
FLUXO: A Simple Service Compiler

Emre Kıcıman Benjamin Livshits

Microsoft Research

Madanlal Musuvathi

Abstract

In this paper, we propose FLUXO, a system that separates
an Internet service’s logical functionality from the archi-
tectural decisions made to support performance, scala-
bility, and reliability. FLUXO achieves this separation
through three mechanisms: 1) a coarse-grained dataflow-
based programming model; 2) detailed runtime request
tracing to capture workload distributions, performance
behavior, and resource requirements; and 3) a set of anal-
ysis techniques that determine how to apply simple, pa-
rameterized dataflow transformations to optimize the ser-
vice architecture for performance, scalability, and relia-
bility. In this paper, we describe our vision for how to
make Internet services easier to construct, and show how
a variety of Internet service performance optimizations
may be expressed as transformations applied to FLUXO
programs.

1 Introduction

Over the last 10-15 years, our industry has developed
and deployed many large-scale Internet services, from e-
commerce to social networking sites, all facing common
challenges in performance, reliability, and scalability. To
address these challenges, developers consistently draw
from a relatively small repertoire of techniques, such as
replication, tiering, pre-computation, and caching.

Unfortunately, to be properly implemented, these ar-
chitectural techniques are tightly coupled with service
functionality: their effectiveness depends heavily on the
service’s semantic requirements, its workloads, and its
performance, and other runtime and environment charac-
teristics. As a result, developers must have a deep, end-
to-end understanding of their system infrastructure when
writing the service functionality. Furthermore, modifica-
tions to either the underlying infrastructure or the appli-
cation itself may require significant architectural changes
in the deployed service.

Our goal is to change how developers build online In-
ternet services, allowing them to focus on application-
level functionality, while orthogonal techniques optimize
the service for performance, reliability, and scalability
concerns. To this end, we propose FLUXO, a system
that separates architectural decisions to support perfor-
mance, reliability, and scalability from service function-
ality. FLUXO is analogous to an optimizing compiler that

takes a high-level program representation and, using pro-
gram profile data, automatically optimizes the program’s
execution, relieving the developer from worrying about,
say, register allocation, to focus on functionality.

The key to achieving this separation is to capture a rep-
resentation of those semantic and mechanical details of
the application-level service that drive the architectural
techniques. To accomplish this goal, FLUXO relies on
the following three mechanisms:

1. To simplify reasoning about the service function-
ality, FLUXO uses a dataflow model representation
of an Internet service’s coarse-grained behavior.
To enable optimizing transformation, this dataflow
model is annotated with semantic requirements,
such as state consistency requirements, component
side-effects, and idempotence.

2. To capture program profile data, such as workload
distributions, resource usage and performance pro-
files, FLUXO uses runtime request tracing to cap-
ture performance characteristics as well as input
and intermediate data distributions. For instance,
FLUXO can automatically record the sizes of inputs
and outputs, and their frequencies to infer the com-
munication cost of components in the dataflow.

3. Finally, FLUXO applies a set of simple, parame-
terized dataflow program transformations to opti-
mize the service’s performance, scalability, and re-
liability. These optimizations may be parameter-
ized through automated heuristics, simulations, or
numerical analyses. Examples of these transforma-
tions are described in detail in Section 4.

Unlike previously proposed programming paradigms
for Internet services such as Dryad or MapReduce [3, 9],
the focus of FLUXO is online request processing. This
leads to critical distinctions, such as an emphasis on
end-to-end request-response latency [4], and many cross-
request optimization opportunities.

1.1 Paper Organization

The rest of the paper is organized as follows. Section 2
provides a brief overview of the state of the art in build-
ing Internet services. Section 3 talks about the FLUXO
architecture and discusses our design choices. Section 4
talks about sample program transformation that are used
for optimization. Finally, Section 5 provides a summary
of our proposal and outlines future challenges.

