There’s an app for that, but it doesn’t work.
Diagnosing Mobile Applications in the Wild

Sharad Agarwal Ratul Mahajan Alice Zheng Victor Bahl
Microsoft Research

Abstract— There are a lot of applications that run on
modern mobile operating systems. Inevitably, some of these
applications fail in the hands of users. Diagnosing a failure
to identify the culprit, or merely reproducing that failure in
the lab is difficult. To get insight into this problem, we inter-
viewed developers of five mobile applications and analyzed
hundreds of trouble tickets. We find that support for diagnos-
ing unexpected application behavior is lacking across major
mobile platforms. Even when developers implement heavy-
weight logging during controlled trials, they do not discover
many dependencies that are then stressed in the wild. They
are also not well-equipped to understand how to monitor the
large number of dependencies without impacting the phone’s
limited resources such as CPU and battery. Based on these
findings, we argue for three fundamental changes to failure
reporting on mobile phones. The first is spatial spreading,
which exploits the large number of phones in the field by
spreading the monitoring work across them. The second is
statistical inference, which builds a conditional distribution
model between application behavior and its dependencies in
the presence of partial information. The third is adaptive sam-
pling, which dynamically varies what each phone monitors,
to adapt to both the varying population of phones and what is
being learned about each failure. We propose a system called
MobiBug that combines these three techniques to simplify the
task of diagnosing mobile applications.

Categories and Subject Descriptors
C.4 [Performance of systems] Reliability, availability, and serviceability
D.2.5 [Testing and debugging] Distributed debugging
C.2.4 [Distributed systems] Distributed applications
General Terms
Algorithms, Design, Measurement, Reliability
Keywords

Mobile applications, diagnosis

1. Introduction

A large number of applications are being written today for
mobile phones. In just 3 years since its launch, the Apple
iPhone App Store has over 200,000 applications. The An-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Hotnets ’10, October 20-21, 2010, Monterey, CA, USA.

Copyright 2010 ACM 978-1-4503-0409-2/10/10 ...$10.00.

droid market has over 50,000 applications. These applica-
tions are written by a variety of developers from hobbyists to
experienced professionals.

Diagnosing unexpected application behavior is a major chal-
lenge for these developers today. They do not have low-level
access to the OS and cannot easily learn conditions under
which the application misbehaves; mobile OSes themselves
have poor support for diagnosis (§2.1). Mobile applications
operate in a highly dynamic environment, such as variable
network connectivity. Without detailed information on the
conditions under which the application misbehaves, it is dif-
ficult to reproduce misbehaviors that occur in the wild. We
describe in §2.2 one case in which it took developers multiple
weeks to reproduce and diagnose a crashing behavior.

The goal of this paper is to highlight and understand this
problem. Since this domain is new and little is known about
it today, we conducted two surveys to obtain detailed insight
into the nature of the problem. The first survey (§2.2) consists
of interviews with developers of five applications across two
mobile platforms. The second survey (§2.3) is an analysis
of hundreds of trouble tickets that detail failures experienced
by users and actions taken by support engineers to diagnose
them.

Our surveys confirm that the diagnostic support provided
by current mobile OSes is limited. Many developers simply
ignore the provided information and attempt to engineer their
own systems. Due to the same limitation, support engineers
find it tedious to diagnose failures that users experience.

The surveys also yield insights into the challenges in en-
abling effective diagnosis of mobile applications. First, mo-
bile phones have fairly limited resources—they have limited
processing and memory capacity, battery drain is a major is-
sue, and network transfers over 3G can be expensive. Second,
the dynamic conditions of the mobile environment make mat-
ters worse because some misbehaviors occur under uncom-
mon conditions. Finally, because of the complexity of the en-
vironment, it is hard for developers to identify reliably all the
factors on which the behavior of their application depends.
These challenges are unfortunately in conflict. One way to
get around the issues of rare, failure conditions and unknown
dependencies is through continuous and detailed logging, but
such logging can be very expensive for phone resources.

Current diagnostic systems, which have been designed for
the PC or datacenter environments, are incapable of meeting
these challenges. Most prior systems assume full availability
of instrumented data, which is not feasible in this domain.

They use homogeneous instrumentation, both in terms of the
type of data collected but also in the granularity of detail.

