/LVW

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

,WHP0RQLNHU

2�3URJ,'�0RQLNHU

2�3URJ,'�0RQLNHU

2�0HQX
2�6WULQJ�/LVW

2�8QNQRZQ�/LVW

,WHP0RQLNHU

2�3URJ,'�0RQLNHU

2�3URJ,'�0RQLNHU

2�0HQX
2�6WULQJ�/LVW

2�8QNQRZQ�/LVW

2�2/(�&RQWURO�+HOSHU

2
�:
LQ
G
R
Z

2
�3
D
LQ
W

2
�:
LQ
GR
Z

2
�3
D
LQ
W

2
�1
R
WLILH
U

2
�:
LQ
G
R
Z

2
�3
D
LQ
W

2
�:
LQ
G
R
Z

2
�3
D
LQ
W

2
�1
R
WLILH
U

2
�:
LQ
G
R
Z

2
�3
DLQ
W

2
�:
LQ
GR
Z

2
�3
D
LQ
W

2
�1
RWLILHU

2
�:
LQ
GR
Z

2
�3
D
LQ
W

2
�:
LQ
G
R
Z

2
�3
D
LQ
W

2
�:
LQ
G
R
Z

2�3DLQW
2�:LQGRZ

2�3DLQW
2�:LQGRZ
2�3DLQW
)LOH0RQLNHU

2�$FWLYH�6HOHFWLRQ

2�)RUP
2�8QNQRZQ�/LVW

2�)RUP�%DFNGURS�&RQWURO

2�2/(�&RQWURO�+HOSHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�1RWLILHU

2�/DEHO�&RQWURO

2�)RUP�6LWH

2�&RQWURO�6LWH

2�2/(�&RQWURO�+HOSHU

2�%XWWRQ�&RQWURO

2�)RUP�6LWH

2�&RQWURO�6LWH

2�2/(�&RQWURO�+HOSHU

2�&RQWURO�%LQGLQJ

2�3URJ,'�0RQLNHU

,WHP0RQLNHU

2�2/(�&RQWURO�+HOSHU

2�)RUP�6LWH

2�&RQWURO�6LWH

2�:LQGRZ
2�3DLQW
2�:LQGRZ
2�3DLQW
2�1RWLILHU
2�:LQGRZ
2�3DLQW
2�:LQGRZ
2�3DLQW
2�)RUP�6LWH

2�&RQWURO�6LWH

2�2/(�&RQWURO�+HOSHU

2�:LQGRZ
2�3DLQW
2�:LQGRZ
2�3DLQW
2�1RWLILHU
2�:LQGRZ
2�3DLQW
2�:

LQGRZ

2
�3DLQW

2
�1RWLILHU

2
�:
LQGRZ

2�3DLQW

2
�:
LQGRZ

2
�3DLQW

2�:
LQGRZ

2�3DLQW

�
�
6
WR
UD
JH

= Component instances placed on Server.
Figure 8. Octarine with Tables and Text.
With a five-page document containing fewer than a dozen
embedded tables, Coign places 281 of 786 application com-
ponents on the server.

4.5. Performance of Chosen Distributions

Table 4 lists the communication time for each of
the application scenarios. The default distribution is
the distribution of the application as configured by the
developer without Coign. For both the default and
Coign-chosen distributions, data files are placed on the
server. As can be seen, Coign never chooses a worse
distribution than the default. In the best case, Coign
reduces communication time by 99%. The Corporate
Benefits Application has significant room for im-
provement as suggested by the change in its distribu-
tion in Section 0.

The results suggest that Coign is better at optimiz-
ing existing distributed applications than creating new

 11

distributed applications from desktop applications.
The distribution of desktop COM-based applications is
limited by the extensive use of non-remotable inter-
faces. For PhotoDraw in particular, Coign is severely
constrained by the large number of non-remotable in-
terfaces. It is important to note that the distributions
available in Octarine and PhotoDraw are not limited
by the granularity of their components, but by their
interfaces. We believe that as the development of
component-based applications matures, developers
will learn to create interfaces with better distribution
properties, thus strengthening the benefits of Coign.