1



2 Background and Motivation

Our motivation for FLUXO came first from an internal
survey we conducted of large-scale services at Microsoft.
While the provenance of these systems varies greatly—
having been built by different groups within Microsoft
over more than a decade, or even being brought into Mi-
crosoft via acquisitions—we found that all of these sys-
tems re-used a small number of architectural patterns.
This same observation holds true of publicly available
reports of other services’ architectures [2, 8, 11, 13].

While describing each of these architectural patterns
is outside the scope of this short paper, many of the more
prevalent techniques are described by Hamilton [7], and
include tiering of services, extensive use of caching, and
denormalization of data. These patterns are not simply
reused “cookie-cutter,” but must be specialized to suit
a specific service’s requirements and workloads. Un-
derstanding the interactions among system components,
workloads, and semantic requirements, however, is non-
trivial. For instance, we demonstrate in a companion
paper [12] that the optimal caching for an Internet ser-
vice varies significantly with the input workload distri-
bution. Manually maintaining near-optimal caching poli-
cies with dynamic changes in the input workload distri-
bution is simply not feasible.

While there are a number of frameworks for easing
the building of large-scale interactive services, they are,
to our knowledge, focused primarily on reuse of infras-
tructure rather than separating application-level function-
ality from architectural decisions. For example, while
Java EE (formerly J2EE) provides core caching, tiering
and partitioning functionality, developers must still man-
ually decide what and how to cache, tier and partition
in their system. These choices are scattered throughout
the application-level code [14], making the code hard to
understand, maintain, and redeploy. Platform computing
services such as Amazon’s EC2 and Azure provide elas-
tic compute environments, but do not aid or enforce scal-
ability and performance best practices [1, 10]. Google’s
App Engine provides a scalable platform for a narrow
class of services [6]. SEDA uses a staged event driven ar-
chitecture to separate application event processing from
controllers that handle resource allocation decisions [15].
Dryad and MapReduce achieve many of our goals of sep-
arating application-level from scalability and reliability
concerns but are scoped to off-line and batch computa-
tions instead of interactive services [3, 9].

3 Fluxo Architecture

The main goal of FLUXO is to give the programmer the
illusion of writing straight line code for handling a web
request and allow the system to handle the complexities

Fluxo compiler
Dataflow 

program + 
annotations

Deployable 
program

Program 
transformations

Runtime 
profile

Environment 
specification

Figure 1: FLUXO architectural diagram.

arising from the requirements of scalability, high perfor-
mance, and reliability. The main logic of handling the
request is expressed in the form of a dataflow program.
FLUXO then performs a series of program transforma-
tions that analyze and restructure the input program, re-
sulting finally in a program that can be deployed on a set
of physical machines in a datacenter.

Akin to a regular compiler, we envision that FLUXO
contains both platform-independent transformations that
optimize the input program, and platform-specific trans-
formations that map the program components to avail-
able physical resources. In addition, FLUXO automati-
cally instruments the program to collect runtime infor-
mation, such as workload distributions and performance
profiles, that can be analyzed to direct future optimiza-
tions. These profile-guided transformations may be done
off-line, periodically, or continuously, depending on the
nature of the transformation. To allow FLUXO to reason
about semantic correctness, FLUXO asks the developer
to provide semantic annotations that describe attributes
such as consistency requirements and side-effects.

Programming Model

A FLUXO graph contains nodes, which perform com-
putation, and typed edges, which represent the flow of
data. Execution begins with a trigger event such as a
web request or timer. The dataflow graph declares in-
put availability requirements of each of its nodes. Nodes
wait until all of their declared inputs are available and
perform the computation, thereby generating outputs on
their outgoing edges. Some nodes are marked as output
nodes, meaning that their data is sent back through the
web interface.

Figure 2 contains an example FLUXO input program
implementing a part of a social-news service. The ser-
vice implements two operations: 1) Given a user id, the
service returns an aggregation of messages broadcast by
that user’s friends; and 2) given a user id, save a message.
The dataflow program concisely represents the logic of
the service without any reference to optimizations re-
quired for scalability, reliability and, performance.