Based on observations from our surveys, we argue for three
fundamental changes to failure reporting that, if implemented
well, will significantly simplify mobile application diagnosis.
The first is spatial spreading, by which monitoring is spread
across phones, instead of each phone monitoring everything
that it experiences. Such spreading can be achieved by di-
recting dynamic instrumentation on each phone where each
instrumentation point is turned on or off. The second is statis-
tical inference, which allows us to deal with incomplete data
by using a conditional distribution model between instrumen-
tation points. The third is adaptive sampling, by which what
a phone monitors changes with time as a dependency graph
of conditions that the application behavior depends on is in-
crementally refined.

We outline a system, called MobiBug, that is designed around
these three techniques. It treats monitoring as a coordinated
global activity across phones, time and applications, and in-
tegrates it with the analysis itself. It can tune what a phone
monitors based on available resources and what new informa-
tion it is capable of contributing. The latter factor means that
phones heavily represented in the population need to moni-
tor less and that monitoring overhead for an application de-
creases with time.

2. Survey of current practices

The area of mobile application diagnosis is new and little
is known about it today. Hence, we examine current practices
to get detailed insights into the nature of the problem. Ex-
isting mobile OSes have built-in support to automatically log
information about failures. We briefly summarize this support
across 3 representative OSes in §2.1. We find that the infor-
mation collected is limited in nature, and hence we survey 9
developers for 5 applications across 2 mobile OSes in §2.2 to
understand how they cope. Finally, in some situations, de-
bugging experts have the opportunity to interact directly with
users while they are experiencing failures in the field. We an-
alyze hundreds of trouble tickets describing such debugging
sessions and summarize our findings in §2.3.

2.1 Diagnostics support in mobile OSes

Each time an application crashes on a phone, the mobile
OS collects information about the crash. For example, on the
Apple iPhone !, this crash log includes:
application name & version
e date & time of crash
e OS version
e exception type & error code

! Crashes on the iPhone are “silent” — the UI returns to the OS home
screen without any other indication to the user that the application
crashed. As a sample point of how often this occurs, on one author’s
iPhone 3Gs with 50 applications, 67 crash logs were collected over
the last 6 months. The failing applications were both third-party
ones including NPR Radio, Skype, Yahoo Messenger, Kindle and
Facebook, but also those that shipped with the OS including Mail
and Maps.

current practice app#1 | app#2 | app#3 | app#4 | app#5
app. type ™M search backup | search browser
mobile OS WM 6 iPhone | WM 6 WM 6 WM 6
use crash logs from OS yes yes yes yes yes
use custom logging yes yes yes yes no

log app. performance no no yes yes no

use custom logs in dogfood | yes yes yes yes no

use custom logs in release no no no no no
transfer of custom logs auto manual | manual | manual | n/a
transfer is BW optimized no no no no n/a
read user forums for details | yes yes yes yes no
failure analysis manual | manual | manual | manual | mixed

Table 1: Summary of current practices across 5 mobile apps

o per-thread stack trace with function addresses & offsets

e version numbers of binaries that the application relies on
Android and Windows Mobile 6 collect almost the same in-
formation. While we have not examined all mobile OSes,
we believe these three are representative of the state-of-the-
art. The OSes do vary in how crash logs are transmitted.
When an iPhone is connected to the desktop, iTunes collects
these logs and uploads them to Apple. Android developers
can use third-party crash reporting libraries [3, 2], but the up-
coming Android 2.2 [1] will upload crash logs directly from
the phone. Windows Mobile phones queue these logs and di-
rectly upload them to Microsoft when the phone is connected
via Wi-Fi or USB. Logs are then available on-line to the appli-
cation developer through iTunes Connect, or Android Market,
or Windows Phone Developer Portal [4] respectively.

2.2 Developer interviews

To understand how developers use OS-generated crash logs
and debug application failures, we interviewed 9 developers
of 5 different applications for the iPhone and Windows Mo-
bile. We briefly summarize our interview findings.

As Table 1 shows, developers for every application receive
and examine crash logs from the field. Unfortunately, every
team complained that the logs from the mobile OS are almost
always insufficient to understand the nature of the failure. The
included stack trace indicates what portion of the code failed,
but gives little information about the environmental condi-
tions that triggered the failure other than the hardware, OS
and library versions.

