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Abstract. We describe a large scale real-world application of neural networks for the
modelization of heat radiation emitted by a source and observed through the atmo-
sphere. For this problem, thousands of regressors need to be trained and incorporated
into a single model of the process. On such large scale applications, standard tech-
niques for the control of complexity are impossible to implement. We investigate the
interest of i) integrating several regressors into a single neural network, and ii) refining
the learned functions by optimizing simultaneously all regressors over a global func-
tion. The two approaches described offer a solution to these problems, and were crucial
for the development of a fast and accurate model of radiation intensity.

1    Introduction

The motivation behind the research presented in this paper was the development of a
system for the modelization of a complex physical process: the computation of spec-
tral intensity of radiation. The problem is to provide fast and accurate computations of
the intensity of a heat (radiation) source at different surrounding points in a turbulent
and absorbing atmosphere. This thermodynamical problem is of primary importance
for a number of applications in the aeronautical industry.

In Section 2 we give an overview of the physical model on which the application
is based. We will see that the main problem that needs to be solved is fitting a very
large number of functions (referred as parameter functions) which form a parametric
base for the computation of the spectral intensity. The number of parameter functions
that need to be determined, as well as the number of times these need to be evaluated,
imposes practical constraints on the kind of techniques applicable to the regression. In
a typical application such as ours, 35 parameter functions need to be fitted for each
spectral point (given radiation frequency), and about 100 spectral points are needed to
characterize the intensity of a single observation; this means that a total of about 3500
parameter functions need to be interpolated to construct the complete radiation model.
Neural network (NN) applications of this size are very rare, because of the «manual
work» usually necessary for good convergence of the models. To deal with such a
great number of regressors, classical statistical methods (e.g. cross validation, boot-
strap, etc.) cannot be used to determine hyper-parameters such as the learning rate,
stopping criteria, or regularization constants. A final constraint is introduced by the
necessity of fast computations: several millions of parameter function values need to
be computed for a single radiation image. This imposes a practical constraint on the
speed of the computation and, therefore on, the complexity of the regressors utilized.

In Section 3 we discuss how ordinary least square regression and NNs may be
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used to fit these functions independently. Straight-forward substitution of linear mod-
els by NNs brings a drastic improvement of accuracy, but greatly increases the model’s
computational cost. Instead, we use a single NN to approximate simultaneously all
parameter functions. This leads to a reduction of the number of network parameters
and improves generalization.

For many physical applications, approximated functions are (local) parameters of
a much more complex (global) function of known physical significance. For these
cases, we propose, in Section 4, a method that optimizes globally the physical function
of interest, instead of optimizing individually each of its parameters.

2  The Physical Problem

Our goal is to compute the intensity (I) of a radiation source, at a point distant
from the source, in an atmospheric media. At a given frequency, the transmissivity of a
gas (τ) describes the behavior of radiation emitted through it. In an homogeneous (con-
stant molecular composition) and isothermal (constant temperature and pressure) situ-
ation, the intensity can be computed in a straightforward manner. We are interested,
however, in nonhomegenous and nonisothermal conditions, typical of aeroplane reac-
tors. Computing the transmissivity of such media is an extremely difficult problem,
because of the inherent nonlinearities of the process. To deal with such situations, the
gas «column» (that is, the line going from the source to the observed point) is dis-
cretized into a sequence of N homogeneous and isothermal segments of different
(unknown) spectral transmissivities (τs). Computing the intensity of radiation is then

straightforward1:

(1)

The difficult problem is the determination of τs for each segment, which is affected by
local as well as global characteristics of the gas column.

There exists a very precise model to determine spectral transmissivity, named the
Line-by-Line model (LBL), but this model is too computationally intensive for real-
world applications and it is used only for validation purposes. A number of simplified
models have been developed and are of common use. The correlated fictitious gases
method (CKFG-N) is the most adequate of these for nonhomogeneous gases and has
already been applied with success in a number of applications [1]. The CKFG-N
model approximates the spectral transmissivity of a segment (τs) with a high dimen-

sional parametric function2:

(2)

where fjm are the parameter functions, which are two-dimensional unknown functions
and are fitted from real (or LBL) data.

1.Is
0 is a constant (the vacuum intensity of the segment s).

