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Abstract

Pervasive computing creates ervironments saturated
with computingand communicatiorcapability, yet grace-
fully integratedwith humanuses. Remoteexecutionhas
a natural role to play in sud ernvironmentssinceit lets
applicationssimultaneouslyeverage the mobility of small
devicesandthe greaterresoucesof large devices. In this
paper we describeSpecta, a remoteexecutionsystende-
signedfor pervasiveervironments.

Specta monitors resoucessud as battery enegy and
file cache state which are especiallyimportant for mo-
bile clients. It also dynamicallybalancesenegy useand
quality goalswith traditional performanceconcerngo de-
cidewhete to locate functionality Finally, Specta is self-
tuning—itdoesnotrequire applicationsto explicitly specify
intendedresouce usage. Instead,it monitors application
behavior learnsfunctionspredictingtheir resouce usage,
andusegheinformationto anticipatefuture behavior

1 Introduction

Remoteexecutionis an old andvenerableopic in sys-
temsresearchSystemssuchasCondor[3] andButler [15]
have long providedthe ability to exploit spareCPU cycles
on othermachines.Yet, the adwentof penasive computing
hascreatechew opportunitiesandchallengegor remoteex-
ecution. In this paper we discusstheseissuesandhow we
have addressedhemin the implementationof Spectra,a
remoteexecutionsystemfor penasive computing.

Theneedfor mobility leadsto smallerandsmallercom-
puting devices. The sizelimitations of thesedevicescon-
strain their compute power, battery enegy and storage
capacity Yet, mary modernapplicationsare resource-
intensive, with demanddhat often outstripdevice capacity
Remoteexecutionusingwirelessnetworks to accesom-
putesenersthusfills anaturalrole in penasive computing,
allowing applicationgo leverageboththe mobility of small

devicesandthegreateresource®f stationarydevices.
Penasive computingalso createsnew challengeq19].
Whenlocatingfunctionality, Spectramustbalancethe tra-
ditional goal of minimizing applicationlateng with new
goalssuchas maximizing batterylifetime. It mustallow
for wider variationin resourcesuchas CPU andnetwork
bandwidthand monitor new resourcesuchasenegy use
andcachestate.
Penasivenessausesdditionalcomplexity, andit is un-
reasonabldo leave the burdenof handlingthis complex-
ity to applications.Spectradoesnot requireapplicationso
specifyresourceequirementsor avarietyof platformsand
outputqualities. Instead,it is self-tuning—it monitorsap-
plicationresourcaisagen orderto predictfuture behaior.

2 Design consider ations

Thedesignof Spectrahasbeengreatlyinfluencedby the
needto addresshe complexities of penasive computing.

Spectraweighs several possibly divergent goals when
decidingwhereto executeapplications. Performancee-
mainsimportantin mobile ervironments,but is no longer
thesoleconsiderationlt is alsovital to consere enegy so
asto prolongbatterylifetime. Quality is anotherfactor—a
resource-poomobile device may only be ableto provide
a low fidelity versionof a data object[16] or computa-
tion [20], while a stationarymachinemay be ableto gen-
eratea betterversion.

Spectramonitors ervironmentalconditionsand adjusts
therelative importanceof eachgoal. For example,enegy
useis paramountvhena device’s batteryis low. However,
when the batteryis chaged, performanceconsiderations
may dominate.Monitoring batterystateandexpectedtime
to rechageallows Spectrato adjusttherelative importance
of thesegoals.

Spectramonitorsresourceshatareuniquelysignificant
in penasie ervironments. In additionto batteryenenpy,
file cachestateis often critical. Considera mobile client
with limited storageunningadistributedfile systemWhen
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Figure 1. Aura architecture

thereis a choiceof remoteexecutionsites,a sener with a
warmerfile cachemay often be preferableto one with a
fasterprocessar

Finally, Spectrais self-tuning. Applications neednot
specifytheirexpectedisageof variousresourcesProviding
estimatedor evena singleresourcesuchasbatteryenegy
is very difficult since enegy use dependsupon the hard-
ware platform andthe degreeof power managementised.
Spectrapplicationsieedonly specifyoperation®f interest
andthe input parameter$o thoseoperations Spectramon-
itors andlogsresourcaisageasapplicationsexecute.From
loggeddata,it learnsfunctionsrelatinginput parameterso
resourceusageallowing it to predictfuture applicationre-
sourceuse.

