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Abstract

Pervasive computing creates environmentssaturated
with computingand communicationcapability, yet grace-
fully integratedwith humanusers. Remoteexecutionhas
a natural role to play in such environments,since it lets
applicationssimultaneouslyleverage the mobility of small
devicesand the greaterresourcesof large devices. In this
paper, we describeSpectra, a remoteexecutionsystemde-
signedfor pervasiveenvironments.

Spectra monitors resourcessuch as batteryenergy and
file cache state which are especially important for mo-
bile clients. It also dynamicallybalancesenergy useand
quality goalswith traditional performanceconcernsto de-
cide where to locatefunctionality. Finally, Spectra is self-
tuning—itdoesnotrequireapplicationsto explicitly specify
intendedresource usage. Instead,it monitors application
behavior, learnsfunctionspredictingtheir resourceusage,
andusestheinformationto anticipatefuturebehavior.

1 Introduction

Remoteexecutionis an old andvenerabletopic in sys-
temsresearch.SystemssuchasCondor[3] andButler [15]
have long providedtheability to exploit spareCPUcycles
on othermachines.Yet, theadventof pervasivecomputing
hascreatednew opportunitiesandchallengesfor remoteex-
ecution. In this paper, we discusstheseissuesandhow we
have addressedthem in the implementationof Spectra,a
remoteexecutionsystemfor pervasivecomputing.

Theneedfor mobility leadsto smallerandsmallercom-
puting devices. The size limitations of thesedevicescon-
strain their computepower, battery energy and storage
capacity. Yet, many modern applicationsare resource-
intensive,with demandsthatoftenoutstripdevicecapacity.
Remoteexecutionusingwirelessnetworks to accesscom-
puteserversthusfills anaturalrole in pervasivecomputing,
allowing applicationsto leverageboththemobility of small

devicesandthegreaterresourcesof stationarydevices.
Pervasive computingalso createsnew challenges[19].

Whenlocatingfunctionality, Spectramustbalancethe tra-
ditional goal of minimizing applicationlatency with new
goalssuchas maximizing batterylifetime. It must allow
for wider variationin resourcessuchasCPU andnetwork
bandwidthandmonitor new resourcessuchasenergy use
andcachestate.

Pervasivenesscausesadditionalcomplexity, andit is un-
reasonableto leave the burdenof handlingthis complex-
ity to applications.Spectradoesnot requireapplicationsto
specifyresourcerequirementsfor avarietyof platformsand
outputqualities. Instead,it is self-tuning—it monitorsap-
plicationresourceusagein orderto predictfuturebehavior.

2 Design considerations

Thedesignof Spectrahasbeengreatlyinfluencedby the
needto addressthecomplexitiesof pervasivecomputing.

Spectraweighs several possibly divergent goals when
decidingwhereto executeapplications. Performancere-
mainsimportantin mobile environments,but is no longer
thesoleconsideration.It is alsovital to conserveenergy so
asto prolongbatterylifetime. Quality is anotherfactor—a
resource-poormobile device may only be able to provide
a low fidelity version of a data object [16] or computa-
tion [20], while a stationarymachinemay be ableto gen-
eratea betterversion.

Spectramonitorsenvironmentalconditionsandadjusts
the relative importanceof eachgoal. For example,energy
useis paramountwhena device’s batteryis low. However,
when the battery is charged, performanceconsiderations
maydominate.Monitoring batterystateandexpectedtime
to rechargeallowsSpectrato adjusttherelative importance
of thesegoals.

Spectramonitorsresourcesthatareuniquelysignificant
in pervasive environments. In addition to batteryenergy,
file cachestateis often critical. Considera mobile client
with limited storagerunningadistributedfile system.When
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Figure 1. Aura architecture

thereis a choiceof remoteexecutionsites,a server with a
warmerfile cachemay often be preferableto one with a
fasterprocessor.