Hence, many teams build custom logging. Using knowl-
edge of their application, they identify parts of the environ-
ment that the application depends on (e.g. state of GPS).
Logging is added to the application to periodically measure
these dependencies. Unfortunately, they do not anticipate all
the environmental conditions that impact their application. In
subsequent debugging of failures, they uncover some of these
unknown dependencies (e.g. status of network connections).

For all the applications, the developers adopted a two-stage
release process. The application is first distributed among fel-
low employees. This stage, called “dogfood”, allows devel-
opers to test the application beyond the lab. Then, after fixing
any encountered bugs, the application enters the release stage
where the public can download the application.

When custom logging is used, it is used exclusively during
dogfood. The developers consider the performance overhead
of logging to be acceptable for their fellow employees prior to
release, but not for customers post-release. Most do not build

trouble | type of
tickets | problem
174 | experienced failure
99 | app. developer question
38 | general question

example

app. error message
what is the API to use GPS?
how do I download updates?
34 | feature requests can you add email threading?
11 | desktop software broken | re-install often solves problem

Table 2: Summary of 356 trouble tickets

automated transfers of custom logs back to them, and rely on
educating their employees on how to manually transfer logs.

Without rich logging in public releases, many developers
read user forums to learn about the conditions in which users
experience failures, and sometimes contact those users to get
more information or turn on logging on a case-by-case basis.

Developers for one of the applications described an exam-
ple that is typical of their problematic debugging cases. They
received negative feedback from users experiencing crashes.
They found a common pattern—a specific phone model. The
developers attempted to reproduce the failure in the lab by us-
ing the application extensively on that phone model. Weeks
of testing yielded no failures until a developer inadvertently
entered an elevator while using the application. Even with
custom logging enabled, they were unable to find the cul-
prit. They iteratively added logging for more environmental
conditions and repeated their experiments. Eventually, they
discovered that when the application downloads several web
objects simultaneously, and the 3G signal rapidly degrades,
the network stack on a particular driver or OS version on that
hardware behaves unexpectedly.

2.3 Trouble ticket analysis

In the mobile ecosystem, engineers other than the develop-
ers can also be involved in diagnosing an application failure.
The OS vendor, hardware manufacturer or mobile operator
can offer product support to customers who can call in about
any problems they are experiencing with their phones. We ob-
tained a large corpus of trouble tickets from May 2008 for an
organization that provides such support, and we now briefly
summarize our analysis of it. During this period, support was
limited to the Windows Mobile platform.

When a user calls in, the support engineer will document
the trouble ticket in free form text. It includes transcriptions
of voice conversations, emails, IMs, and sometimes the en-
gineer’s summary of the problem, cause and solution. We
picked tickets at random and identified 356 that involve mo-
bile phones and read through each one. Table 2 summarizes
the type of problems users called about. 174 tickets involve
failures they experienced. Of these, 74 are incomplete—the
ticket is truncated or the mobile OS was re-installed without
much debugging. We now focus on the remaining 100 tickets.

Figure 1 describes the debugging process in a typical trou-
ble ticket. It is often lengthy and encompasses multiple days
of phone, email and IM conversations. Early in the course of
debugging, the main task is to identify the problem and the
relevant support engineer, such as an email expert or a web
expert. Once that engineer takes over the ticket, she will go
through an iterative debugging process with the user.

The key challenge for the support engineer is to identify

Reboot phone

Email sync still fails

Restart IIS server

Email sync still fails

Restart Exchange server

Email sync still fails

Create dummy account on Exchange server

Setup phone emulator, configure it, attempt sync
Email sync successful on emulator

Delete email account on phone and reboot phone
Recreate email account settings on phone

Email sync still fails

Check version of OS on mobile phone; does not match emulator
Setup new emulator with that exact OS version
Email sync fails on emulator

Check server certificates

Disable all authentication on server, reboot server
Email sync succeeds

Check mobile OS documentation on authentication
Configured authentication type not supported on that mobile OS version
Re-enable all authentication on server, reboot server