3 Implementation
3.1 Spectraoverview

Spectrais the remoteexecutioncomponentof Aura, a
new computingsystembeingbuilt at Carngyie Mellon Uni-
versity Aura providesuserswith aninvisible halo of com-
puting andinformation servicesthat persistsregardlessof
location.As shawvn in Figurel, anAura clientis composed
of mary parts. The Codafile system[10] allows mobile
nodesto accesshareddata,even whenweakly-connected
or disconnectedrom the network. Odyssg [16] supports
applicationgthat vary their fidelity asresourceavailability
changes Fidelity is an application-specifienetric of qual-
ity expressedn multiplediscreteor continuousdimensions.
For instance dimensionof fidelity for speechrecognition
arevocahulary sizeandacoustianodelcompleity.

To provide a completesolution, Spectramust address
several complex issues,ncluding function placementser
vice discovery, executionmechanisnmanddataconsisteny.

Our initial prototypefocuseson the first problem: decid-
ing whereandhow operationsshouldbe executed. It uses
existing technologyto addresghe remainingissues. We
hopeto leverageservicediscovery protocolswhich allow
attribute-valuelookup[1, 23]. Similarly, while we currently
use RPC-basedemoteexecution,Spectracould be modi-
fied to useothermechanismsuchasmobile code.Finally,
Codaprovides Spectraa single sharedfile systemacross
multiple machines.

Spectreconsistof threemainelements:

e anapplicationinterfacefor describingoperations.

e monitorsthatpredictresourcauseandavailability.

e adecisiorenginethatselectgshebestexecutionoption.

3.2 Application interface

Applications use the Odyssg multi-fidelity inter-
face[14] to communicatewith Spectra. The fundamental
unit of discourses the opefation: acodecomponentvhich
may profit from remoteexecution. Spectraargetsapplica-
tions which perform operationsof one secondor morein
duration—examplesare speechrecognition,renderingfor
augmentedeality, anddocumenprocessing.

Applicationsfirst register operationswith Spectra. A
registrationlists possiblefidelitiesandmethodsof dividing
computationbetweenlocal and remotemachines. It also
lists input parametershataffect operationcompleity.

For example,we have modifiedthe Janusspeecirecog-
nizer [24] to useSpectra.The basicoperationis utterance
recognition. This operationhastwo fidelities: full andre-
duced. Reducedidelity usesa smaller moretask-specific
vocalulary thanfull fidelity. Therearethreemodesof di-
viding computation:recognitionmay be performedon the
client (local mode),on a sener (remotemode)or on both
(hybridmode).In hybrid mode thefirst phaseas performed
locally, yielding a greatly compressediata set which is
shippedremotelyfor the completionof recognition. The
singleinput parameteis the lengthof the utterance.

Prior to operation execution, an application invokes
Spectrao determinehow andwherethe operationwill ex-
ecute. The applicationpassesn the value of the input
parameters—foexample thesizeof anutteranceo berec-
ognized. Spectrachooseghe bestfidelity level andexecu-
tion modeasdescribedn Section3.4 andreturnstheseval-
uesto the application. For remoteoperations Spectraalso
choosesheseneronwhichtheoperationwill be executed.

Applicationsexecuteoperationshy makingremotepro-
cedurecalls to the selectedsener. Direct procedurecalls
can be usedin the local caseto optimize performance.
Applicationsinform Spectrawhenoperationscomplete at
which time Spectralogs resourceusage. The loggeddata
allows Spectrao improve resourcepredictionovertime.



3.3 Resourcemonitoring

Only part of the dataneededby Spectracomesfrom
applications—theemaindeilis suppliedby resourcamnoni-
tors. Resourcenonitorsaremodulat resource-specificode
componentshatpredictresourceavailability anddemand.