2.In equation (2), li and ci, denote the length and molecular composition of segment i
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Equations (1) and (2) define a «computational chain». Our goal is the computation
of the intensity (I). We first compute the segment transmissivity (τs) of each segment.
For this, we will need the value of all parameter functions fjm for the given segment’s
temperature and pressure (ti,pi). We have eliminated the dependance on the radiation
frequency for simplicity of notation, but, basically, the whole process is repeated inde-
pendently for each frequency of interest. This is why the number of parameter func-
tions is so great. In (2) we see that NxM (here N = 5, M = 7) parameter functions are
needed per frequency; since hundreds of frequencies are typically computed, several
thousands of fjm models are needed.

3  Parameter Regression

Physicists construct the parameter functions using ordinary least squares regression
(OLS) independently for each fjm. The nonlinearity of the dependance on temperature
and pressure may be introduced in the regression directly providing nonlinear terms as
input variables. Similarly, a standard neural network approach would be to build a
small network to predict each fjm separately.

In this application the number of points available for fitting the data was small.
Instead of partitioning the data into a training and a validation set, we used four col-
umns of known intensity (I) but unknown transmissivities, in order to test the generali-
zation capabilities of our models. Therefore, the model is not tested with respect to the
fjm functions used for training, but rather with respect to the final value of I obtained

after applying equations (1) and (2). The four columns are: the construction column
(P-train), two columns dealing only with low or high pressure situations (P-low and P-
high respectively) and a mixed pressure column (P-mix).

The first two rows of Table 1 present the performances of the OLS and NN mod-
els. We see that independent NNs perform significantly better for the construction and
the columns. This increase in performance must be contrasted with the enormous
increase of computational cost when using an MLP of the type described. In the last
two columns of Table 1 we show the mean validation error, as well as the number of
parameters. This number is (at best) linearly related to the computational time needed
to compute a solution. It seemed necessary at this point to reduce the model's complex-
ity.

Several ideas lead naturally to the implementation of multiple function regressors

Model: P train P mix P high P low mean # par.

OLS 2.12 0.41 0.52 0.05 0.33 245

NN 0.01 0.10 0.13 0.01 0.08 1400

i-NN-35 0.01 0.09 0.06 0.05 0.07 1470

i-NN-10 0.04 0.03 0.07 0.05 0.05 630

i-NN-5 0.36 0.01 0.40 0.09 0.17 210

Table 1.  Linear and NN Implementations (see text for notations).



for our application. The integration of regressors, when correlated, may improve gen-
eralization. In the case of linear regression it can be shown that a weighted sum of a set
of regressors gives a better (or at worst equal) solution than the independent regres-
sors. Appropriate weights may be estimated from data [3]. There do not exist to our
knowledge similar results in the case of non-linear function approximation. However,
a number of empirical investigations exist in the case of classification [2].
To test the interest of integrated function regressors, we built a single NN to estimate
simultaneously the thirty-five functions needed for the computation of the intensity of
radiation at a given frequency. Instead of using 35 MLPs with one output, we utilized a
(fully connected, one hidden layer) MLP with thirty-five linear output units. We hope
that function correlations will be captured at the hidden layer (which is now connected
to all parameter functions) and used during the training phase to make up for the
reduced number of parameters.

In Table 1 (last three rows) we present the performance of such an integrated
architecture, for MLPs with 35, 10 and 5 hidden units. Results should be contrasted
with the number of parameters and the mean test error of each architecture. The largest
model, i-NN-35, has about the same number of parameters as the 35 independent NNs,
but one fifth the number of hidden units. The accuracy obtained in the training column
is similar to the one obtained by the simple NN scheme, and the mean error of general-
ization is slightly lower. The second integrated model, i-NN-10, has about one half the
number of parameters than the previous two architectures, and it is not capable of
learning as accurately the training functions (the error for the P-train column is
higher), but reduces the mean test error by a factor of 1.7. We see here the double ben-
efit of constraining the network while making use of the correlation of the parameter
functions: we have almost doubled the accuracy of our network, using one half of the
number of parameters. With respect to the linear network, i-NN-10 utilizes three times
more parameters and reduces by seven the mean test error. Our last integrated model i-
NN-5, shows that we may build systems with less parameters than the linear model,
and still obtain better results. This contradicts the common intuition that we must «pay
the price» of a large increase in parameters if we use nonlinear regression. While this
is generally the case, it is not so when dealing with large families of nonlinearly corre-
lated functions.