Comm. Time (secs.)

Scenario Default Coign Savings
o_newdoc 0.152 0.152 0%
o_newmus 0.149 0.149 0%
o_newtbl 0.006 0.006 0%
o_oldtb0 1.058 1.048 1%
o_oldtb3 15.064 0.042 99%
o_oldwp0 0.143 0.143 0%
o_oldwp3 0.696 0.696 0%
o_oldwp7 21.089 1.099 95%
o_oldbth 1.734 0.562 68%
o_offtb3 15.079 0.037 99%
o_offwp7 20.878 1.090 95%
o_bigone 27.497 22.630 18%
p_newdoc 4.726 4.496 5%
p_newmsr 17.016 15.014 12%
p_oldcur 2.384 1.613 32%
p_oldmsr 14.517 11.482 21%
p_offcur 1.583 0.722 54%
p_offmsr 14.650 11.497 22%
p_bigone 33.032 27.084 18%
b_vueone 1.465 0.954 35%
b_addone 2.322 1.601 31%
b_delone 3.414 2.834 17%
b_bigone 1.754 1.414 19%

Table 4. Reduction in Communication Time.
Communication time for the default distribution of the appli-
cation (as shipped by the developer) and for the Coign-
chosen distribution.

4.6. Accuracy of Prediction Models

To verify the accuracy of Coign’s model of applica-
tion communication time and execution time, we
compare the predicted execution time for each sce-
nario with the measured execution time (Table 5). In
each case, the application is optimized for the chosen
scenario before execution. Many of the scenarios had
no significant difference between predicted and actual
execution time; only seven had an error of 5% or
greater, and none varied by more than 8%. From these
measurements, we conclude that Coign’s model of

application communication and execution time is suf-
ficiently accurate to warrant confidence in the distribu-
tions chosen by Coign’s graph-cutting algorithm.

5. Related Work

The idea of automatically partitioning and distribut-
ing applications is not new. The Interconnected Proc-
essor System (ICOPS) [27, 40, 41] supported
distributed application partitioning in the 1970’s.
ICOPS pioneered the use of compiler-generated stubs
for inter-process communication. ICOPS was the first
system to use scenario-based profiling to gather statis-
tics for distributed partitioning; the first system to sup-
port multiple distributions per application based on
host-processor load; and the first system to use a
minimum-cut algorithm [11] to choose distributions.
ICOPS distributed HUGS, a co-developed, two-
dimensional drafting program. HUGS consisted of
seven modules. Three of these—consisting of 20 pro-
cedures in all—could be located on either the client or
the server.

Execution Time (sec.)
Scenario Predicted Measured Error
o_newdoc 10.7 10.7 0%
o_newmus 10.9 10.9 0%
o_newtbl 9.3 9.3 0%
o_oldtb0 19.0 19.1 0%
o_oldtb3 231.1 231.1 0%
o_oldwp0 5.5 5.7 -3%
o_oldwp3 7.2 7.3 -2%
o_oldwp7 33.4 33.6 -1%
o_oldbth 33.6 33.6 0%
o_offtb3 232.7 232.7 0%
o_offwp7 67.2 65.6 2%
o_bigone 416.1 429.7 -3%
p_newdoc 14.3 14.3 0%
p_newmsr 76.8 72.9 5%
p_oldcur 18.8 18.8 0%
p_oldmsr 49.0 49.5 -1%
p_offcur 18.1 18.1 0%
p_offmsr 53.8 54.2 -1%
p_bigone 139.6 136.3 2%
b_vueone 9.4 8.9 6%
b_addone 14.6 13.9 5%
b_delone 8.9 8.4 7%
b_bigone 5.6 5.2 8%

Table 5. Accuracy of Prediction Models.
Predicted application execution time and measured applica-
tion execution time for Coign distributions.