Prior to operationexecution,eachmonitor predictshow
much of a resourcethe operationwill receive. Monitors
male predictionsfor the local machineand for ary re-
motesenerson which the operationmay execute. For in-
stancethe network monitor predictsbandwidthandround-
trip timesbetweerthe clientandeachsener. Spectragath-
ersthe predictionsgn aresoucesnapshatwhich providesa
consistenview of resourceavailability for thatoperation.

Resourcanonitorsobsene applicationbehaior to pre-
dict future resourcedemand.While an operationexecutes
eachmonitor measurests resourceusage. Upon opera-
tion completion,thesevaluesare logged, along with the
operations input parametersfidelity, andmethodof divid-
ing computation. From this data, Spectralearnsfunctions
which predictoperationresourceusage.Thus,the morean
operationis executedthe more accuratelyits resourceus-
ageis predicted.

We have built monitorsfor four resources:CPU, net-
work, battery and cachestate. As CPU and network are
well-understoodesourcesye describehesemonitorsonly
briefly here. The CPU monitor, describedn [14], predicts
availability usinga smoothedestimateof recentCPU load,
weightedby the maximumspeedof the processarDuring
operationexecution,the CPU monitor measure<CPU cy-
clesconsumean local andremotemachinesThe network
monitor predictsavailable bandwidthandround-triptimes
to remotemachinesusingthe algorithmin [16]. For each
operation,it measuredytessentandreceived, aswell as
thenumberof RPCs.

3.3.1 Thebattery monitor

The batterymonitor mustprovide accuratedetailedinfor-
mation without hinderinguser mobility. Previous enegy
measuremergpproachearethusinsufficientfor thetask. It
is infeasibleto useexternalmeasuremergquipmen{?, 21]
sincesuchequipmentanonly be usedin alaboratoryset-
ting. Alternatively, one can calibratethe enegy use of
eventssuchasnetwork transmissionandthenlaterapprox-
imate enegy use by counting event occurrenceg4, 13].
However, resultswill be inaccuratewhen the calibration
doesnot anticipatethe full setof possibleevents,or when
eventssuchaschangesn screerbrightnessareinvisible to
themonitor.

Our battery monitor takes advantageof the adwent of
“smart” batteries:chipswhich reportdetailedinformation
aboutbatterylevels andpower drain. The monitor predicts

availability by queryingthe amountof chage left in the
battery It measure®perationenegy useby periodically
polling thechip to sampleenepgy use.

The first platform on which we have implementedour
battery monitor is Compags Itsy v2.2 [8], an advanced
pocket computerwith a DS2437 smart battery chip [5].
Since the DS2437 reports averagecurrentdravn over a
31.25ms. periodandvoltagelevels changdittle, we could
measurepower by samplingcurrentat 32Hz. Unfortu-
nately the DS24375 communicationprotocol makes the
overheadf frequentsamplingunacceptabhigh. The bat-
terymonitorbalancesverheadindaccurag by samplingat
6 Hz during operationexecution. This rateaccuratelymea-
suresoperationenegy usewith low (1.8%)CPUoverhead.
At othertimes, the monitor samplesat 1 Hz—a rate suffi-
cientto accuratelymeasurebatterychage andbackground
power drain.

3.3.2 Thecache state monitor

Dataaccessanconsumesignificanttime andenegy when
itemsareunavailablelocally. The cachestatemonitoresti-
mateghesecostshy predictingwhich uncachedbjectswill
beaccessedlt currentlyprovidesestimategor oneimpor-
tantclassof items:filesin the Codafile system.

During operationexecution, the monitor obsenes ac-
cesseof Codafiles. When an operationcompletes,the
monitorlogsthenameandsizeof eachfile accessed.

The cachestatemonitor currentlyusesa simple predic-
tion scheme—itassumeshe likelihood of a file beingac-
cessedduring an operationis similar to the percentagef
timesit was accessedluring recentoperationsof similar
type andinput parametersThe accesdik elihoodis main-
tainedasaweightedaverageallowing themonitorto adjust
to changesn applicationbehaior over time. For eachfile
that may be accessedthe monitor queriesCodato deter
mine if the file is cached. If it is uncachedthe expected
numberof bytesto fetchis equalto thefile's sizemultiplied
by its accesdik elihood. The monitorestimateshe number
of bytesthatanoperationwill fetchby summingindividual
predictionsfor eachfile.