In a FLUXO input program, every request logically ex-
ecutes independently. The only way for a program to
exchange data across requests is by explicitly using a
soft state or hard state store. However, FLUXO is free to

2



CloudDB::
Friends

CloudDB::
Messages

Merge 
message

lists

userid

List

<userid>

List

<msg>

List

<msg>

volatile<5hrs> volatile<3min>

volatile<0>

html
CloudDB::
Messages

Figure 2: FLUXO example describing a part of a social news service
that allows users to broadcast messages to their friends. The service
maintains a database of messages broadcast by each user. The service
makes a best effort to allow a user to read their own most recent mes-
sages, but allows up to 3-minute old reads of messages from friends.

break request isolation as long as the service’s semantic
requirements are satisfied. In fact, many of our program
transformations target cross-request optimizations such
as shared caches and batching of common computations.

To simplify the development of FLUXO programs, we
provide libraries of reusable components for common
tasks such as accessing web services and utilities for ma-
nipulating data. Developers may create new components,
though FLUXO provides only inter-component optimiza-
tions. Existing dataflow-based development frameworks
such as Yahoo! Pipes [16] have demonstrated that a
wide-variety of services can be built using a small num-
ber of standard components.

Annotations

In addition to dataflow, FLUXO asks programmers to add
annotations to the components. These annotations al-
low FLUXO to perform transformations of the original
dataflow graph without violating the user-intended se-
mantics. In particular, it is important to specify the side-
effects of the computation performed by each component
as well as the consistency requirements of the data read
by these components. By default, FLUXO assumes that
each component is stateless. Components that are state-
ful are marked with a volatile annotation. The anno-
tation contains a time parameter that specifies the maxi-
mum allowed staleness of the data read. For example, a
volatile〈0〉 annotation means that component requires
the most recent version of the state. In Figure 2, the pro-
gram requires an up-to-date version of the user’s edits
but allows the edits of the user’s friends to be stale by 3
minutes. Similarly, the set of friends for a given user
can be stale by 5 hours. In addition, components that
modify state need to be annotated specifying whether the
updates performed are idempotent or not. This anno-

volatile<3min>

CloudDb::
Messages

volatile<0>

Message
Cache

Message
Cache

Join

volatile<0> idempotent

CloudDB::
Messages

Figure 3: Wrapping a node with a cache

tation provides FLUXO the flexibility to retry the update
on failures. While most annotations are specified per-
component, some annotations are program-wide: for ex-
ample a closed-world annotation may specify that exter-
nal events cannot modify component behaviors, permit-
ting more aggressive optimizations.

Fault Model

The FLUXO environment assumes that there is an under-
lying hardware management infrastructure that is respon-
sible for managing the availability of machines, similar
to today’s utility computing environments [1, 10]. This
infrastructure, however, does not need to ensure that the
application itself is fault-tolerant. That responsibility, in
FLUXO, falls onto the compilation and optimization poli-
cies. For example, one part of the compilation process is
responsible for replication of component nodes to pro-
vide availability in the face of machine failures.

Storage and Consistency Model

Given the proliferation of cloud storage services, FLUXO
does not implement its own storage model. However,
FLUXO does require programmers to mark nodes with
side-effects, as shown above. Currently, FLUXO assumes
that the underlying storage-service provides strong con-
sistency semantics for updates performed within a given
dataflow component.

A

B

C

D

A

D

X

B

C

all inputs

preprocessed
data

Figure 4: Pre-computing all possible outputs of nodes B and C

3



A

B

C

D

A

D

X
B

C

Queue

Figure 5: Post-computing all possible outputs of nodes B and C

4 Example Optimizations

The optimizations we consider below target various
improvements to overall service latency. These op-
timizations may be applied based on heuristic analy-
ses, simulation-based analysis, or numerical or queueing
models. Each analysis style has its benefits and draw-
backs. In general, encoding heuristics based on current
practices is straightforward, though not necessarily ro-
bust. Simulation-based analysis provides the most accu-
rate analysis of optimization choices [12], but may be
computationally intensive. In contrast, numerical and
queuing models are often fast, but their abstractions can
reduce accuracy.

