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Abstract 
Binary standard object models, such as Microsoft’s 

Component Object Model (COM) enable the develop-
ment of not just reusable components, but also an in-
credible variety of useful component services through 
run-time interception of binary standard interfaces.  
Interception of binary components can be used for con-
formance testing, debugging, profiling, transaction 
management, serialization and locking, cross-standard 
middleware interoperability, automatic distributed par-
titioning, security enforcement, clustering, just-in-time 
activation, and transparent component aggregation. 

We describe the implementation of an interception 
and instrumentation system tested on over 300 COM 
binary components, 700 unique COM interfaces, 2 mil-
lion lines of code, and on 3 major commercial-grade 
applications including Microsoft PhotoDraw 2000.  
The described system serves as the foundation for the 
Coign Automatic Distributed Partitioning System 
(ADPS), the first ADPS to automatically partition and 
distribute binary applications. 

While the techniques described in this paper were 
developed specifically for COM, they have relevance to 
other object models with binary standards, such as in-
dividual CORBA implementations. 

1. Introduction 

Widespread adoption of Microsoft’s Component Ob-
ject Model (COM) [16, 25] standard has produced an 
explosion in the availability of binary components, re-
usable pieces of software in binary form.  It can be ar-
gued that this popularity is driven largely by COM’s 
binary standard for component interoperability. 

While binary compatibility is a great boon to the 
market for commercial components, it also enables a 
wide range of unique component services through in-
terception.  Because the interfaces between COM com-
ponents are well defined by the binary standard, a 

component service can exploit the binary standard to 
intercept inter-component communication and interpose 
itself between components. 

Interception of binary components can be used for 
conformance testing, debugging, distributed communi-
cation, profiling, transaction management, serialization 
and locking, cross-standard middleware inter-
operability, automatic distributed partitioning, security 
enforcement, clustering and replication, just-in-time 
activation, and transparent component aggregation. 

In this paper, we describe an interception system 
proven on over 300 COM binary components, 700 
unique COM interfaces, and 2 million lines of code [5].  
We have extensively tested our COM interception sys-
tem on three major commercial-grade applications: the 
MSDN Corporate Benefits Sample [12], Microsoft 
PhotoDraw 2000 [15], and the Octarine word-processor 
from the Microsoft Research COM Applications Group.  
The interception system serves as the foundation for the 
Coign Automatic Distributed Partitioning System 
(ADPS) [7] [8], the first ADPS to automatically parti-
tion and distribute binary applications. 

In the next section, we describe the fundamental fea-
tures of COM as they relate to the interception and in-
strumentation of COM applications.  Sections 3 and 4 
explain and evaluate our mechanisms for intercepting 
object instantiation requests and inter-object communi-
cation respectively.  We describe related work in Sec-
tion 5.  In Section 6, we present our conclusions and 
propose future work. 

2. COM Fundamentals 

COM is a standard for creating and connecting com-
ponents.  A COM component is the binary template 
from which a COM object is instantiated.  Due to 
COM’s binary standard, programmers can easily build 
applications from components, even components for 
which they have no source code.  COM’s major fea-
tures include multiple interfaces per object, mappings 
for common programming languages, standard-
mandated binary compatibility, and location-transparent 
invocation. 
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2.1. Polymorphic Interfaces 

All first-class communication in COM takes place 
through interfaces.  An interface is a strongly typed 
reference to a collection of semantically related func-
tions.  An interface is identified by a 128-bit globally 
unique identifier (GUID).  An explicit agreement be-
tween two components to communicate through a 
named interface contains an implicit contract of the 
binary representation of the interface. 

Microsoft Interface Definition Language (MIDL) 
Figure 1 contains the definitions of two interfaces: 

IUnknown and Istream in the Microsoft Interface 
Definition Language (MIDL).  Syntactically, MIDL is 
very similar to C++.  To clarify the semantic features of 
interfaces, MIDL attributes (enclosed in square brackets 
[]) can be attached to any interface, member function, 
or parameter.  Attributes specify features such as the 
data-flow direction of function arguments, the size of 
dynamic arrays, and the scope of pointers.  For exam-
ple, the [in, size_is(cb)] attribute on the pb 
argument of the Write function in Figure 1 declares 
that pb is an input array with cb elements.   

[uuid(00000000-0000-0000-C000-000000000046)] 
interface IUnknown 
{ 
    HRESULT QueryInterface( 
       [in] REFIID riid,  
       [out,iid_is(riid)] void **ppObj); 
    ULONG AddRef(); 
    ULONG Release(); 
}; 
 
[uuid(b3c11b80-9e7e-11d1-b6a5-006097b010e3)] 
interface IStream : IUnknown 
{ 
    HRESULT Seek( 
       [in] LONG nPos); 
    HRESULT Read( 
       [out,size_is(cb)] BYTE *pb,  
       [in] LONG cb); 
    HRESULT Write( 
       [in,size_is(cb)] BYTE *pb,  
       [in] LONG cb); 
}; 

 
Figure 1.  MIDL for Two Interfaces.   
The MIDL definition of an interface describes its member 
functions and their parameters in sufficient detail to support 
location-transparent invocation. 

IUnknown 
The IUnknown interface, listed in Figure 1, is spe-

cial.  All COM objects must support IUnknown.  Each 
COM interface must include the three member func-
tions from IUnknown, namely: QueryInterface, 
AddRef, and Release.  AddRef and Release are 

reference-counting functions for lifetime management.  
When an object’s reference count goes to zero, the ob-
ject is responsible for freeing itself from memory. 

COM objects can support multiple interfaces.  Cli-
ents dynamically bind to a new interface by calling 
QueryInterface.  QueryInterface takes as 
input the GUID of the interface to which the client 
would like to bind and returns a pointer to the new in-
terface.  Through run-time invocation of Query-
Interface, clients can determine the exact 
functionality supported by any object. 

