
Position Summary: Towards Zero-Code Service Composition

EmreKıcıman,LaurenceMelloul, ArmandoFox
{emrek,melloul, fox}@cs.stanford.edu

StanfordUniversity

Zero-Code Composition For many years,peoplehave
been trying to develop systemsfrom modular, reusable
components[2]. Theideal is zero-code composition: build-
ing applicationsoutof componentswithoutwriting any new
code. By investigatingzero-codecomposition,our goal is
to make compositioneasyenoughto beof practicaluseto
systemsresearchersand developers. We are focusingon
identifying andremoving systemicimpedimentsto compo-
sition, and on exploiting compositionto achieve system-
wide properties,suchas performance,scalability, and re-
liability.

Impediments to Composition Today, evenwhencompo-
nentsaredesignedto be reused,softwaredevelopershave
difficulties composingthem into larger systems. We be-
lieve the problem lies with the methodsand fundamen-
tal abstractionsusedto packageandcomposecomponents.
For example,abstractionssuchasfunctioncallswork well
when building small systems,however, they actually en-
force propertieson componentsthat significantly impede
compositionandreusegenerally. Theseimpedimentscan
beclassifiedinto two categories:

� Controlflow impedimentsrelateto theorderingof ex-
ecutionof components[1]. For example,two compo-
nentscannotbeusedtogetherwhenthey make differ-
entassumptionsaboutthesequencingof computation
andpassingof controlbetweenthem.

� Interfaceimpedimentsoccur when componentscon-
tain staticallyboundinformationaboutothercompo-
nents’ interfaces,suchas methodnames,data types
and orderings,and communicationprotocols. How-
ever, this informationwill be invalid in differentcon-
texts, and will prevent the componentfrom being
reusedin anarbitrarycomposition.

A Data Flow Composition Model To avoid theseim-
pediments,we advocatethat compositionsbe built of au-
tonomousservices connectedtogetherin a dataflow net-
work. Autonomousservicesavoid control model mis-
matchesby keepingtheir own locusof control. Interface

impedimentsareavoidedby allowing servicesto only name
theirown inputandoutputports.Thedataflow modelis de-
fined by the datadependenciesbetweenservices,andpro-
vide an explicit descriptionof the composition.A generic
run-time systemhandlespassingdata from one compo-
nent’s outputport to another’s input port accordingto the
dataflow descriptionof thecomposition.

Explicitly exposingthestructureof applicationsenables
systematicinspection,manipulation,andaugmentationof
applications.We caninspectthedataflow compositionfor
bottlenecksin performance,andstrategically move, repli-
cateor replacepartsof acompositionwhichareperforming
poorly. For example,onesimplistic strategy is to dynami-
cally placecachesaroundstringsof expensiveservicesin a
compositionto improveperformance.Wecansimilarly ma-
nipulatea compositionto increaseits fault-tolerance,scala-
bility andreliability.

Current Status We have implementeda prototypecom-
position architecture[3], andare beginning to implement
dynamicmanipulationsof compositions,and explore the
relationshipsbetweenthese manipulations,system-wide
propertiesandvariousserviceattributessuchasdetermin-
ism or idempotency.

References

[1] D. Garlan,R. Allen, andJ. Ockerbloom. Architecturalmis-
matchor why it’ s hardto build systemsout of existing parts.
In Proceedings of International Conference on Software En-
gineering ’95, Seattle,April 1995.

[2] P. W. Gio WiederholdandS. Ceri. Towardsmegaprogram-
ming: A paradigmfor component-basedprogramming.Com-
munications of the ACM, (11):89–99,1992.

[3] E. KıcımanandA. Fox. Using dynamicmediationto inte-
gratecotsentitiesin a ubiquitouscomputingenvironment.In
Handheld and Ubiquitous Computing (HUC 2000), Second
International Symposium, Sept.2000.

1