4.1 Automatic Cache Insertion

The backends of todays Internet services rely heavily on
caching at various layers both to provide faster service to
common requests and to reduce load on back-end com-
ponents. In the context of a large-scale Internet service,
a cache wraps around the computation and/or I/O per-
formed by one or more components or tiers of the sys-
tem. For performance, cache contents are usually stored
in memory, making them an expensive and scarce re-
source.

Cache placement is especially challenging given the
diversity of workloads handled by widely deployed In-
ternet services such as Hotmail, Live Search, Google
Maps, Facebook, and Flickr. To receive the optimal ben-
efit, a cache must be placed with careful comparison
of incoming workload distributions, cached data sizes,
consistency requirements, component performance, and

A

B

C

D

A

X

B

C

Y

D

B

C

B

C

B

C

…

Figure 6: Spreading computation of nodes B and C across machines

A

B

C

D

A

X

B1

C

D

B2 B3 B4
…

parallel

Figure 7: Node B is replicated for fault tolerance. The degree of
replication is determined by observed resource requirements and fail-
ure rates, as well as reliability targets.

many other issues.
Figure 3 shows a dataflow transformation that adds

a cache around a component. The volatile annota-
tions in the dataflow components constrain the design
of caching policies to satisfy the specified consistency
requirements. In particular, FLUXO infers that the en-
tries in the Edits cache are valid for at least 3 minutes.
Moreover, if the graph contains a close-world annotation,
FLUXO controls all updates to the Edits database. Thus,
a cache entry needs to be invalidated only on an update
to that entry. Similarly, if a component is stateless, then
FLUXO can cache the results of the computations for an
arbitrary amount of time, limited only by the opportunity
cost of using the cache memory for other viable requests.

The purpose of automatic cache insertion is to de-
termine which node(s) in the dataflow graph should be
wrapped with caches. The analysis must estimate the
potential performance benefits of cache locations from
workload distributions, component performance profiles,
and data sizes. The data for the analysis can be auto-
matically culled from runtime instrumentations inserted
by FLUXO. One implementation of this analysis is a
search through a large state space of possible caching
options, where each option is evaluated through a sim-
ulation. This simulation technique provides an accurate
representation of the inter-dependencies between caches,
workloads and component performance profiles; though
the cost of exploring a large configuration space solely
through simulation is too great to be practical for large
programs [12].

4.2 Pre- and post-computation

A second technique used to speed the latency of client re-
quests is to move computation and I/O out of the critical
path using pre-computation or post-computation of ex-
pensive stages of request processing. Pre-computation is
equivalent to 1) identifying the ideal entries in a “cache,”
2) pre-filling these entries in a “cache” and, 3) auto-
matically updating the cache to prevent staleness. Fig-
ure 4 shows an example of pre-computation. The pre-
computation is done offline, where the space of potential

4



inputs to B may be explored and results of going through
B and C recorded.

Post-computation means doing just a little bit of work
synchronously, in the critical path, and then delegating
more heavy-weight tasks for later processing. An exam-
ple of post-computation is shown in Figure 5. Nodes B
and C are replaced by node X that places the computa-
tion into a queue to be completed later.

4.3 Partitioning and Tiering

To provide scale-out capabilities, many Internet services
partition their request handling, spreading the responsi-
bility for heavy-weight computation or I/O across many
machines [5]. As such, partitioning can be combined
with tiering such that every tier has its own partition-
ing scheme on a different set of data. For example, in
an e-commerce site, the incoming workload might be
randomly partitioned or partitioned based on geography
while backend computation and storage tiers are parti-
tioned based on the hashcode of the user’s login. An
example transformation shown in Figure 6 demonstrates
how the heavy-weight computation represented by nodes
B and C may be spread across a cluster of machines. Au-
tomatic tiering decision can be based on peak memory
usage or bandwidth requirements of each component.