Figure 1: Typical debugging process after problem identification and
re-routing to relevant engineer. Mobile phone is not syncing email
with server and throwing a vague error message. Other phones that
connect to the server work.

trouble tickets | symptom

73 | Opaque error message

10 | Unreachability

10 | User action fails

2 | Hang or crash

Out of memory
Drop in battery life
Phone slowdown
Phone beeping
Phone able to access disabled account

Table 3: Failure symptoms in 100 trouble tickets

—_——

the cause of the problem. Unfortunately, as we summarize in
Table 3, often the error message thrown by the application or
the OS is opaque — it provides little insight to the engineer. In
fact, we found very different problem causes and solutions for
similar error messages in these trouble tickets. This problem
spanned multiple applications in our trouble tickets, and we
argue is not unique to this OS — quite often, components of
the OS or application or application’s execution platform do
not provide descriptive enough error messages that get prop-
agated up to a reporting mechanism. This lack of information
results in the engineer going through a process of elimination
to find the culprit, as in Figure 1.

3. Goals & challenges

From our survey of current practices, we find that mobile
OSes provide little information on application crashes. The
stack trace and software and hardware versions do not iden-
tify many conditions that can contribute to failures, such as
CPU utilization, state of network connections, software con-
figuration, and status of sensors such as GPS. As a result, we
find that both developers and support engineers largely ignore
OS-generated crash logs. Developers attempt to build their
own solution, while support engineers go through a tedious
process of culprit elimination.

Our goal is to identify detailed information on conditions
that lead to unexpected behavior in mobile applications. These
conditions can be used by the developer to reproduce the fail-

system | dynamic or sampled

instrumentation

dependency
learning

Aguilera et al. [5]
Cohen et al. [12]
PinPoint [10]
Magpie [8]

CBI [15]

Holmes [11]

ABI [7]

Live Monitoring [14]
Paradyn [17]

Table 4: Comparison of prior work on failure diagnosis

>N

NNNNNX X % %
> X > 3 3 X X

ure in a lab, and sometimes eliminate or even identify possi-
ble culprits.

There are two main challenges to solving this problem.
Developers are unable to collect all the relevant information
without impacting the limited resources on phones. Even if
they ignore this impact in specific situations, such as in the
lab, they are unable to identify all the possible conditions that
their application’s behavior depends on. These unknown de-
pendencies impact their application in the field because it is
far more dynamic than the lab environment.

There are many requirements for an ideal solution. The
combination of these two challenges requires the solution to
learn dependencies automatically with limited data. For ease
of failure reproducibility, a minimal set of contributing con-
ditions should be identified. These conditions should be iden-
tified quickly so that the developer can patch the application.
The solution should handle heterogeneous sources of infor-
mation, including static conditions (e.g., OS version, GPS
type), dynamic conditions (e.g., button clicks, CPU load, sig-
nal strength) and application behavior (e.g., crashes, perfor-
mance counters).

4. Prior work on failure diagnosis

Although diagnosing mobile applications is a new domain,
there is prior diagnosis work in other computer systems. How-
ever, as we summarize below and in Table 4, prior work does
not sufficiently address the challenges and requirements of
the mobile platform—monitor heterogeneous sources of in-
formation, handle limited phone resources by adapting in-
strumentation granularity and with dynamic or sampled in-
strumentation, and learn the unknown dependencies between
instrumentation sites.

Most prior work uses fairly homogeneous instrumentation,
i.e., information from one source. For example, Magpie [8]
and DustMiner [13] deal solely with event streams, whereas
statistical debugging [15, 16, 6] monitors predicates within
single programs. In our domain, we need to examine the in-
teraction between the application and mobile platform, which

requires a set of very heterogeneous instrumentation sites across

applications, OS and hardware, such as hardware models,
button clicks, CPU load, signal strength and GPS state.

Even with homogeneous instrumentation, most systems
operate at a fixed granularity between coarse to extremely
fine grained. Coarse-grained instrumentation is cheaper to
collect and more efficient to analyze, but does not yield as
many clues as fine-grained instrumentation. Fine-grained in-

strumentation, on the other hand, generates a barrage of data,
which turns root cause diagnosis into an extremely challeng-
ing needle-in-the-haystack problem. Diagnosis in the mobile
domain demands the ability to adaptively adjust instrumenta-
tion granularity so as to avoid unnecessary overhead. In prior
work, Pinpoint and others [10, 5, 9, 19] instrument the sys-
tem at the component or sub-component level. Magpie [8]
collects fine grained event information from both the kernel
and user applications. Yuan [20] instruments system calls on
a single desktop system, and Live Monitoring [14] uses data
consistency checks within the program.

