Position Summary: Towards Zero-Code Service Composition

EmreKiciman,LaurenceMelloul, ArmandoFox
{emrek, melloul, fox}@cs.stanford.edu
StanfordUniversity

Zero-Code Composition For mary years, people have
beentrying to develop systemsfrom modular reusable
components[R Theidealis zero-code composition: build-
ing applicationsoutof componentsvithoutwriting any new
code. By investigatingzero-codecomposition,our goalis
to make compositioneasyenoughto be of practicaluseto
systemsresearcherand developers. We are focusingon
identifying andremoving systemidmpedimentgo compo-
sition, and on exploiting compositionto achieve system-
wide properties,suchas performance scalability and re-
liability.

Impedimentsto Composition Today evenwhencompo-
nentsare designedo be reused software developershave
difficulties composingthem into larger systems. We be-
lieve the problem lies with the methodsand fundamen-
tal abstractionsisedto packageandcomposecomponents.
For example,abstractionsuchasfunction calls work well
when building small systems,however, they actually en-
force propertieson componentghat significantly impede
compositionand reusegenerally Theseimpedimentscan
be classifiednto two cateories:

e Controlflow impedimentgelateto the orderingof ex-
ecutionof component$l]. For example,two compo-
nentscannotbe usedtogetherwhenthey make differ-
entassumptionsiboutthe sequencingf computation
andpassingof controlbetweerthem.

e Interfaceimpedimentsoccur when componentscon-
tain statically boundinformation aboutother compo-
nents’ interfaces,such as methodnames,datatypes
and orderings,and communicationprotocols. How-
ever, this informationwill beinvalid in differentcon-
texts, and will prevent the componentfrom being
reusedn anarbitrarycomposition.

A Data Flow Composition Model To avoid theseim-
pedimentswe adwocatethat compositionsbe built of au-
tonomousservices connectedogetherin a dataflow net-
work. Autonomousservicesavoid control model mis-
matchesby keepingtheir own locus of control. Interface

impedimentsareavoidedby allowing servicego only name
theirown inputandoutputports. Thedataflow modelis de-
fined by the datadependenciebetweenservicesand pro-
vide an explicit descriptionof the composition. A generic
run-time systemhandlespassingdata from one compo-
nents outputport to anothers input port accordingto the
dataflow descriptionof the composition.

Explicitly exposingthe structureof applicationsenables
systematidnspection,manipulation,and augmentatiorof
applications.We caninspectthe dataflow compositionfor
bottlenecksin performanceand strateically move, repli-
cateor replacepartsof acompositionwhich areperforming
poorly. For example,onesimplistic stratgy is to dynami-
cally placecachesaroundstringsof expensve servicesn a
compositiorto improve performanceWe cansimilarly ma-
nipulatea compositiorto increasats fault-tolerancescala-
bility andreliability.

Current Status We have implementeda prototypecom-

position architecture[3], and are beginning to implement
dynamic manipulationsof compositions,and explore the

relationshipsbetweenthese manipulations, system-wide
propertiesandvariousserviceattributessuchasdetermin-
ism or idempoteny.

References

[1] D. Garlan,R. Allen, andJ. Ockerbloom. Architecturalmis-
matchor why it’s hardto build systemsout of existing parts.
In Proceedings of International Conference on Software En-
gineering ' 95, Seattle April 1995.

[2] P. W. Gio WiederholdandS. Ceri. Towardsmegaprogram-
ming: A paradignfor component-basggrogramming Com-
munications of the ACM, (11):89-99,1992.

[3] E. KicimanandA. Fox. Using dynamicmediationto inte-
gratecotsentitiesin a ubiquitouscomputingervironment.In
Handheld and Ubiquitous Computing (HUC 2000), Second
International Symposium, Sept.2000.