2.2. Common Language Mappings 

The MIDL compiler maps interface definitions into 
formats usable by common programming languages. 
Figure 2 contains the C++ abstract classes generated by 
the MIDL compiler, for the interfaces in Figure 1.  
MIDL has straightforward mappings into other com-
piled languages such as C and Java.  In addition, the 
MIDL compiler can store metadata in binary files called 
type libraries.  Many development tools can import 
type libraries.  Type libraries are well suited for script-
ing languages such as the Visual Basic Scripting Edi-
tion in Internet Explorer [11]. 

class IUnknown 
{ 
  public: 
    virtual HRESULT QueryInterface( 
                     REFIID riid,  
                     void **ppObj) = 0; 
    virtual ULONG AddRef() = 0; 
    virtual ULONG Release() = 0; 
}; 
 

class IStream : IUnknown 
{ 
  public: 
    virtual HRESULT Seek( 
                     LONG nPos) = 0; 
    virtual HRESULT Read( 
                     BYTE *pb,  
                     LONG cb) = 0; 
    virtual HRESULT Write( 
                     BYTE *pb,  
                     LONG cb) = 0; 
};  

Figure 2.  C++ Language Mapping.   
The MIDL compiler maps a COM interface into an abstract 
C++ class. 

2.3. Binary Compatibility 

In addition to language mappings, COM specifies a 
platform-standard binary mapping for interfaces.  The 
binary format for a COM interface is similar to the 
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common format of a C++ virtual function table (VTBL, 
pronounced “V-Table”).  All references to interfaces 
are stored as interface pointers (an indirect pointer to a 
virtual function table).  Figure 3 shows the binary map-
ping of the IStream interface.   

Each object is responsible for allocating and releas-
ing the memory occupied by its interfaces.  Quite often, 
objects place per-instance interface data immediately 
following the interface virtual-function-table pointer.  
With the exception of the virtual function table and the 
pointer to the virtual function table, the object memory 
area is opaque to the client. 

The standardized binary mapping enforces COM’s 
language neutrality.  Any language that can call a func-
tion through a pointer can use COM objects.  Any lan-
guage that can export a function pointer can create 
COM objects. 

COM components are distributed either in applica-
tion executables (.EXE files) or in dynamic link librar-
ies (DLLs).   
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Figure 3.  Binary Interface Mapping. 
COM defines a standard binary mapping for interfaces.  The 
format is similar to the common representation of a C++ pure 
abstract virtual function table. 

2.4. Location Transparency 

Binary compatibility is important because it facili-
tates true location transparency.  A client can commu-
nicate with a COM object in the same process (in-
process), in a different process (cross-process), or on an 
entirely different machine (cross-machine).  The loca-
tion of the COM object is completely transparent to 
both client and component because in each case invoca-
tion takes place through an interface’s virtual function 
table.  

Interface Proxies and Stubs 
Location transparency is achieved through proxies 

and stubs generated by the MIDL compiler.  Proxies 
marshal function arguments into a single message that 
can be transported between address spaces or between 
machines.  Stubs unmarshal messages into function 
calls.  Interface proxies and stubs copy data structures 

with deep-copy semantics.  In theory, proxies and stubs 
come in pairs—the first for marshaling and the second 
for unmarshaling.  In practice, COM generally com-
bines code for the proxy and stub for a specific inter-
face into a single reusable binary.  COM proxies and 
stubs are similar in purpose to CORBA [19, 23] stubs 
and skeletons.  However, their implementations vary 
because COM proxies and stubs are only used when 
inter-object communication crosses process boundaries. 

In-Process Communication 
For best performance, components reside in the cli-

ent’s address space.  An application invokes an in-
process object directly through the interface virtual 
function table.  In-process communication has the same 
cost as a C++ virtual function call because it uses nei-
ther interface proxies nor stubs.  The primary drawback 
of in-process objects is that they share the same protec-
tion domain as the application.  The application cannot 
protect itself from erroneous or malicious resource ac-
cess by the object. 

Cross-Process Communication 
To provide the application with security, objects can 

be located in another operating-system process.  The 
application communicates with cross-process objects 
through interface proxies and stubs.  The application 
invokes the object through an indirect call on an inter-
face virtual function table.  In this case, however, the 
virtual function table belongs to the interface proxy.  
The proxy marshals function arguments into a buffer 
and transfers execution to the object’s address space 
where the interface stub unmarshals the arguments and 
calls the object through the interface virtual function 
table in the target address space.  Marshaling and un-
marshaling are completely transparent to both applica-
tion and component.  

Cross-Machine Communication 
Invocation of distributed objects is very similar to 

invocation of cross-process objects.  Cross-machine 
communication uses the same interface proxies and 
stubs as cross-process communication.  The primary 
difference is that once the function arguments have 
been marshaled, COM sends the serialized message to 
the destination machine using the DCOM protocol [3], 
a superset of the Open Group’s Distributed Computing 
Environment Remote Procedure Call (DCE RPC) pro-
tocol [4].  

3. Interception of Object Instantiations 

COM objects are dynamic objects.  Instantiated dur-
ing an application’s execution, objects communicate 
with the application and each other through dynami-
cally bound interfaces.  An object frees itself from 
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memory after all references to it have been released by 
the application and other objects.   

Applications instantiate COM objects by calling API 
functions exported from a user-mode COM DLL.  Ap-
plications bind to the COM DLL either statically or 
dynamically.   

Static binding to a DLL is very similar to the use of 
shared libraries in most UNIX systems.  Static binding 
is performed in two stages.  At link time, the linker em-
beds in the application binary the name of the DLL, a 
list of all imported functions, and an indirect jump table 
with one entry per imported function.  At load time, the 
loader maps all imported DLLs into the application’s 
address space and patches the indirect jump table en-
tries to point to the correct entry points in the DLL im-
age.   