4.4 Fault Tolerance

Individual nodes or groups of nodes of a FLUXO pro-
gram may fail. As described earlier, FLUXO places re-
sponsibility for ensuring the service reliability onto the
compilation and optimization process. One common pat-
tern for improving availability and performance involves
replicating part of a FLUXO program. For instance, a ser-
vice might send a computation task to several instances
of a component, as represented by nodes Bi in Figure 7.
The first instance of B to complete will be immediately
sent on to node C, while the other outstanding requests
will be canceled. As long as at least one of Bi is available
and performs quickly, the failures or latencies of other Bi

will be hidden. Applying such an optimization requires
that the execution of a node B is idempotent. As a further
enhancement, it is possible to have a stateful version of
this optimization, where the order in which instances re-
spond would be recorded. That way, we will not attempt
to query an instance that likely has failed. Such a state-
ful optimization would also be able to adaptively load-
balance and prefer faster-to-respond instances instead of
slower ones.

5 Conclusions and Challenges

This paper proposes FLUXO, a framework for separat-
ing Internet service functionality from the architectural
concerns of scalability, performance, and reliability. We

describe several program transformations in the perfor-
mance optimization space which show how, through the
use of restricted programming model and runtime trac-
ing, optimization decisions can be automated.

We still face several open challenges as we build a
practical, deployable version of FLUXO, such as refin-
ing the set of semantic annotations through which devel-
opers convey information to enable valid program opti-
mizations; ensuring the correctness of program transfor-
mations; and reducing the computational requirements
of simulation-based analyses. If successful, however, the
FLUXO programming model promises to enable almost
any programmer to create large-scale, high-performance,
reliable Internet services.

References

[1] Amazon. Amazon Elastic Compute Cloud (EC2). http://
aws.amazon.com/ec2/.

[2] R. Bekin and S. Dawson. LinkedIn Communication Architecture.
Presentation at JavaOne, 2008.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. In Proceedings of OSDI, 2004.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels. Dynamo: Amazon’s Highly Available Key-value Store. In
Proceedings of SOSP, 2007.

[5] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gau-
thier. Cluster-based Scalable Network Services. In Proceedings
of SOSP, 1997.

[6] Google. Google App Engine. http://code.google.com/
appengine/.

[7] J. Hamilton. On Designing and Deploying Internet-scale Ser-
vices. In Proceedings of LISA, 2007.

[8] C. Henderson. Flickr and PHP. Presentation to Vancouver PHP
Users Group, Aug 2004.

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed Data-parallel Programs from Sequential Building
Blocks. In Proceedings of EuroSys, pages 59–72, 2007.

[10] Microsoft. Azure Services Platform. http://www.
microsoft.com/azure/.

[11] T. O’Reilly. Database War Stories #3: Flickr. O’Reilly Radar,
Apr 2006.

[12] A. Rasmussen, E. Kiciman, B. Livshits, and M. Musuvathi. Short
paper: Improving the Responsiveness of Interactive Internet Ser-
vices with Automatic Cache Placement. In Proceedings of Eu-
roSys, 2009.

[13] R. Slobojan. Dan Farino About MySpaces Architecture. InfoQ,
Nov 2008.

[14] Sun Microsystems. Java EE. http://java.sun.com/
javaee/.

[15] M. Welsh, D. Culler, and E. Brewer. SEDA: An Architecture
for Well-conditioned, Scalable Internet Services. SIGOPS Oper.
Syst. Rev., 35(5):230–243, 2001.

[16] Yahoo!, Inc. http://pipes.yahoo.com/pipes/, 2008.

5