Finally, Spectrais self-tuning. Applications neednot
specifytheirexpectedusageof variousresources.Providing
estimatesfor evena singleresourcesuchasbatteryenergy
is very difficult sinceenergy usedependsupon the hard-
wareplatform andthe degreeof power managementused.
Spectraapplicationsneedonly specifyoperationsof interest
andtheinput parametersto thoseoperations.Spectramon-
itorsandlogsresourceusageasapplicationsexecute.From
loggeddata,it learnsfunctionsrelatinginput parametersto
resourceusage,allowing it to predictfutureapplicationre-
sourceuse.

3 Implementation

3.1 Spectra overview

Spectrais the remoteexecutioncomponentof Aura, a
new computingsystembeingbuilt at CarnegieMellon Uni-
versity. Aura providesuserswith aninvisible haloof com-
puting and informationservicesthat persistsregardlessof
location.As shown in Figure1, anAuraclient is composed
of many parts. The Codafile system[10] allows mobile
nodesto accessshareddata,evenwhenweakly-connected
or disconnectedfrom the network. Odyssey [16] supports
applicationsthat vary their fidelity asresourceavailability
changes.Fidelity is anapplication-specificmetricof qual-
ity expressedin multiplediscreteor continuousdimensions.
For instance,dimensionsof fidelity for speechrecognition
arevocabularysizeandacousticmodelcomplexity.

To provide a completesolution, Spectramust address
severalcomplex issues,including functionplacement,ser-
vice discovery, executionmechanismanddataconsistency.

Our initial prototypefocuseson the first problem: decid-
ing whereandhow operationsshouldbe executed.It uses
existing technologyto addressthe remainingissues. We
hopeto leverageservicediscovery protocolswhich allow
attribute-valuelookup[1, 23]. Similarly, while wecurrently
useRPC-basedremoteexecution,Spectracould be modi-
fied to useothermechanismssuchasmobilecode.Finally,
Codaprovides Spectraa single sharedfile systemacross
multiplemachines.

Spectraconsistsof threemainelements:
� anapplicationinterfacefor describingoperations.� monitorsthatpredictresourceuseandavailability.� adecisionenginethatselectsthebestexecutionoption.

3.2 Application interface

Applications use the Odyssey multi-fidelity inter-
face[14] to communicatewith Spectra.The fundamental
unit of discourseis theoperation: acodecomponentwhich
mayprofit from remoteexecution.Spectratargetsapplica-
tions which performoperationsof onesecondor more in
duration—examplesare speechrecognition,renderingfor
augmentedreality, anddocumentprocessing.

Applications first register operationswith Spectra. A
registrationlists possiblefidelitiesandmethodsof dividing
computationbetweenlocal and remotemachines. It also
lists input parametersthataffectoperationcomplexity.

For example,we have modifiedtheJanusspeechrecog-
nizer [24] to useSpectra.The basicoperationis utterance
recognition. This operationhastwo fidelities: full andre-
duced.Reducedfidelity usesa smaller, moretask-specific
vocabulary thanfull fidelity. Therearethreemodesof di-
viding computation:recognitionmaybe performedon the
client (local mode),on a server (remotemode)or on both
(hybridmode).In hybridmode,thefirst phaseis performed
locally, yielding a greatly compresseddata set which is
shippedremotelyfor the completionof recognition. The
singleinputparameteris thelengthof theutterance.

Prior to operation execution, an application invokes
Spectrato determinehow andwheretheoperationwill ex-
ecute. The applicationpassesin the value of the input
parameters—forexample,thesizeof anutteranceto berec-
ognized.Spectrachoosesthebestfidelity level andexecu-
tion modeasdescribedin Section3.4andreturnstheseval-
uesto theapplication.For remoteoperations,Spectraalso
choosestheserveronwhich theoperationwill beexecuted.

Applicationsexecuteoperationsby makingremotepro-
cedurecalls to the selectedserver. Direct procedurecalls
can be used in the local caseto optimize performance.
Applicationsinform Spectrawhenoperationscomplete,at
which time Spectralogs resourceusage.The loggeddata
allowsSpectrato improveresourcepredictionover time.
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3.3 Resource monitoring

Only part of the data neededby Spectracomesfrom
applications—theremainderis suppliedby resourcemoni-
tors.Resourcemonitorsaremodular, resource-specificcode
componentsthatpredictresourceavailability anddemand.