Themonitormakespredictionsor bothlocalandremote
machines. |t alsoestimateghe rate at which datawill be
fetchedfrom Codasenerssothat Spectracancalculatethe
expectedime andenegy costof fetchinguncachedtems.

3.4 Sdecting the best option

Spectrad decisionenginechooses locationandfidelity
for eachoperation.lts inputsarethe applications descrip-
tion of theoperatiorandthemonitors’snapshobf resource
availability. It usesOdyssg’s multi-fidelity solver [14] to
searchthe spaceof possiblefidelities, remoteseners,and



methodsof dividing computation. Using gradient-descent

heuristics the solver attemptgo find the bestexecutional-
ternative.

Spectraevaluatesalternaties by their impact on user
metrics Usermetricsmeasureperformanceor quality per
ceptible to the end-userthey are thus distinct from re-
sourceswhicharenotdirectly obsenableby theuser(other
thanby their effect on metrics). For instancewhile battery
enegy andCPUcyclesareresourcesgxecutionlateng and
changen expectedbatterylifetime areusermetrics.

To evaluate an alternatve, Spectrafirst calculatesa
contt-independenvaluefor eachmetric. It thenweights
eachvaluewith animportancefunctionthat expresseghe
currentdesirability of the metricto the user Finally, it cal-
culatesthe productof the weightedmetricsto computea
singlevaluefor evaluatingthe alternatve. This calculation
is a specificinstanceof the broaderconceptof “resource-
goodnessnappings’{17]. Spectracurrentlyconsidershree
usemmetricsin its evaluation:executionlatengy, batterylife-
time, andapplicationfidelity.

Spectramay usemary resourcepredictionsto calculate
ametric’s context-independenvtalue. For example,execu-
tion lateng is thesumof the predictedatencief fetching
uncachedtems, network transmissionsandprocessingn
local and remotemachines. Processindatenciesare cal-
culatedby dividing the predictedcyclesneededor execu-
tion by the predictedamountof cyclesavailablepersecond.
Network andcachdatenciesarecalculatedsimilarly.

Sinceimportancdunctionsexpresshecurrentdesirabil-
ity of metricsto the user they may changeovertime. For
example,we usegoal-directechdaptatior{6] asthe impor-
tancefunctionfor batterylifetime. The userspecifiesa du-
rationthatthe batteryshouldlast, andthe systemattempts
to ensurehatthebatterylastsfor this duration.A feedback
parameterc, representhow critical enegy useis at the
presentimoment. Spectraadjuststhis parameteusingesti-
matesof batterychageandrecentpower usageeportecby
thebatterymonitor. Givenexpectedenegy use,E, thebat-
tery importancefunctionis (1/E)°. As anexample,when
thecomputeroperateon wall power, ¢ is 0 andenegy has
noimpactin evaluatingalternatves.

For executionlatengy, we useanapplication-specifiem-
portanceunctionthatreflectsperceptibledeadlinedor op-
erationcompletion. For example,the speechrecognizers
importancefunction for lateng, L, is simply 1/L. This
function hasthe intuitive propertythat a recognitionthat
takestwice aslong is half asdesirableto theuser

Fidelity is a multidimensionalmetric of application-
specific quality. ~ The importance of fidelity is user
dependenandis often expressedvith utility functionsthat
map eachusers preferencedo a single value. For the
speechrecognizerthefidelity importancdunctiongivesre-
ducedfidelity thevalue0.5andfull fidelity thevaluel.0.

4 Preliminary evaluation

Our evaluation measurechow well Spectraadaptsto
changesn resourceavailability. As a sampleapplication,
we usedthe speechrecognizedescribedn Section3.2.