Most prior systems assume full availability of instrumented
data and are poorly positioned to deal with mobile environ-
ments with limited resources. There are some recent works on
adaptive instrumentation at the single-program level. Holmes
[11] and Adaptive bug Isolation [7] dynamically collect intra-
procedural path profiles from running programs. Live Mon-
itoring [14] instruments AJAX-based web programs and is
able to perform dynamic data structure consistency checks.
Paradyn [17] dynamically instruments software binaries in
order to debug common performance problems. These work
are closer in spirit to what we wish to achieve, but none of
them are designed to address resource limitations of the mo-
bile domain.

5. Proposed solution: MobiBug

Despite the challenges that the mobile environment intro-
duces, it provides opportunities that we can exploit. We pro-
pose first steps in a system called MobiBug to solving this prob-
lem. While there are multiple ways to build such a system,
we argue for a few fundamental changes to failure reporting
in mobile platforms.

5.1 Overview

MobiBug is a single platform for diagnosing all applications
on a mobile OS. It is operated by the OS vendor, just as er-
ror reporting today. Such a platform reduces the application
developer effort and limits the overhead on a phone by shar-
ing common monitoring tasks among different applications.
It also allows the mobile OS vendor to offer more effective
product support to users. While we do not consider privacy
issues in our design, we believe that the impact can be miti-
gated by restricting access to personally-identifiable informa-
tion such as the phone number or IMEI, which are unlikely to
be useful in diagnosis anyway.

In MobiBug, client modules on mobile phones measure data
on application behavior and the environment. A centralized
server sends instrumentation directives to these clients to mea-
sure specific pieces of data. The server is responsible for di-
agnosis, learning failure signatures, and generating new in-
strumentation directives. Application developers interface with
the MobiBug server to obtain raw logs uploaded by phones
as well as diagnosis findings computed automatically by Mo-
biBug . Figure 2 provides a diagram of the various compo-
nents.

developers 6& wis results

MobiBug
analysis server

reports from
phones

network
+
Internet

probabilistic model
of bugs and data

fault1 fault2 fault3

buttonl GPS signal
Click status strength
HW version

Figure 2: Overview of MobiBug

5.2 Reducing measurement overhead using spatial
spreading

While individual phones have limited resources to mea-
sure all the data necessary for failure diagnosis, large num-
bers of each type of phone are sold on the market. There are
a small number of phone manufacturers. Retail stores and
users have little ability to modify the hardware. The OS that
the mobile operator or phone manufacturer releases is diffi-
cult for end users or applications to modify. Thus there is a
limited universe of unique phone environments that an appli-
cation runs in, each with many instances. The opportunity
is to spread the overhead of collecting diagnosis information
across all these instances. We use this technique of spatial
spreading in MobiBug to reduce the impact on each phone.

To achieve spatial spreading, we rely on dynamic instru-
mentation. The MobiBug server directs different phones to col-
lect different information on different instrumentation sites in
order to refine the diagnosis for previously un-seen failures.
When a phone uploads measured data, the server performs
signature matching against known failures. It collates the di-
rectives for each failure, and sends a random subset to the
phone to monitor. The MobiBug client then dynamically up-
dates instrumentation and maintains the measurements in a
circular buffer.

Due to the variety of conditions that an application’s be-
havior can depend on, MobiBug uses heterogeneous instrumen-
tation sites to collect relevant information. It is heterogeneous
in that very different types of information are collected across
the OS, hardware and applications. Static or slow-changing
information such as hardware platform and OS version need
only be collected once during the initial sync and updated
upon change. Dynamic information such as CPU load and
network connection state are collected on an on-going basis,
depending on directives from the MobiBug server.