Prior to operationexecution,eachmonitorpredictshow
much of a resourcethe operationwill receive. Monitors
make predictionsfor the local machineand for any re-
moteserverson which the operationmay execute.For in-
stance,thenetwork monitorpredictsbandwidthandround-
trip timesbetweentheclient andeachserver. Spectragath-
ersthepredictionsin a resourcesnapshot, whichprovidesa
consistentview of resourceavailability for thatoperation.

Resourcemonitorsobserve applicationbehavior to pre-
dict future resourcedemand.While anoperationexecutes,
eachmonitor measuresits resourceusage. Upon opera-
tion completion, thesevaluesare logged, along with the
operation’s input parameters,fidelity, andmethodof divid-
ing computation.From this data,Spectralearnsfunctions
which predictoperationresourceusage.Thus,themorean
operationis executed,the moreaccuratelyits resourceus-
ageis predicted.

We have built monitors for four resources:CPU, net-
work, battery, andcachestate. As CPU andnetwork are
well-understoodresources,wedescribethesemonitorsonly
briefly here. TheCPUmonitor, describedin [14], predicts
availability usinga smoothedestimateof recentCPUload,
weightedby the maximumspeedof theprocessor. During
operationexecution,the CPU monitor measuresCPU cy-
clesconsumedon local andremotemachines.Thenetwork
monitor predictsavailablebandwidthandround-triptimes
to remotemachinesusingthe algorithmin [16]. For each
operation,it measuresbytessentand received, aswell as
thenumberof RPCs.

3.3.1 The battery monitor

The batterymonitor mustprovide accurate,detailedinfor-
mation without hinderingusermobility. Previous energy
measurementapproachesarethusinsufficientfor thetask.It
is infeasibleto useexternalmeasurementequipment[7, 21]
sincesuchequipmentcanonly beusedin a laboratoryset-
ting. Alternatively, one can calibratethe energy use of
eventssuchasnetwork transmission,andthenlaterapprox-
imate energy use by counting event occurrences[4, 13].
However, resultswill be inaccuratewhen the calibration
doesnot anticipatethe full setof possibleevents,or when
eventssuchaschangesin screenbrightnessareinvisible to
themonitor.

Our batterymonitor takes advantageof the advent of
“smart” batteries:chipswhich reportdetailedinformation
aboutbatterylevelsandpower drain. Themonitorpredicts

availability by querying the amountof charge left in the
battery. It measuresoperationenergy useby periodically
polling thechip to sampleenergy use.

The first platform on which we have implementedour
battery monitor is Compaq’s Itsy v2.2 [8], an advanced
pocket computerwith a DS2437smart battery chip [5].
Since the DS2437reportsaveragecurrent drawn over a
31.25ms. periodandvoltagelevelschangelittle, we could
measurepower by samplingcurrent at 32Hz. Unfortu-
nately, the DS2437’s communicationprotocol makes the
overheadof frequentsamplingunacceptablyhigh. Thebat-
terymonitorbalancesoverheadandaccuracy bysamplingat
6Hz duringoperationexecution.This rateaccuratelymea-
suresoperationenergy usewith low (1.8%)CPUoverhead.
At other times, the monitor samplesat 1Hz—a ratesuffi-
cient to accuratelymeasurebatterychargeandbackground
powerdrain.

3.3.2 The cache state monitor

Dataaccesscanconsumesignificanttime andenergy when
itemsareunavailablelocally. Thecachestatemonitoresti-
matesthesecostsby predictingwhichuncachedobjectswill
beaccessed.It currentlyprovidesestimatesfor oneimpor-
tantclassof items:files in theCodafile system.

During operationexecution, the monitor observes ac-
cessesof Codafiles. When an operationcompletes,the
monitorlogsthenameandsizeof eachfile accessed.

The cachestatemonitor currentlyusesa simplepredic-
tion scheme—itassumesthe likelihoodof a file beingac-
cessedduring an operationis similar to the percentageof
times it was accessedduring recentoperationsof similar
type andinput parameters.The accesslikelihoodis main-
tainedasaweightedaverage,allowing themonitorto adjust
to changesin applicationbehavior over time. For eachfile
that may be accessed,the monitor queriesCodato deter-
mine if the file is cached. If it is uncached,the expected
numberof bytesto fetchis equalto thefile’ssizemultiplied
by its accesslikelihood.Themonitorestimatesthenumber
of bytesthatanoperationwill fetchby summingindividual
predictionsfor eachfile.