Dynamic binding occurs entirely at run time.  A 
DLL is loaded into the application’s address space by 
calling the LoadLibrary Win32 function.  After 
loading, the application looks for procedures within the 
DLL using the GetProcAddress function.  In con-
trast to static binding, in which all calls use an indirect 
jump table, GetProcAddress returns a direct pointer 
to the entry point of the named function. 

BindMoniker
CoCreateInstance
CoCreateInstanceEx
CoGetClassObject
CoGetInstanceFromFile
CoRegisterClassObject
CreateAntiMoniker
CreateBindCtx
CreateClassMoniker
CreateDataAdviseHolder
CreateFileMoniker
CreateGenericComposite
CreateItemMoniker
CreateOleAdviseHolder
CreatePointerMoniker
GetRunningObjectTable
MkParseDisplayName
MonikerCommonPrefixWith
MonikerRelativePathTo
OleCreate

OleCreateDefaultHandler
OleCreateEx
OleCreateFontIndirect
OleCreateFromData*
OleCreateFromFile*
OleCreateLink*
OleCreateStaticFromData
OleGetClipboard
OleLoad
OleLoadFromStream
OleLoadPicture
OleLoadPictureFile
OleRegEnumFormatEtc
OleRegEnumVerbs
StgCreateDocfile
StgCreateDocfileOn*
StgGetIFillLockBytesOn*
StgOpenAsyncDocfileOn*
StgOpenStorage
StgOpenStorageOn*  

Figure 4.  Object Instantiation Functions.   
COM supports approximately 50 functions capable of creat-
ing instantiation a new object.  However, most instantiations 
request use either CoCreateInstance or CoCreate-
InstanceEx. 

The COM DLL exports approximately 50 functions 
capable of instantiating new objects; these are listed in 
Figure 4.  With few exceptions, applications instantiate 
objects exclusively through the CoCreateInstance 
function or its successor, CoCreateInstanceEx.  
From the instrumentation perspective there is little dif-
ference among the COM API functions.  For brevity, 

we use CoCreate as a placeholder for any function 
that instantiates new COM objects. 

3.1. Alternatives for Instantiation Interception 

To intercept all object instantiations, instrumentation 
should be called at the entry and exit of each object 
instantiation function.   

Figure 5 enumerates the techniques available for in-
tercepting functions; namely: source-code call replace-
ment, binary call replacement, DLL redirection, DLL 
replacement, breakpoint trapping, and inline redirec-
tion. 

 

_COM_CoCreate: 
  trap 
  mov   ebp,esp 

;; COM DLL Binary  
;;    Replacement 

… 
_COM_CoCreate: 
  call  XCoCreate 
  push  ebp 
  mov   ebp,esp 

… 

;; COM DLL Binary 
… 

_COM_CoCreate: 
  push  ebp 
  mov   ebp,esp 

… 

 
 

  push  Clsid 
  call  [XCoCreate] 

 
CoCreate: 
  word  _X_XCoCreate 

// Application Source 
… 

  CoCreate(Clsid) 
… 

;; Application Binary 
… 

  push  Clsid 
  call  [CoCreate] 

… 
CoCreate: 
  word  _COM_CoCreate 

… 

;; COM DLL Binary 
 

… 
_COM_CoCreate: 
  push  ebp 
  mov   ebp,esp 

… 

 
 

  XCoCreate (Clsid) 
1 

2 

3 

4 

5 

_COM_CoCreate: 
  jmp   _X_XCoCreate 
  mov   ebp,esp 

6 

 
Figure 5.  Intercepting Instantiation Calls.   
Object instantiation calls can be intercepted by 1) call re-
placement in the application source code; 2) call replacement 
in the application binary; 3) DLL redirection; 4) DLL re-
placement; 5) trapping in the COM DLL; and 6) inline redi-
rection in the COM DLL. 

Call replacement in application source code.   
Calls to the COM instantiation functions can be re-

placed with calls to the instrumentation by modifying 
application source code.  The major drawback of this 
technique is that it requires access to application source 
code. 

Call replacement in application binary code.   
Calls to the COM instantiation functions can be re-

placed with calls to the instrumentation by modifying 
application binaries.  While this technique does not 
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require source code, replacement in the application bi-
nary does require the ability to identify all applicable 
call sites.  To facilitate identification of all call sites, the 
application must be linked with substantial symbolic 
information. 

DLL redirection.   
The import entries for COM APIs in the application 

can be modified to point to another library.  Redirection 
to another DLL can be achieved either by replacing the 
name of the COM DLL in the import table before load 
time or by replacing the function addresses in the indi-
rect jump table after load.  Unfortunately, redirecting to 
another DLL through either of the import tables fails to 
intercept dynamic calls using LoadLibrary and 
GetProcAddress. 

DLL replacement.   
The only way to guarantee interception of a specific 

DLL function is to insert the interception mechanism 
into the function code.  The most obvious method is to 
replace the COM DLL with a new version containing 
instrumentation.  DLL replacement requires source ac-
cess to the COM DLL library.  It also unnecessarily 
penalizes all applications using the COM DLL, whether 
they use the additional functionality or not. 

Breakpoint trapping of the COM DLL.   
Rather than replace the DLL, the interception 

mechanism can be inserted into the image of the COM 
DLL after it has been loaded into the application ad-
dress space.  At run time, the instrumentation system 
can insert a breakpoint trap at the start of each target 
instantiation function.  When execution reaches the 
function entry point, a debugging exception is thrown 
by the trap and caught by the instrumentation system.  
The major drawback to breakpoint trapping is that de-
bugging exceptions suspend all application threads.  In 
addition, the debug exception must be caught in a sec-
ond operating-system process.  Interception via break-
point trapping has a high performance penalty. 