Unlike Coign, which can distributed individual
component instances, ICOPS was procedure-oriented.
ICOPS placed all instances of a specific class on the
same machine; a serious deficiency for commercial
applications. Tied to a single language and compiler,
ICOPS relied on metadata generated by the compiler

 12

to facilitate transfer of data and control between com-
puters. Modules compiled in another language (or by
another compiler) could not be distributed because
they did not contain appropriate metadata. ICOPS
gave the application the luxury of location transpar-
ency, but still required the programmer or user to ex-
plicitly select a distribution based on machine load.

Configurable Applications for Graphics Employing
Satellites (CAGES) [16, 17] allowed a programmer to
develop an application for a single computer and later
distribute the application across a client/server system.
Unlike ICOPS, CAGES did not support automatic dis-
tributed partitioning. Instead, the programmer pro-
vided a pre-processor with directions about where to
place each program module. The programmer could
change a distribution only after recompiling the appli-
cation with a new placement description file. Like
ICOPS, CAGES was procedure-oriented; programs
could be distributed at the granularity of procedural
modules in the PL/I language. The largest application
distributed by CAGES consisted of 28 modules. To
aid the programmer in choosing a distribution, CAGES
produced a “nearness” matrix through static analysis.
The “nearness” matrix quantified the communication
between modules, thus hinting how “near” the mod-
ules should be placed to each other.

One important advantage of CAGES over ICOPS
was its support for simultaneous computation on both
the satellite and the host computers. CAGES provided
the programmer with the abstraction of one dual-
processor computer on top of two physically disjoint
single-processor computers. The CAGES runtime
provided support for RPC and asynchronous signals.

Both ICOPS and CAGES were severely constrained
by their granularity of distribution: the PL/I or AL-
GOL-W procedural module. Neither system ever dis-
tributed an application with more than a few dozen
modules. However, despite their weaknesses, each
system provided some degree of support for automatic
or semi-automatic distributed application partitioning.

The Intelligent Dynamic Application Partitioning
(IDAP) system [22, 25], an ADPS for CORBA appli-
cations, is an add-on to IBM’s VisualAge Generator.
Using VisualAge Generator’s visual builder, a pro-
grammer designs an application by instantiating and
connecting components in a graphical environment.
The builder emits code for the created application.

The “dynamic” IDAP name refers to the usage of
scenario-based profiling as an alternative to static
analysis. IDAP first generates a version of the applica-
tion with an instrumented message-passing system.
IDAP runs the instrumented application under control
of a test facility with the VisualAge system. After
application execution, the programmer either manually

partitions the components or invokes an automatic
graph-partitioning algorithm. The algorithm used is an
approximation algorithm capable of multi-way cuts for
two or more hosts [10]. After choosing a distribution,
VisualAge generates a new version of the application.
The IDAP developers have tested their system on sev-
eral real applications, but in each case, the application
had “far fewer than 100” components [25].

IDAP supports distributed partitioning only for
statically instantiated components. IDAP requires full
access to source code. Another potential restriction is
the natural granularity of CORBA applications.
CORBA components tend to be large-grained objects
whereas COM components in the applications we ex-
amined have a much smaller granularity. Often each
CORBA component must reside in a separate server
process. In essence, IDAP helps the programmer de-
cide where CORBA servers should be placed in a net-
work, but does not facilitate program decomposition.
The IDAP programmer must be very aware of distribu-
tion choices. IDAP helps the user to optimize the dis-
tribution, but does not raise the level of abstraction
above the distribution mechanisms. With a full-
featured ADPS, such as Coign, the programmer can
focus on component development and leave distribu-
tion to the system.

5.1. Distributed Object Systems

Emerald [5, 6] combines a language and operating
system to create an object-oriented system with first
class support for distribution. Emerald objects can
migrate between machines during execution; they can
also be fixed to a particular machine, or be co-located
under programmer control through language operators
[23]. Emerald is limited to a single language and does
not attempt to automatically place objects to minimize
application communication.