Themonitormakespredictionsfor bothlocalandremote
machines.It alsoestimatesthe rateat which datawill be
fetchedfrom CodaserverssothatSpectracancalculatethe
expectedtime andenergy costof fetchinguncacheditems.

3.4 Selecting the best option

Spectra’sdecisionenginechoosesa locationandfidelity
for eachoperation.Its inputsaretheapplication’s descrip-
tion of theoperationandthemonitors’snapshotof resource
availability. It usesOdyssey’s multi-fidelity solver [14] to
searchthe spaceof possiblefidelities, remoteservers,and
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methodsof dividing computation.Using gradient-descent
heuristics,thesolver attemptsto find thebestexecutional-
ternative.

Spectraevaluatesalternatives by their impact on user
metrics. Usermetricsmeasureperformanceor quality per-
ceptible to the end-user—they are thus distinct from re-
sources,whicharenotdirectlyobservableby theuser(other
thanby their effect on metrics).For instance,while battery
energyandCPUcyclesareresources,executionlatency and
changein expectedbatterylifetime areusermetrics.

To evaluate an alternative, Spectrafirst calculatesa
context-independentvaluefor eachmetric. It thenweights
eachvaluewith an importancefunction that expressesthe
currentdesirabilityof themetric to theuser. Finally, it cal-
culatesthe productof the weightedmetricsto computea
singlevaluefor evaluatingthealternative. This calculation
is a specificinstanceof the broaderconceptof “resource-
goodnessmappings”[17]. Spectracurrentlyconsidersthree
usermetricsin its evaluation:executionlatency, batterylife-
time,andapplicationfidelity.

Spectramayusemany resourcepredictionsto calculate
a metric’s context-independentvalue. For example,execu-
tion latency is thesumof thepredictedlatenciesof fetching
uncacheditems,network transmissions,andprocessingon
local and remotemachines. Processinglatenciesare cal-
culatedby dividing the predictedcyclesneededfor execu-
tion by thepredictedamountof cyclesavailablepersecond.
Network andcachelatenciesarecalculatedsimilarly.

Sinceimportancefunctionsexpressthecurrentdesirabil-
ity of metricsto the user, they may changeover time. For
example,we usegoal-directedadaptation[6] astheimpor-
tancefunctionfor batterylifetime. Theuserspecifiesa du-
ration that the batteryshouldlast,andthesystemattempts
to ensurethatthebatterylastsfor thisduration.A feedback
parameter, c, representshow critical energy use is at the
presentmoment.Spectraadjuststhis parameterusingesti-
matesof batterychargeandrecentpowerusagereportedby
thebatterymonitor. Givenexpectedenergy use,E, thebat-
tery importancefunction is

�
1� E � c. As an example,when

thecomputeroperateson wall power, c is 0 andenergy has
no impactin evaluatingalternatives.

For executionlatency, weuseanapplication-specificim-
portancefunctionthatreflectsperceptibledeadlinesfor op-
erationcompletion. For example,the speechrecognizer’s
importancefunction for latency, L, is simply 1� L. This
function hasthe intuitive property that a recognitionthat
takestwice aslong is half asdesirableto theuser.

Fidelity is a multidimensionalmetric of application-
specific quality. The importance of fidelity is user-
dependentandis oftenexpressedwith utility functionsthat
map eachuser’s preferencesto a single value. For the
speechrecognizer, thefidelity importancefunctiongivesre-
ducedfidelity thevalue0.5andfull fidelity thevalue1.0.

4 Preliminary evaluation

Our evaluation measuredhow well Spectraadaptsto
changesin resourceavailability. As a sampleapplication,
weusedthespeechrecognizerdescribedin Section3.2.