Transferring large amounts of collected data to the Mo-
biBugserver can be detrimental to the mobile operator’s net-
work and to the user’s phone bill. Spatial spreading reduces
the burden on each phone’s network usage. Further, if the
MobiBug client successfully matches the collected data against
signatures for diagnosed failures downloaded from the server,

then this data is not uploaded. For undiagnosed failures, the
signature indicates the urgency of the bug — if it is non-critical
(e.g. does not affect the user experience), the client will delay
upload until the phone is tethered with a desktop PC.

5.3 Making sense of incomplete data using statisti-
cal inference

MobiBug compensates for limited resources on the phone
by placing most of the analytical burden on the server. The
snippets of incomplete data that each phone is measuring re-
quire more sophisticated computation to analyze. There are
three main computational tasks for the server: filling in miss-
ing data, formulating and matching against failure signatures,
and generating further instrumentation directives.

Statistical inference is a general tool to fill in missing data
values and help guide diagnosis. It requires first learning a
probabilistic model [18] of the data that captures the structure
as well as parameters of conditional distributions between in-
strumentation points. Given such a model, standard proba-
bilistic inference machinery can then tell us the probability
of state z given observed values for variables X and Y. We
illustrate this in §5.6 using the elevator bug as an example.

5.4 Refining the dependency graph using adaptive
sampling

Building the probabilistic dependency graph can take a
long time with incomplete data. To speed this process, we
rely on adaptive sampling. First, some dependencies can
be manually specified using developers’ domain knowledge
(e.g., the behavior of my map application depends on the
GPS driver version). As we found from our survey of de-
velopers, they are often unable to specify all dependencies
but are willing to tolerate measurement load during dogfood.
Hence, second, we use heavy instrumentation during lab test-
ing and dogfood to collect data to discover more dependen-
cies. Finally, during release, the measurement overhead on
each phone is restricted to avoid noticeable impact.

However, the user environment is more dynamic than ei-
ther the lab or dogfood. Previously discovered dependencies
may not be valid in the wild, or previous in-dependencies
may be actual dependencies. MobiBug changes over time what
each phone measures to validate existing (in)dependencies.
The MobiBug server will occasionally send “hypotheses” of
conditional (in)dependence and expected probabilities to the
client. The client will then spend a small amount of resources
to monitor those sites and check that the values are within the
expected range. If the observed data that the client uploads
consistently falls below a likelihood threshold under the cur-
rent model, then the server must update or re-learn the model.

5.5 Failure diagnosis

There are two basic steps to failure diagnosis in MobiBug.
We first match collected data against known failures. If the
failure has not yet been fully diagnosed, we then generate di-
rectives for further instrumentation to help diagnose this fail-
ure.

Given the incomplete list of failure symptoms collected
from the client, MobiBug’s job is to determine whether they
match against a known failure, or whether this is an instance
of a new and previously unknown failure. In the latter case,
the model needs to be expanded, and additional probes per-
formed to distinguish the new failure from existing failures.
As described earlier, we use adaptive sampling to change dy-
namic instrumentation on clients, thereby allowing MobiBug to
learn additional symptoms that could distinguish failures.

Once unique failures have been identified, we merge all
data from a failure and infer its dependency graph. This de-
pendency graph contains the conditions on which the failure
depends and is returned to the developer.

5.6 Example: The Elevator Bug

We now use the elevator bug from §2.2 in an example
of how MobiBug might work. First, developers create a Mo-
biBug profile for their application, and include any known de-
pendencies. They suspect that the network type (3G, Edge,
Wi-Fi, etc.) may be a factor. During dogfood, MobiBug ag-
gressively collects data from participants’ phones, on both
application behavior (e.g., application specific counters such
as number of active and completed requests, and error codes
from various components) as well as the phone environment.
It will collect the network type more frequently, but with a
smaller probability still explore other dependencies. So one
phone may be collecting the network type, CPU load, and
speaker volume while the application is running. Another
phone may collect the network type, speaker volume, and the
network flow table.

Using this dataset, MobiBug builds the first version of its
dependency graph, where it may decide that there is a prob-
abilistic dependency between the application’s behavior and
CPU load, but has observed no other dependencies on the
environment. During public release, MobiBug will primarily
monitor the CPU load with application behavior, but with a
very small probability explore other dependencies it had pre-
viously ruled out.