The SOS [39], Globe [19], and Legion [14] distrib-
uted object systems provide true location-transparent
objects and direct programmer control over object lo-
cation. Globe and Legion each anticipate scaling to
the entire Internet. However, none of these systems
supports automatic program modification to minimize
communication.

5.2. Parallel Partitioning and Scheduling

Strictly speaking, the problem of distributed parti-
tioning is a proper subset of the general problem of
parallel partitioning and scheduling. Our work differs
from similar work in parallel scheduling ([24, 36-38])
in two primary respects. First, Coign accommodates
applications in which components are instantiated and
destroyed dynamically throughout program execution.

 13

Traditional parallel partitioning focuses on static ap-
plications. Second, because Coign operates on binary
applications, it can optimize application without ac-
cess to source code (a necessary feature in the domain
of commercial component-based applications).

Coign does not increase the parallelism in applica-
tion code, nor does it perform horizontal load-
balancing between peer servers. Instead, Coign fo-
cuses on “vertical” load-balancing within the applica-
tion. The question of how to minimize
communication and maximize parallelism in large
dynamic, commercial applications remains open.

6. Conclusions and Future Work

Coign is the first ADPS to distribute binary applica-
tions and the first ADPS to partition applications with
dynamically instantiated components of any kind (ei-
ther binary or source). Dynamic component instantia-
tion is an integral feature of modern desktop
applications. One of the major contributions of our
work is a set of dynamic instance classifiers that corre-
late newly instantiated components to similar instances
identified during scenario-based profiling.

Evaluation of Coign shows that it minimizes dis-
tributed communication time for each of the applica-
tions and scenarios in our test suite. Surprisingly, the
greatest reduction in communication time occurs in the
distributed Corporate Benefits Sample where Coign
places almost half of the middle-tier components on
the client without violating application security. Re-
sults from Octarine demonstrate the potential for more
than one distribution of an application depending on
the user’s predominant document type.

We envision two models for Coign to create dis-
tributed applications. In the first model, Coign is used
with other profiling tools as part of the development
process. Coign shows the developer how to distribute
the application optimally and provides the developer
with feedback about which interfaces are communica-
tion “hot spots.” The programmer fine-tunes the dis-
tribution by enabling custom marshaling and caching
on communication intensive interfaces. The pro-
grammer can also enable or disable specific distribu-
tions by inserting or removing location constraints on
specific components and interfaces. Alternatively, the
programmer can create a distributed application with
minimal effort simply by running the application
through profiling scenarios and writing the correspond-
ing distribution model into the application binary
without modifying application sources.

In the second usage model, Coign is applied onsite
by the application user or system administrator. The
user enables application profiling through a simple

GUI to Coign. After “training” the application to the
user’s usage patterns—by running the application
through representative tasks with profiling—the GUI
triggers post-profiling analysis and writes the distribu-
tion model into the application. In essence, the user
has created a customized version of the distributed
application without any knowledge of the underlying
details.

In the future, Coign could automatically decide
when usage differs significantly from profiled scenar-
ios and silently enable profiling to re-optimize the dis-
tribution. The Coign runtime already contains
sufficient infrastructure to allow “fully automatic”
distribution optimization. The lightweight version of
the runtime, which relocates component instantiation
requests to produce the chosen distribution, could
count messages between components with only slight
additional overhead. Run time message counts could
be compared with related message counts from the
profiling scenarios to recognize changes in application
usage.

References

[1] Aral, Ziya, Illya Gertner, and Greg Schaffer. Efficient Debug-
ging Primitives for Multiprocessors. Proceedings of the Third
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 87-95. Bos-
ton, MA, April 1989.

[2] Arnold, Thomas R., II,. Software Testing with Visual Test 4.0.
IDG Books Worldwide, Foster City, CA, 1996.