Inline redirection of the COM DLL.   
The most favorable method for intercepting DLL 

functions is to inline the redirection call.  At load time, 
the first few instructions of the target instantiation func-
tion are replaced with a jump instruction to a detour 
function in the instrumentation.  Replacing the first few 
instructions is usually a trivial operation as these in-
structions are normally part of the function prolog gen-
erated by a compiler and not the targets of any 
branches.  The replaced instructions are used to create a 
trampoline.  When the modified target function is in-
voked, the jump instruction transfers execution to the 
detour function in the instrumentation.  The detour 
function passes control to the remainder of the target 
function by invoking the trampoline.   

3.2. Evaluation of Instantiation Interception  

Our instrumentation system uses inline indirection to 
intercept object instantiation calls.  At load time, our 
instrumentation replaces the first few instructions of the 
target function with a jump to the instrumentation de-
tour function.  Pages for code sections are mapped into 
a processes’ address space using copy-on-write seman-
tics.  Calls to VirtualProtect and Flush-
InstructionCache enable modification of code 
pages at run time.  Instructions removed from the target 
function are placed in a statically allocated trampoline 
routine.  As shown in Figure 6, the trampoline allows 
the detour function to invoke the target function without 
interception. 

 ;; COM DLL Binary 
… 

_COM_CoCreate: 
  jmp  _Coign_CoCreate 
_COM_CoCreate+5: 
  push edi 

… 
 

 
 
;; Trampoline 

… 
_Trp_CoCreate: 
  push ebp 
  mov  ebp,esp 
  push ebx 
  push esi 
  jmp  _COM_CoCreate+5 

… 

;; COM DLL Binary 
… 

_COM_CoCreate: 
  push ebp 
  mov  ebp,esp 
  push ebx 
  push esi 
  push edi 

… 
 

;; Trampoline 
… 

_Trp_CoCreate: 
  jmp _COM_CoCreate 

… 
 

1 

2 

 
Figure 6.  Inline Redirection.   
The first few instructions of the target API function are 
moved to the trampoline and replaced with a jump to the in-
terception system.  The trampoline effectively invokes the 
API function without interception.  On the Intel x86 architec-
ture, a jump instruction occupies five bytes. 

Although inline indirection is complicated by the 
variable-length instruction set of the Intel x86 architec-
ture, its low run-time cost and versatility more than 
offset the development penalty.  Inline redirection of 
the CoCreateInstance function has less than a 3% 
overhead, which is more than an order of magnitude 
smaller than the penalty for breakpoint trapping.  Table 
1 lists the average invocation time of the target function 
within a loop consisting of 10,000 iterations.  The invo-
cation times include the cost of redirection, but not any 
additional instrumentation.  Unlike DLL redirection, 
inline redirection correctly intercepts both statically and 
dynamically bound invocations.  Finally, inline redirec-
tion is much more flexible than DLL redirection or ap-
plication code modification.  Inline redirection of any 
API function can be selectively enabled for each proc-
ess individually at load time based on the needs of the 
instrumentation. 
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To apply inline redirection, our instrumentation sys-
tem must be loaded into the application’s address space 
before the application executes.  The current system is 
packaged as a DLL and post-linked to the application 
binary with a binary rewriter.  Once loaded into the 
application address space, instrumentation is inlined 
into system DLL images.  Mechanisms for inserting the 
interception system into an application’s address space 
are described fully in a paper on our Detours package 
[6]. 

4. Intercepting Inter-Object Calls 

The bulk the interception system’s functionality is 
devoted to identifying interfaces, understanding their 
relationships to each other, and quantifying the com-
munication through them.  This section describes how 
our system intercepts interface calls. 

Invoking an interface member function is similar to 
invoking a C++ member function.  The first argument 
to any interface member function is the “this” 
pointer, the pointer to the interface.  Figure 7 lists the 
C++ and C syntax to invoke an interface member func-
tion. 

Function

vs.

Interception Technique
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C
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ns

ta
nc

e

Direct Call 0.11us 14.84us

DLL Redirection 0.14us 15.19us

DLL Replacement 0.14us 15.19us

Breakpoint Trap 229.56us 265.85us

Inline Redirection 0.15us 15.19us
 

Table 1.  Interception Times.   
Listed are the times for intercepting either an empty function 
or CoCreateInstance on a 200MHz Pentium PC. 

4.1. Alternatives for Invocation Interception 

There are four techniques, described below, avail-
able to intercept member function invocations: 

Replace the interface pointer. 
Rather than return the object’s interface pointer, the 

interception system can return a pointer to an interface 
of its own making.  When the client attempts to invoke 
an interface member function, it will invoke the instru-

mentation, not the object.  After taking appropriate 
steps, the instrumentation “forwards” the request to the 
object by directly invoking the object interface.  In one 
sense, replacing the interface pointer is functionally 
similar to using remote interface proxies and stubs.  For 
remote marshaling, COM replaces a remote interface 
pointer with a local interface pointer to an interface 
proxy. 

Replace the interface virtual function table pointer.  
The runtime can replace the virtual function table 

pointer in the interface with a pointer to an instrumenta-
tion-supplied virtual function table.  The instrumenta-
tion can forward the invocation to the object by keeping 
a private copy of the original virtual function table 
pointer. 

Replace function pointers in the interface virtual 
function table. 
Rather than intercept the entire interface as a whole, the 
interception system can replace each function pointer in 
the virtual function table individually. 

Intercept object code. 
Finally, the instrumentation system can intercept mem-
ber-function calls at the actual entry point of the func-
tion using inline redirection. 

IStream *pIStream;

// C++ Syntax
pIStream->Seek(nPos);

// C Syntax
pIStream->pVtbl->pfSeek(pIStream, nPos);

 
Figure 7.  Invoking an Interface Function.   
Clients invoke interface member functions through the inter-
face pointer.  The first parameter to the function (hidden in 
C++) is the “this” pointer to the interface. 