4  Global Optimization

Not all parameter functions (fjm) are equally important for the accuracy of the intensity
calculation (I). Depending on the wave-length, temperature and pressure as well as
their inter-segment gradients, a few fjm will dominate the computation of I. Our goal is
not to obtain the best possible estimates of fjm but, rather, the best possible estimate of
I. Therefore, most resources should be put to estimate the most important fjm.
The method described so far does not take this into account: by minimizing the mean
square error of the fjm functions we implicitly attribute equal importance (resources) to
all functions and to all regions of the functional domain. This is particularly dangerous
in the case of integrated regressors since shared weights and units may be dominated
by functions which may be difficult to approximate but have negligeable effect on the
ulterior intensity of radiation calculations.



Physicists aware of these facts have traditionally biased by hand their regressors
(modifying the training point distribution or weights, or with piece-wise linear regres-
sors). Such an heuristic approach leads to very accurate systems, but necessitates of an
expensive period of experimentation and calibration specific to each particular applica-
tion. We sought to bias the regressors automatically. This can be done redefining the
optimized cost function as the quadratic error of the intensity of radiation. Formally,
the function minimized by the regressors presented in the previous sections is the
mean quadratic error between the desired and obtained parameter functions, which
may be written as:

, where fijm denotes the parameter function value fjm(ti, pi).

We propose to optimize directly I by minimizing instead a cost function of the form:

 , (3)

where Iν denotes the radiation intensity at frequency ν and ζ denotes the set of
sequences globally optimized. To solve for C’ we need to compute its derivatives with
respect to the approximated parameter functions which are, in fact, the output values
of the regression models described in the previous sections. Derivatives may be
obtained by the chain rule:

,

,

The difficulties are twofold: the derivatives are recursive functions of the segment
intensity, and partial derivatives need to be computed with respect to the thirty-five
parameter functions at every segment (several thousand partial derivatives are there-
fore needed at each back-propagation pass of the complete model). We may use the
same MLP architectures as before to optimize C’ with the back-propagation imple-
mentation of gradient descent. This optimization presents however serious difficulties,
since there is only a local guarantee of convergence and the computational cost of a
single back-propagation pass is extraordinary. To ensure a faster and more subtle con-
vergence of the direct optimization, we chose a two stage learning process in which
parameter functions are first approximated to a reasonable degree (by the training
method described in Section 4), and then global sequence optimization is carried out.

In Table 2 we present the results of this optimization scheme, on the previously
discussed i-NN-10 model. The first stage consists in the optimization of parameter
functions with a cost function similar to C, as described in Section 3 (the results
obtained are the same as those of Table 1). We then retrain the MLP optimizing
directly the intensity of radiation of a real gas column (P-Mix), with cost function of
the form of C’. We present in the second column the values of the errors produced by
this network on the optimized column (P-Mix), and on the two other validation col-
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umns (P-High and P-Low) as well as on the construction column (P-Train). We see
that the error on the gas column optimized has been greatly reduced. More important,
we see that the error on the other two validation columns has not been increased by
this optimization but, on the contrary, has been slightly reduced. We can therefore
expect very accurate predictions on columns similar to those for which it has been spe-
cialized, without deterioration of the accuracy on other type of columns. Finally, we
note that the error on the construction column has increased as expected.

5  Conclusions

We have presented an effective large-scale model of spectral radiation intensity
based on neural networks. A straightforward substitution of linear models by neural
networks lead to the development of several thousand neural networks. Instead, we
developed networks that approximated simultaneously all functions within the same
parametrical family. This model was much more accurate than the linear implementa-
tion, with only a moderate increase in the number of parameters. Furthermore, the
choice on the number of hidden units of the model proved an effective parameter to
weight the necessary compromise between accuracy and speed of computations. This
type of model may be further extended to optimize a global error function instead of
optimizing the sum of the squared output errors. This provides the advantage of selec-
tively improving the accuracy of the functions that play an important role in the com-
putation of the global solution.
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local + global

P-Mix 0.034 0.005

P-High 0.066 0.057

P-Low 0.057 0.042

P-Train 0.024 0.056

Table 2. Intensity optimization (see text for notations).