[3] Barrett, David A. and Benjamin G. Zorn. Using Lifetime Pre-
dictors to Improve Memory Allocation Performance. Proceed-
ings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 187-196. Albu-
querque, NM, June 1993. ACM.

[4] Birrell, A. D. and B. J. Nelson. Implementing Remote Proce-
dure Call. ACM Transactions on Computer Systems, 2(1):39-
59, 1984.

[5] Black, A., N. Hutchinson, E. Jul, and H. Levy. Object Struc-
ture in the Emerald System. Proceedings of the First ACM
Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, pp. 78-86. Portland, OR, October
1986.

[6] Black, A., N. Hutchinson, E. Jul, H. Levy, and L. Carter. Dis-
tribution and Abstract Types in Emerald. IEEE Transactions
on Software Engineering, 13(1):65-76, 1987.

[7] Bokhari, Shahid. Partitioning Problems in Parallel, Pipelined,
and Distributed Computing. IEEE Transactions on Com-
puters, 37(1):48-57, 1988.

[8] Brown, Nat and Charlie Kindel. Distributed Component Object
Model Protocol -- DCOM/1.0. Microsoft Corporation, Red-
mond, WA, 1996.

[9] Cormen, Thomas H., Charles E. Leiserson, and Rondald L.
Rivest. Introduction to Algorithms. The MIT Press, Cambridge,
MA, 1990.

 14

[10] Dahlhaus, E., D. S. Johnson, C. H. Papadimitriou, P. D. Sey-
mour, and M. Yannakakis. The Complexity of Multiterminal
Cuts. SIAM Journal on Computing, 23(4):864-894, 1994.

[11] Ford, Lester R., Jr. and D. R. Fulkerson. Flows in Networks.
Princeton University Press, Princeton, NJ, 1962.

[12] Gary, Naveen, Vijay V. Vazirani, and Mihalis Yannakakis.
Multiway Cuts in Directed and Node Weighted Graphs. Pro-
ceedings of the 21st International Colloquim on Automata,
Languages, and Programming (ICALP), pp. 487-498. Jerusa-
lem, Isreal, July 1994. Springer-Verlag.

[13] Goldberg, Andrew V., Éva Tardos, and Robert E. Tarjan.
Network Flow Algorithms. Computer Science Department,
Stanford University, Technical Report STAN-CS-89-1252,
1989.

[14] Grimshaw, Andrew S., William A. Wulf, and the Legion Team.
The Legion Vision of a Worldwide Virtual Computer. Com-
munications of the ACM, 40(1), 1997.

[15] Hamilton, K. G. A Remote Procedure Call System. Ph. D.
Dissertation, Computer Laboratory TR 70. University of Cam-
bridge, Cambridge, UK, 1984.

[16] Hamlin, Griffith, Jr. Configurable Applications for Satellite
Graphics. Proceedings of the Third Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH
’76), pp. 196-203. Philadelphia, PA, July 1976. ACM.

[17] Hamlin, Griffith, Jr. and James D. Foley. Configurable Appli-
cations for Graphics Employing Satellites (CAGES). Proceed-
ings of the Second Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’75), pp. 9-19. Bowl-
ing Green, Ohio, June 1975. ACM.

[18] Hartman, D. Unclogging Distributed Computing. IEEE Spec-
trum, 29(5):36-39, 1992.

[19] Homburg, Philip, Martin van Steen, and Andrew S. Ta-
nenbaum. An Architecture for a Scalable Wide Area Distrib-
uted System. Proceedings of the Seventh ACM SIGOPS
European Workshop. Connemara, Ireland, September 1996.

[20] Hunt, Galen. Automatic Distributed Partitioning of Compo-
nent-Based Applications. Ph.D. Dissertation, Department of
Computer Science. University of Rochester, 1998.

[21] Hunt, Galen. Detours: Binary Interception of Win32 Func-
tions. Microsoft Research, Redmond, WA, MSR-TR-98-33,
July 1998.