4.2. COM Programming Idioms 

The choice of an appropriate technique for intercept-
ing member functions is constrained by COM’s binary 
standard for object interoperability and common COM 
programming idioms.  Our interception system attempts 
to deduce the identity of the each called object, the 
static type of the called interface, the identity of the 
called member function, and the static types of all func-
tion parameters.  In addition, our interception degrades 
gracefully.  Even if not all of the needed information 
can be determined, the interception system continues to 
function correctly.   

By design, the COM binary standard restricts the 
implementation of interfaces and objects to the degree 
necessary to insure interoperability.  COM places four 
specific restrictions on interface design to insure object 
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interoperability.  First, a client accesses an object 
through its interface pointers.  Second, the first item 
pointed to by an interface pointer must be a pointer to a 
virtual function table.  Third, the first three entries of 
the virtual function table must point to the Query-
Interface, AddRef and Release functions for 
the interface.  Finally, if a client intends to use an inter-
face, it must insure that the interface’s reference count 
has been incremented.   

As long as an object programmer obeys the four 
rules of the COM binary standard, he or she is com-
pletely free to make any other implementation choices.  
For example, the component programmer is free to 
choose any appropriate memory layout for object and 
per-instance interface data.  This lack of implementa-
tion constraint is not an accident.  The original design-
ers of COM were convinced that no one 
implementation (even of something as universal as the 
QueryInterface function) would be suitable for all 
users.  Instead, they attempted to create a specification 
that enabled binary interoperability while preserving all 
other degrees of freedom. 

Specification freedom breeds implementation diver-
sity.  This diversity is manifest in the number of com-
mon programming idioms employed by COM 
component developers.  These idioms are described 
here in sufficient detail to highlight the constraints they 
place on the implementation of a COM interception and 
instrumentation system.  Each of these idioms has bro-
ken at least one other COM interception system or pre-
liminary versions of our interception system. 
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Figure 8.  Simple Object Layout.  
The object instance is allocated as a single memory block.  
The block contains one VTBL pointer for each supported 
interface, an instance reference count, and other object-
specific data.  All interfaces share common implementations 
of QueryInterface, AddRef, and Release. 

Simple Multiple-Interface Objects 
Most objects support at most roughly a dozen inter-

faces with no duplicates.  It is common practice to lay 
out these simple objects in a memory block containing 
one VTBL pointer per interface, a reference count, and 
internal object variables; see Figure 8.  Within the ob-

ject’s member functions, a constant value is added to 
the “this” pointer to find the start of the memory 
block and to access object variables.  All of the object 
interfaces use a common pair of AddRef and 
Release functions to maintain the object reference 
count. 

Multiple-Instance and Tear-off Interfaces 
Sometimes, an object must support multiple copies 

of a single interface.  Multiple-instance interfaces are 
often used for iteration.  A new instance of the interface 
is allocated for each client.  Multiple-instance interfaces 
are typically implemented using a tear-off interface.  A 
tear-off interface is allocated as a separate memory 
block.  The tear-off interface contains the interface’s 
VTBL pointer, an interface-specific reference count, a 
pointer to the object’s primary memory block, and any 
instance-specific data.  In addition to multiple-instance 
interfaces, tear-off interfaces are often used to imple-
ment rarely accessed interfaces when object memory 
size must be minimized, (i.e. when the cost of the extra 
four bytes for a VTBL pointer per object instance is too 
expensive). 

Universal Delegators 
Objects commonly use a technique called delegation 

to export interfaces from another object to a client.  
Delegation is often used when one object aggregates 
services from several other objects into a single entity.  
The aggregating object exports its own interfaces, 
which delegate their implementation to the aggregated 
objects. The delegating interface calls the aggregated 
interface.  This implementation is interface specific, 
code intensive, and requires an extra procedure call 
during invocation.  The implementation is code inten-
sive because delegating code must be written for each 
interface type.  The extra procedure call becomes par-
ticularly important if the member function has a large 
number of arguments or multiple delegators are nested 
through layers of aggregation. 

An obvious optimization and generalization of dele-
gation is the universal delegator.  A universal delegator 
is a type-independent, re-usable delegator.  The data 
structure for a universal delegator consists of a VTBL 
pointer, a reference count, a pointer to the aggregated 
interface, and a pointer to the aggregating object.  Upon 
invocation, a member function in the universal delega-
tor replaces the “this” pointer on the argument stack 
with the pointer to the delegated interface and jumps 
directly to the entry point of the appropriate member 
function in the aggregated interface.  The universal 
delegator is “universal” because its member functions 
need know nothing about the type of interface to which 
they are delegating; they reuse the invoking call frame.  
Implemented in a manner similar to tear-off interfaces, 
universal delegators are instantiated on demand, one per 
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delegated interface with a common VTBL shared 
among all instances. 

Explicit VTBL Pointer Comparison. 
Rather than using explicit constant offsets, some 

COM components implemented in C locate the start of 
an object’s main memory block by comparing VTBL 
interface pointers.  For example, the 
IStream::Seek member function of the object in 
Figure 8 starts with its “this” pointer pointing to 
pIStreamVtbl.  The object locates the start of its 
memory structure by decrementing the “this” pointer 
until it points to a VTBL pointer equal to the known 
location of the VTBL for IUnknown.  This calculation 
will produce erroneous results if an interception system 
has replaced the VTBL pointer. 

Explicit Function Pointer Comparison. 
In a manner similar to VTBL pointer comparison, 

some components perform calculations assuming that 
function pointers in the VTBL will have known values.  
These calculations break if the interception system has 
replaced a VTBL function pointer. 