Welimited executionto two machines.Theclientwasan
Itsyv2.2pocketcomputerwith a206MHz SA-1100proces-
sorand32MB DRAM. TheserverwasanIBM T20 laptop
with a 700MHz PIII processorand256MB DRAM. Since
the Itsy lacksa PCMCIA slot (suchas is availableon the
CompaqiPAQ), the two machineswereconnectedwith a
seriallink.

We first recognized15 utterancesso that Spectracould
learntheapplication’s resourcerequirements.We thencre-
atedseveralscenarioswith varyingresourceavailability and
measuredhow well Spectraadaptedapplicationbehavior
whena new utterancewasrecognized.Figure2(a) shows
measuredexecutionlatency andenergy usefor eachpossi-
ble combinationof fidelity andlocation.For eachscenario,
the option that bestsatisfiesthe evaluationcriteria for the
speechapplicationis highlighted.Figure2(b)showsresults
whenSpectrachoosesthealternative to execute.

In thebaselinescenariobothcomputersareunloadedand
connectedto wall power. Spectracorrectlychoosesthehy-
brid modeandfull vocabulary here.Usingthereducedvo-
cabulary in hybrid modeslightly reducesexecutiontime,
but not nearlyenoughto counterthereductionin fidelity.

Each remainingscenariodiffers from the baselineby
varying the availability of a singleresource.In thebattery
scenario,the client is battery-poweredwith an ambitious
batterylifetime goalof 10 hours.Energy useis critical, so
Spectrachoosestheremotemode.As before,thesmallen-
ergy and latency benefitsof usingthe reducedvocabulary
do notoutweighthedecreasein fidelity.

Thenetwork scenariohalvesthebandwidthbetweenthe
client andserver. Spectracorrectlychooseshybrid execu-
tion andthefull vocabulary in this scenario.TheCPUsce-
nario loads the client processor. Spectrachoosesremote
executionsincethecostof doingthefirst recognitionphase
locally outweighsthebenefitof reducednetwork usage.

In the cachescenario,the server is madeunavailable
andthe 277 KB languagemodelfor the full vocabulary is
flushedfrom the client’s cache. Spectrausesthe reduced
vocabularysincethecachemissmakesfull fidelity recogni-
tion approximately3 timesslower thanthereducedcase.

Thoughpreliminary, theseresultsareencouraging,since
Spectrachoosesthe bestexecutionmodein eachscenario.
Further, theoverheadof usingSpectrato chooseanalterna-
tive is within experimentalerrorin all cases.
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Local/Reduced Local/Full Hybrid/Reduced Hybrid/Full Remote/Reduced Remote/Full
(Fidelity = 0.5) (Fidelity = 1.0) (Fidelity = 0.5) (Fidelity = 1.0) (Fidelity = 0.5) (Fidelity = 1.0)
Time Energy Time Energy Time Energy Time Energy Time Energy Time Energy

Scenario (s.) (J.) (s.) (J.) (s.) (J.) (s.) (J.) (s.) (J.) (s.) (J.)

baseline 37.4(0.1) 69.2(0.5) 7.8(0.6) 8.7(0.7) 9.3(0.6) 10.3(0.3)

battery 37.4(0.0) 22.6(0.2) 69.2(0.6) 43.5(0.5) 7.3(0.2) 3.5(0.0) 8.6(0.6) 3.6(0.1) 9.2(0.4) 2.4(0.1) 10.2(0.5) 2.5(0.1)
network 37.4(0.2) 69.8(0.4) 9.2(0.1) 10.5(0.6) 22.2(3.7) 21.4(4.3) N/A

CPU 75.2(0.4) 137.6(0.6) 12.4(1.2) 12.7(0.1) 10.8(1.4) 12.0(2.7)
cache 36.6(0.2) 105.4(0.4)

(a)Time andenergy costof eachpossibleexecutionalternative

Scenario BestAlternative ChosenAlternative Time (s.) Energy (J.) Fidelity
baseline Hybrid/Full Hybrid/Full 8.7(0.8) 1.0
battery Remote/Full Remote/Full 10.6(1.2) 2.7(0.3) 1.0
network Hybrid/Full Hybrid/Full 10.7(1.1) 1.0