[22] IBM Corporation. VisualAge Generator. Version 3.0, Raleigh.
NC, 1997.

[23] Jul, Eric, Henry Levy, Norman Hutchinson, and Andew Black.
Fine-Grained Mobility in the Emerald System. ACM Transac-
tions on Computer Systems, 6(1):109-133, 1988.

[24] Kennedy, Ken and Ajay Sethi. A Communication Placement
Framework for Unified Dependency and Data-Flow Analysis.
Proceedings of the Third International Conference on High
Performance Computing. India, December 1996.

[25] Kimelman, Doug, Tova Roth, Hayden Lindsey, and Sandy
Thomas. A Tool for Partitioning Distributed Object Applica-
tions Based on Communication Dynamics and Visual Feed-
back. Proceedings of the Advanced Technology Workshop,

Third USENIX Conference on Object-Oriented Technologies
and Systems. Portland, OR, June 1997.

[26] Li, Kai and P. Hudak. Memory Coherence in Shared Virtual
Memory Systems. Transactions on Computer Systems,
7(4):321-359, 1989.

[27] Michel, Janet and Andries van Dam. Experience with Distrib-
uted Processing on a Host/Satellite Graphics System. Proceed-
ings of the Third Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’76), pp. 190-195.
Philadelphia, PA, July 1976.

[28] Microsoft Corporation. Microsoft Open Database Connectivity
Software Development Kit. Version 2.0. Microsoft Press,
1994.

[29] Microsoft Corporation. Microsoft Office 97. Version 6.0, Red-
mond, WA, 1997.

[30] Microsoft Corporation. Overview of the Corporate Benefits
System. Microsoft Developer Network, 1997.

[31] Microsoft Corporation. MIDL Programmer’s Guide and Refer-
ence. Windows Platform SDK, Redmond, WA, 1998.

[32] Microsoft Corporation. PhotoDraw 2000. Version 1.0, Red-
mond, WA, 1998.

[33] Naor, Joseph and Leonid Zosin. A 2-Approximation Algo-
rithm for the Directed Multiway Cut Problem. Proceedings of
the 38th IEEE Symposium on Foundations of Computer Sci-
ence, pp. 548-553, 1997.

[34] Nelson, B. J. Remote Procedure Call. Ph.D. Dissertation,
Department of Computer Science. Carnegie-Mellon Univer-
sity, 1981.

[35] Object Management Group. The Common Object Request
Broker: Architecture and Specification, Revision 2.0. vol. Re-
vision 2.0, Framingham, MA, 1995.

[36] Ousterhout, J. K. Techniques for Concurrent Systems. Pro-
ceedings of the Third International Conference on Distributed
Computing Systems, pp. 22-30. Miami/Ft. Lauderdale, FL, Oc-
tober 1982. IEEE.

[37] Polychronopolous, C. D. Parallel Programming and Compil-
ers. Kluwer Academic Publishers, Boston, MA, 1988.

[38] Sarkar, Vivek. Partitioning and Scheduling for Execution on
Multiprocessors. Ph.D. Dissertation, Department of Computer
Science. Stanford University, 1987.

[39] Shapiro, Marc. Prototyping a Distributed Object-Oriented
Operating System on Unix. Proceedings of the Workshop on
Experiences with Distributed and Multiprocessor Systems, pp.
311-331. Fort Lauderdale, FL, October 1989. USENIX.

[40] Stabler, George M. A System for Interconnected Processing.
Ph.D. Dissertation, Department of Applied Mathematics.
Brown University, Providence, RI, 1974.

[41] van Dam, Andries, George M. Stabler, and Richard J. Harring-
ton. Intelligent Satellites for Interactive Graphics. Proceed-
ings of the IEEE, 62(4):483-492, 1974.

[42] Vinoski, Steve. CORBA: Integrating Diverse Applications
within Distributed Heterogeneous Environments. IEEE Com-
munications, 14(2), 1997.