4.3. Interface Wrapping 

Our instrumentation system intercepts invocation of 
interface member functions by replacing the interface 
pointer given to the object’s client with an interface 
pointer to a specialized universal delegator, the inter-
face wrapper.  The implementation of interface wrap-
pers was chosen after evaluating the functionality of 
possible alternatives and testing their performance 
against a suite of object-based applications.   

For brevity, we often refer to the process of creating 
an individual interface wrapper and replacing the inter-
face pointer with a pointer to an interface wrapper as 
wrapping the interface.  We also refer to interfaces as 
being wrapped or unwrapped.  A wrapped interface is 
one to which clients receive a pointer to the interface 
wrapper.  An unwrapped interface is one either without 
a wrapper or with the interface wrapper removed to 
yield the original object interface. 

Interface wrapping provides an easy way to identify 
an interface and a ready location to store information 
about the interface: in the per-instance interface wrap-
per.  Unlike interface wrapping, inline redirection must 
store per-instance data in an external dictionary.  Ac-
cess to the instance-data dictionary is made difficult 
because member functions are often re-used by multiple 
interfaces of dissimilar type.  This is definitely the case 
for universal delegation, but common even for less ex-
otic coding techniques.  As a rule, almost all objects 
reuse the same implementation of QueryInterface, 
AddRef, and Release for multiple interfaces. 

Interface wrapping is robust, does not break applica-
tion code, and is extremely efficient.  Finally, as we 

shall see in the next section, interface wrapping is cen-
tral to correctly identifying the object that owns an in-
terface. 

4.4. The Interface Ownership Problem  

In addition to intercepting interface calls, the inter-
ception system attempts to identify which object owns 
an interface.  A major breakthrough in the development 
of our interception system was the discovery of heuris-
tics to find an interface’s owning object. 

The interface ownership problem is complicated be-
cause to COM, to the application, and to other objects, 
an object is visible only as a loosely coupled set of in-
terfaces.  The object can be identified only through one 
of its interfaces; it has no explicit object identity. 

COM supports the concept of an object identity 
through the IUnknown interface.  As mentioned in 
Chapter 2, every interface must inherent from and im-
plement the three member functions of IUnknown, 
namely: QueryInterface, AddRef, and Re-
lease.  Through the QueryInterface function, a 
client can query for any interface supported by the ob-
ject.  Every object must support the IUnknown inter-
face.  An object’s IUnknown interface pointer is the 
object’s COM identity.  The COM specification states 
that a client calling QueryInterface-
(IID_IUnknown) on any interface must always re-
ceive back the same IUnknown interface pointer (the 
same COM identity).  

Unfortunately, an object need not provide the same 
COM identity (the same IUnknown interface pointer) 
to different clients.  An object that exports one COM 
identity to one client and another COM identity to a 
second client is said to have a split identity.  Split iden-
tities are especially common in applications in which 
objects are composed together through a technique 
known as aggregation.  In aggregation, multiple objects 
operate as a single unit by exporting a common 
QueryInterface function to all clients.  Due to 
split identities, COM objects have no system-wide, 
unique identifier. 

The Obvious Solution 
A client can query an interface for its owning 

IUnknown interface (its COM identity).  In the most 
obvious implementation, the interception system could 
maintain a list of known COM identities for each ob-
ject.  The runtime could identify the owning object by 
querying an interface for its COM identity and compar-
ing it to a dictionary of known identities.   

In practice, calling QueryInterface to identify 
the owning object fails because QueryInterface is 
not free of side effects.  QueryInterface incre-
ments the reference count of the returned interface.  
Calling Release on the returned interface would dec-
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rement its reference count.  However, the Release 
function also has side effects.  Release instructs the 
object to check if its reference count has gone to zero 
and to free itself from memory in the affirmative.  
There are a few identification scenarios under which the 
object’s reference count does in fact go to zero.  In the 
worse case scenario, attempting to identify an inter-
face’s owner would produce the unwanted side effect of 
instructing the object to remove itself from memory! 

Sources of Interface Pointers 
To find a correct solution to the interface ownership 

problem, one must understand how a client receives an 
interface pointer.  It is also important to understand 
what information is available about the interface.  A 
client can receive an object interface pointer in one of 
four ways: from one of the COM API object instantia-
tion functions; by calling QueryInterface on an 
interface to which it already holds a pointer; as an out-
put parameter from one of the member functions of an 
interface to which it already holds a pointer; or as an 
input parameter on one of its own member functions.  
Recall that our system intercepts all COM API func-
tions for object instantiation.  At the time of instantia-
tion, the interception system wraps the interface and 
returns to the caller a pointer to the interface wrapper.   

An Analogy for the Interface Ownership Problem 
The following analogy is helpful for understanding 

the interface ownership problem.  A person finds her-
self in a large multi-dimensional building.  The building 
is divided into many rooms with doors leading from 
one room to another.  The person is assigned the task of 
identifying all of the rooms in the building and deter-
mining which doors lead to which rooms.  Unfortu-
nately, all of the walls in the building are invisible.  
Additionally, from time to time new doors are added to 
the building and old doors are removed from the build-
ing. 

Mapping the analogy to the interface ownership 
problem; the building is the application, the rooms are 
the objects, and the doors are the interfaces. 

We describe the solution first in terms of the invisi-
ble room analogy, then as it applies to the interface 
ownership problem.  In the analogy, the solution is to 
assign each room a different color and to paint the 
doors of that room as they are discovered.  The person 
starts her search in one room.  She assigns the room a 
color—say red.  Feeling her way around the room, she 
paints one side of any door she can find without leaving 
the room.  The door must belong to the room because 
she didn’t pass through a door to get to it.  After paint-
ing all of the doors, she passes through one of the doors 
into a new room.  She assigns the new room a color—
say blue.  She repeats the door-painting algorithm for 
all doors in the blue room.  She then passes through one 

of the doors and begins the process again.  The person 
repeats the process, passing from one room to another. 