We limited executionto two machinesTheclientwasan
Itsy v2.2pocketcomputemwith a206MHz SA-1100proces-
sorand32MB DRAM. ThesenerwasanIBM T20 laptop
with a 700MHz PIII processoand256MB DRAM. Since
the Itsy lacksa PCMCIA slot (suchasis available on the
CompagiPAQ), the two machineswere connectedwith a
seriallink.

We first recognizedl5 utteranceso that Spectracould
learnthe applications resourcaequirementsWe thencre-
atedseveralscenariosvith varyingresourcevailability and
measurechow well Spectraadaptedapplicationbehaior
whena new utterancewasrecognized.Figure 2(a) shovs
measureaxecutionlateng andenegy usefor eachpossi-
ble combinationof fidelity andlocation. For eachscenario,
the option that bestsatisfiesthe evaluationcriteria for the
speectapplicationis highlighted.Figure2(b) shavs results
whenSpectrachooseshealternatve to execute.

In thebaselinescenaridoothcomputerareunloadedand
connectedo wall power. Spectracorrectlychooseghe hy-
brid modeandfull vocalulary here.Usingthe reducedvo-
calulary in hybrid mode slightly reducesexecutiontime,
but not nearlyenoughto counterthe reductionin fidelity.

Each remaining scenariodiffers from the baselineby
varyingthe availability of a singleresource.In the battery
scenario,the client is battery-paveredwith an ambitious
batterylifetime goal of 10 hours. Enegy useis critical, so
Spectrachooseghe remotemode. As before,the smallen-
ergy and lateng benefitsof using the reducedvocahulary
do notoutweighthe decreasén fidelity.

Thenetwork scenarichalvesthe bandwidthbetweerthe
clientandsener. Spectracorrectly choosesybrid execu-
tion andthefull vocahulary in this scenario.The CPU sce-
nario loadsthe client processar Spectrachoosesemote
executionsincethe costof doingthefirst recognitionphase
locally outweighsthe benefitof reducechetwork usage.

In the cachescenario,the sener is made unavailable
andthe 277 KB languagemodelfor the full vocahulary is
flushedfrom the client’s cache. Spectrausesthe reduced
vocahulary sincethe cachemissmalkesfull fidelity recogni-
tion approximately3 timesslower thanthereducedcase.

Thoughpreliminary, theseresultsareencouragingsince
Spectrachooseghe bestexecutionmodein eachscenario.
Further the overheadf usingSpectrao chooseanalterna-
tiveis within experimentakerrorin all cases.



Local/Reduced Local/Full Hybrid/Reduced Hybrid/Full Remote/Reduced Remote/Full
(Fidelity =0.5) (Fidelity = 1.0) (Fidelity = 0.5) (Fidelity = 1.0) (Fidelity = 0.5) (Fidelity = 1.0)
Time Enegy Time Enegy | Time Enegy| Time Enegy| Time Enegy| Time Enegy
Scenariq  (s.) J) (s.) J) (s) J) (s.) J.) (s) J) (s) J)
baseling 37.4(0.1) 69.2(0.5) 7.8(0.6) 8.7(0.7) 9.3(0.6) 10.3(0.3)
battery | 37.4(0.0) 22.6(0.2)| 69.2(0.6) 43.5(0.5)| 7.3(0.2) 3.5(0.0)| 8.6(0.6) 3.6(0.1)| 9.2(0.4) 2.4(0.1)|10.2(0.5) 2.5(0.1)
network | 37.4(0.2) 69.8(0.4) 9.2(0.1) 10.5(0.6) 22.2(3.7) 21.4(4.3) N/A
CPU |75.2(0.4) 137.6(0.6) 12.4(1.2) 12.7(0.1) 10.8(1.4) 12.0(2.7)
cache |36.6(0.2) 105.4(0.4)
(a) Time andenepy costof eachpossibleexecutionalternatve
Scenariq BestAlternative| ChosenAlternative | Time (s.) Enegy (J.) Fidelity
baselinel Hybrid/Full Hybrid/Full 8.7(0.8) 1.0
battery | Remote/Full Remote/Full | 10.6(1.2) 2.7(0.3) 1.0
network |  Hybrid/Full Hybrid/Full 10.7(1.1) 1.0
CPU Remote/Full Remote/Full | 12.0(1.2) 1.0
cache | Local/Reduced Local/Reduced |36.7(0.2) 0.5