CPU Remote/Full Remote/Full 12.0(1.2) 1.0
cache Local/Reduced Local/Reduced 36.7(0.2) 0.5

(b) Resultsof usingSpectrato selectanalternative

This figureshows how Spectraadaptsthebehavior of a speechrecognizerin theresourceavailability scenariosdescribedin Section4. Part
(a) shows the valueof the threeusermetricsconsideredby Spectra(executiontime, energy use,andfidelity) for eachof the six possible
executionalternatives. The highlightedalternative is the onethat bestsatisfiesthe evaluationcriteria for the speechapplication. Part (b)
shows the resultsof usingSpectrato selectanalternative—it lists the bestpossiblealternative, the alternative actuallychosenby Spectra,
andthevaluesof thethreemetrics.Energy useis only measuredin thebatteryscenariosincetheclient operateson wall power in all other
scenarios.Eachresultshown is themeanof five trials—standarddeviationsareshown in parentheses.

Figure 2. Spectra speec h recognition results

5 Related work

Spectra’suniquenessderivesfrom its focuson pervasive
computing.It is the first remoteexecutionsystemto mon-
itor batteryandcachestate,supportself-tuningoperation,
andbalanceperformancegoalswith batteryuseandfidelity.

As thefield of remoteexecutionis enormous,werestrict
our discussionof relatedwork to the mostcloselyrelated
systems.Rudenko’s RPF[18] considersbothperformance
andbatterylife whendecidingwhetherto executeprocesses
remotely. Kunz’s toolkit [12] usessimilar considerations
to locatemobile code. Although both monitor application
executiontime andRPFalsomonitorsbatteryuse,neither
monitors individual resourcessuchas network and cache
state,limiting their ability to copewith resourcevariation.

Kremeret al. [11] proposeusingcompilertechniquesto
selecttasksthatmightbeexecutedremotelyto saveenergy.
At present,this analysisis static, and thus can not adapt
to changingresourceconditions.Suchcompilertechniques
arecomplementaryto Spectra,in thatthey couldbeusedto
automaticallyselectSpectraoperationsand insertSpectra
callsin executables.

Vahdat [22] notes issuesconsideredin the designof
Spectra: the needfor application-specificknowledgeand
thedifficulty of monitoringremoteresources.

Several systemsdesignedfor fixed environmentsshare

Spectra’s self-tuningnature.Coign [9] staticallypartitions
objectsin a distributed systemby logging and predicting
communicationand execution costs. Abacus [2] moni-
tors network andCPU usageto migratefunctionality in a
storage-areanetwork. Condormonitorsgoodput[3] to mi-
grateprocessesin acomputingcluster.

6 Conclusion

Remoteexecution lets pervasive applicationsleverage
boththemobility of smalldevicesandthegreaterresources
of largedevices. Our initial resultswith Spectrashow that
this benefitcanbe effectively realizedif the systemmoni-
torspervasive resources,balancesmultiple goalsin evalua-
tion, andsupportsself-tuningoperation.

Yet, much work remainsto be done. Our early expe-
riencewith Spectrasuggeststhatpredictionsoften involve
tradeoffs betweenspeedandaccuracy. For example,when
estimatingremoteCPU availability, Spectramight use a
slightly stale cachedvalue, or it might query the server
to obtainmoreaccurateinformation. If the differencebe-
tweenpossiblealternatives is slight, as for examplewith
short-runningoperations,Spectrawoulddobetterto makea
“quick anddirty” decision.However, whenalternativesdif-
fer significantly, Spectrashouldinvestmoreeffort to choose
theoptimalalternative. This suggeststo us thatSpectrait-
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self shouldbe adaptive—it shouldbalancethe amountof
effort usedto decidebetweenalternativesagainstthepossi-
blebenefitof choosingthebestalternative.

Sinceresourcelogscangrow quitelargefor complex op-
erations,we hopeto developmethodsfor compressinglog
datawithout sacrificingsignificantsemanticcontent. We
alsoplan to investigatehow the importancefunctionsused
in evaluationcanbe modifiedwith simpleuserinterfaces.
Finally, we wish to evaluateSpectrausingmoredynamic
resourcescenarios.
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