If at some point the person finds that she has passed 
into a room where the door is already colored, then she 
knows the identity of the room (by the color on the 
door).  She looks for any new doors in the room, paints 
them the appropriate color, and finally leaves through 
one of the doors to continue her search. 

The Solution to the Interface Ownership Problem 
From the analogy, the solution to the interface own-

ership problem is quite simple.  Each object is assigned 
a unique identifier.  Each thread holds in a temporary 
variable the identity of the object in which it is cur-
rently executing.  Any newly found interfaces are in-
strumented with an interface wrapper.  The current 
object identity is recorded in the interface wrapper as 
the owning object.  Finding the doors in a room is 
analogous to examining interface pointers passed as 
parameters to member functions.  When execution exits 
an object, any unwrapped interface pointers passed as 
parameters are wrapped and given the identity of their 
originating object.  By induction, if an interface pointer 
is not already wrapped, then it must belong to the cur-
rent object. 

The most important invariant for solving the inter-
face ownership problem is that at any time the intercep-
tion system must know exactly which object is 
executing.  Stored in a thread-local variable, the current 
object identifier is updated as execution crosses through 
interface wrappers.  The new object identifier is pushed 
onto a local stack on entry to an interface.  On exit from 
an interface wrapper (after executing the object’s code), 
the object identifier is popped from the top of the stack.  
At any time, the interception system can examine the 
top values of the identifier stack to determine the iden-
tity of the current object and any calling objects. 

There is one minor caveat in implementing the solu-
tion to the interface ownership problem.  While clients 
should only have access to interfaces through interface 
wrappers, an object should never see an interface wrap-
per instead of one of its own interfaces because the ob-
ject uses its interfaces to access instance-specific data.  
An object could receive an interface wrapper to one of 
its own interfaces if a client passes an interface pointer 
back to the owning object as an input parameter on an-
other call.  The solution is simply to unwrap an inter-
face pointer whenever the pointer is passed as a 
parameter to its owning object. 

4.5. Acquiring Static Interface Metadata 

Interface wrapping requires static metadata about in-
terfaces.  The interface wrapper must be able to identify 
all interface pointers passed as parameters to an inter-
face member function.  There are a number of sources 
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for acquiring static interface metadata.  Possible sources 
include the MIDL description of an interface, COM 
type libraries, and interface proxies and stubs. 

Acquiring static interface metadata from the MIDL 
description of an interface requires static analysis tools 
to parse and extract the appropriate metadata from the 
MIDL source code.  In essence, it needs the MIDL 
compiler.  Ideally, interface static metadata should be 
available to the interface wrapping code in a compact 
binary form. 

Another alternative is to acquire static interface 
metadata from the COM type libraries.  COM type li-
braries allow access to COM objects from interpreters 
for scripting languages, such as JavaScript [18] or Vis-
ual Basic [13].  While compact and readily accessible, 
type libraries describe only a subset of possible COM 
interfaces.  Interfaces described in type libraries cannot 
have multiple output parameters.  In addition, the meta-
data in type libraries does not contain sufficient infor-
mation to determine the size of all possible dynamic 
array parameters.   

Static interface metadata is also contained in the in-
terface proxies and stubs.  MIDL-generated proxies and 
stubs contain marshaling metadata encoded in strings of 
marshaling operators (called MOP strings).  Static inter-
face metadata can be acquired easily by interpreting the 
MOP strings.  Unfortunately, the MOP strings are not 
publicly documented.  Through an extensive process of 
trial and error involving more than 600 interfaces, at the 
University of Rochester, we were able to determine the 
meanings of all MOP codes emitted by the MIDL com-
piler.   

Our interception system contains a MOP interpreter 
and a MOP precompiler.  A heavyweight, more accu-
rate interception subsystem uses our homegrown MOP 
interpreter.  A lightweight interception subsystem uses 
the MOP precompiler to simplify the MOP strings (re-
moving full marshaling information) before application 
execution. 

The MOP precompiler uses dead-code elimination 
and constant folding to produce an optimized metadata 
representation.  The simplified metadata describes all 
interface pointers passed as interface parameters, but 
does not contain information to calculate parameter 
sizes or fully walk pointer-rich arguments.  Processed 
by a secondary interpreter, the simplified metadata al-
lows the lightweight runtime to wrap interfaces in a 
fraction of the time required with full MOP strings. 

While other COM instrumentation systems do use 
the MOP strings to acquire static interface metadata, 
ours is the first system to exploit a precompiler to opti-
mize parameter access 

The interception system acquires MOP strings di-
rectly from interface proxies and stubs.  However, in 
some cases, components are distributed with MIDL 
source code, but without interface proxies and stubs.  In 

those cases, the programmer can easily create interface 
proxies and stubs from the IDL sources with the MIDL 
compiler.  OLE ships with about 250 interfaces without 
MOP strings.  We were able to create interface proxies 
and stubs with the appropriate MOP string in under one 
hour using MIDL files from the OLE distribution. 

4.6. Coping With Undocumented Interfaces 

A final difficulty in interface wrapping is coping 
with undocumented interfaces, those interfaces without 
static metadata.  While all documented COM interfaces 
should have static metadata, we have found cases where 
components from the same vendor will use an undocu-
mented interface to communicate with each other.   

When a function call on a documented interface is 
intercepted, the interface wrapper processes the incom-
ing function parameters, creates a new stack frame, and 
calls the object interface.  Upon return from the object’s 
interface, the interface wrapper processes the outgoing 
function parameters and returns execution to the client.  
Information about the number of parameters passed to 
the member function is used to create the new stack 
frame for calling the object interface.  For documented 
interfaces, the size of the new stack frame can easily be 
determined from the marshaling byte codes. 