(b) Resultsof usingSpectrao selectanalternatve

This figure shavs how Spectraadaptshe behaior of a speectrecognizelin theresourceavailability scenarioglescribedn Section4. Part
(a) shaws the value of the threeusermetricsconsideredy Spectraexecutiontime, enegy use,andfidelity) for eachof the six possible
executionalternatves. The highlightedalternatve is the onethat bestsatisfiesthe evaluationcriteria for the speechapplication. Part (b)
shaws the resultsof using Spectrato selectan alternatve—it lists the bestpossiblealternatve, the alternatve actuallychosenby SFectra,

andthe valuesof the threemetrics. Enegy useis only measuredn the batteryscenaricsincethe client operateon wall power in al

other

scenariosEachresultshavn is the meanof five trials—standardieviationsareshowvn in parentheses.

Figure 2. Spectra speech recognition

5 Reated work

Spectrad uniquenesslerivesfrom its focuson penasive
computing.It is the first remoteexecutionsystemto mon-
itor batteryand cachestate,supportself-tuningoperation,
andbalanceperformanceyoalswith batteryuseandfidelity.

As thefield of remoteexecutionis enormousyve restrict
our discussionof relatedwork to the mostcloselyrelated
systems.Rudenk’s RPF[18] considerdoth performance
andbatterylife whendecidingwhetherto executeprocesses
remotely Kunz’s toolkit [12] usessimilar considerations
to locatemobile code. Although both monitor application
executiontime and RPF also monitorsbatteryuse,neither
monitorsindividual resourcessuchas network and cache
state Jimiting their ability to copewith resourcevariation.

Kremeretal. [11] proposeusingcompilertechniquego
selecttasksthatmight be executedremotelyto save enegy.
At present,this analysisis static, and thus can not adapt
to changingresourceconditions.Suchcompilertechniques
arecomplementaryo Spectrajn thatthey couldbe usedto
automaticallyselectSpectraoperationsand insert Spectra
callsin executables.

Vahdat[22] notesissuesconsideredin the design of
Spectra: the needfor application-specifidknowledgeand
thedifficulty of monitoringremoteresources.

Several systemsdesignedfor fixed ervironmentsshare

results

Spectras self-tuningnature. Coign[9] statically partitions
objectsin a distributed systemby logging and predicting
communicationand execution costs. Abacus[2] moni-
tors network and CPU usageto migratefunctionality in a
storage-areaetwork. Condormonitorsgoodput[3] to mi-
grateprocessem acomputingcluster

6 Conclusion

Remoteexecution lets penasive applicationsleverage
boththemobility of smalldevicesandthegreateresources
of large devices. Our initial resultswith Spectrashow that
this benefitcan be effectively realizedif the systemmoni-
torspenasie resourceshalancesnultiple goalsin evalua-
tion, andsupportsself-tuningoperation.

Yet, muchwork remainsto be done. Our early expe-
riencewith Spectrasuggestshat predictionsofteninvolve
tradeofs betweenspeedandaccurag. For example,when
estimatingremote CPU availability, Spectramight use a
slightly stale cachedvalue, or it might query the sener
to obtain more accurateinformation. If the differencebe-
tween possiblealternatvesis slight, as for example with
short-runningperationsSpectravould do betterto make a
“quick anddirty” decision.However, whenalternatvesdif-
fer significantly Spectrashouldinvestmoreeffort to choose
the optimal alternatve. This suggest$o usthat Spectrait-



self should be adaptve—it should balancethe amountof
effort usedto decidebetweeralternatvesagainsthe possi-
ble benefitof choosingthe bestalternatie.

Sinceresourcdogscangrow quitelargefor complex op-
erations,we hopeto develop methodsfor compressindog
datawithout sacrificing significantsemanticcontent. We
alsoplanto investigatenow theimportancefunctionsused
in evaluationcanbe modified with simple userinterfaces.
Finally, we wish to evaluateSpectrausing more dynamic
resourcescenarios.
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