When intercepting an undocumented interface, the 
interface wrapper has no static information describing 
the size of stack frame used to call the member func-
tion.  The interface wrapper cannot create a stack frame 
to call the object.  It must reuse the existing stack 
frame.  In addition, the interface wrapper must intercept 
execution return from the object in order to preserve the 
interface wrapping invariants used to identify objects 
and to determine interface ownership. 

For function calls on undocumented interfaces, the 
interface wrapper replaces the return address in the 
stack frame with the address of a trampoline function.  
The original return address and a copy of the stack 
pointer are stored in thread-local temporary variables.  
The interface wrapper transfers execution to the object 
directly using a jump rather than a call instruction.   

When the object finishes execution, it issues a return 
instruction.  Rather than return control to the caller—as 
would have happened if the interface wrapper had not 
replaced the return address in the stack frame—
execution passes directly to the trampoline.  As a fortui-
tous benefit of COM’s callee-popped calling conven-
tion, the trampoline can calculate the function’s stack 
frame size by comparing the current stack pointer with 
the copy stored before invoking the object code.  The 
trampoline saves the frame size for future calls, and 
then returns control to the client directly through a jump 
instruction to the temporarily stored return address.   

The return trampoline is used only for the first invo-
cation of a specific member function.  Subsequent calls 



 11

to the same interface member function are forwarded 
directly through the interface wrapper. 

By using the return trampoline, the interception sys-
tem continues to function correctly even when con-
fronted with undocumented interfaces.  To our 
knowledge, our is the only COM instrumentation sys-
tem to tolerate undocumented interfaces.   

4.7. Evaluation of Interface Wrapping 

Detailed in Table 2, wrapping the interface by re-
placing the interface pointer adds a 36% overhead to 
trivial function like IUnknown::AddRef and just a 
3% overhead to a function like IStream::Read.  
Processing the function arguments with interpreted 
MOP strings adds on average about 20% additional 
execution overhead while processing with precompiled 
MOP strings adds under 3% additional overhead.  Re-
placing the interface pointer is preferred over the alter-
native interception mechanisms because it does not 
break under common COM programming idioms. 
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Direct Call 0.19us 15.73us

Replace Interface Pointer 0.26us 16.24us

Replace VTBL 0.26us 16.24us

Replace Function Pointer 0.26us 16.24us

Intercept Object Code 0.30us 16.29us
 

Table 2.  Interface Interception Times.   
Listed are the times for intercepting the IUnknown::-
AddRef and IStream::Read (with 256 bytes of payload 
data) on a 200MHz Pentium PC. 

5. Related Work 

Brown [1, 2] describes an interception system for 
COM using Universal Delegators (UDs).  To use 
Brown’s UD, the application programmer is entirely 
responsible for wrapping COM interfaces.  The pro-
grammer must manually wrap each outgoing or incom-
ing parameter with a special call to the UD code.  While 
providing robust support for applications such as object 

aggregation, Brown’s UD is not suitable for binary-only 
interception and instrumentation. 

HookOle [10] is a general interception system for in-
strumenting COM applications.  Like our system, 
HookOle extracts interface metadata from MIDL MOP 
strings.  However, rather than replacing interface point-
ers, HookOLE replaces function pointers (in the VTBL) 
and assumes that the same function will not be used to 
implement multiple, dissimilarly typed interfaces.  
HookOLE breaks whenever an object uses universal 
delegation.  HookOle provides no support for undocu-
mented interfaces.  The ITest Spy Utility [14] uses 
HookOle to provide a test harness for OLE DB compo-
nents. 

Microsoft Transaction Server (MTS) [21] intercepts 
inter-component communication to enforce transaction 
boundaries and semantics.  MTS wraps COM interfaces 
in a manner similar to our interception system.  How-
ever, MTS supports only a subset of possible COM 
interfaces and does not provide support for undocu-
mented interfaces. 

COM+ [9] provides a generalized mechanism called, 
interceptors, for intercepting communication between 
COM+ objects.  A significant redesign of COM, COM+ 
has complete control over the memory layout of all 
objects.  This control significantly reduces the complex-
ity of interception, but only works for newly designed 
COM+ components.  

COMERA [24] is an extensible remoting architec-
ture for distributed COM communication.  COMERA 
relies on existing DCOM [3] proxies and stubs to inter-
cept cross-process communication.  Neither COMERA 
nor DCOM support in-process interception. 

Eternal [17] intercepts CORBA IIOP-related mes-
sages via the Unix /proc mechanism.  Intercepted 
messages are broadcast to objects replicated for fault 
tolerance.  The /proc mechanism is limited to cross-
process communication and extremely expensive (re-
quiring at least two crossings of process boundaries). 

Finally, a number of CORBA [23] vendors support 
interception and filtering mechanisms.  In general, in-
strumenting COM applications is more difficult than 
equivalent CORBA applications.  COM standardizes 
interface format, but not object format.  Each ORB 
specifies parts of the CORBA object format related to 
interception.  So for example, the interface ownership 
problem has no equivalent in CORBA, but the problem 
of instrumenting binary CORBA application independ-
ent of ORB vendor remains unsolved. 

6. Conclusions and Future Work 

We have described a general-purpose interception 
system for instrumenting COM components and appli-
cations.  Important features of our interception system 
include inline redirection of all COM object-
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instantiation functions, interception of COM interfaces 
through interface wrappers, accurate tracking of inter-
face ownership, and robust support for undocumented 
interfaces. 

Our interception system has been tested on over 300 
COM binary components, 700 unique COM interfaces, 
and 2 million lines of code.  Using our interception sys-
tem, the Coign ADPS has automatically partitioned and 
distributed three major applications including Microsoft 
PhotoDraw 2000. 

While our interception system is COM specific, the 
techniques described are relevant to CORBA ORBs. 
For example, inline redirection and interface wrappers 
could be used to intercept Portable Object Adapter 
(POA) [20] functions and object invocations [22]. 
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