Suppose some phones observe error code Y that is uniquely
associated with the elevator bug. Given Y, MobiBug looks at
its dependency graph to determine additional features to mon-
itor (if few are known, then this initial list may be randomly
chosen). MobiBug uses this data to update its dependency
graph. For instance, it should already know about the rela-
tionship between network type and number of completed net-
work requests. But it may discover a previously unknown re-
lationship between the number of active network downloads,
the network signal strength, phone OS version, and error code
Y. Each update to the structure of the probabilistic model
should serve as a clue to the tester about the behavior of this
bug.

6. Summary

Diagnosing unexpected application behavior on phones is
difficult even for seasoned developers. Our survey of devel-
opers uncovered a need for more detailed information than

what modern mobile platforms provide. A key challenge for
them is collecting data on the application’s behavior and its
environmental conditions while having limited CPU, battery
and network impact on the phone. In addition, they are un-
able to identify a priori all the possible dependencies for their
application, partly because the lab environment is far less dy-
namic than users’ mobile phones in the wild. Our analysis of
trouble tickets finds that due to the lack of information, sup-
port engineers engage in a lengthy process of elimination of
numerous possible culprits of failures.

While application diagnosis is a well-studied area in the
desktop and enterprise domain, our findings open up this area
into a new domain with unique challenges. We argue for fun-
damental changes to failure reporting in order to diagnose
mobile application misbehavior. We do so by proposing the
design of MobiBug around three techniques. Spatial spreading
allows us to overcome the limited capabilities of each phone
by sharing the overhead of monitoring across all the phones
in the wild. Statistical inference can be used to make sense
of this incomplete data to build dependency graphs. Adap-
tive sampling allows us to incrementally refine dependency
graphs by changing what each phone monitors over time to
test portions of it. We argue that if implemented well, these
techniques will significantly reduce the problem of mobile
application diagnosis.

7. References

[1] Android Developers Blog: Android Application Error Reports.
http://android-developers.blogspot.com/2010/05/
google-feedback-for-android.html.

Application Crash Report for Android.

http://code.google.com/p/acra/.

[3]1 Remotely log unhandled exceptions in your Android Applications.

http://code.google.com/p/android-remote-stacktrace/.

Windows Phone Developer Portal.

http://developer.windowsphone.com.

[5] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthitacharoen.

Performance debugging for distributed systems of black boxes. In ACM SOSP,

2003.

D. Andrzejewski, A. Mulhern, B. Liblit, and X. Zhu. Statistical debugging using

latent topic models. In ECML, 2007.

[7] P. Arumuga Nainar and B. Liblit. Adaptive bug isolation. In /CSE, 2010.

[8] P.Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for request
extraction and workload modelling. In OSDI, 2004.

[91 M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox, and
E. Brewer. Path-based failure and evolution management. In NSDI, 2004.

[10] M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint: Problem
determination in large, dynamic internet services. In DSN, 2002.

[11] T. Chilimbi, B. Liblit, K. Mehra, A. Nori, and K. Vaswani. HOLMES: Effective
statistical debugging via efficient path profiling. In ICSE, 2009.

[12] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase. Correlating
instrumentation data to system states: A building block for automated diagnosis
and control. In OSDI, 2004.

[13] M. Khan, H. K. Le, H. Ahmadi, T. Abdelzaher, and J. Han. DustMiner:
Troubleshooting Interactive Complexity Bugs in Sensor Networks. In Sensys,
2008.

[14] E. Kiciman and H. J. Wang. Live monitoring: Using adaptive instrumentation
and analysis to debug and maintain web applications. In HotOS X1, 2007.

[15] B.Liblit, A. Aiken, A. X. Zheng, and M. L. Jordan. Bug isolation via remote
program sampling. In PLDI, 2003.

[16] B.Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical
bug isolation. In PLDI, 2005.

[17] B.P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin,
K. L. Karavanic, K. Kunchithapadam, and T. Newhall. The paradyn parallel
performance measurement tools. IEEE COMPUTER, 1995.

[18] K. Murphy. An introduction to graphical models. 2001.

[19] R.R. Sambasivan, A. X. Zheng, E. Thereska, and G. R. Ganger. Categorizing
and differencing system behaviours. In HotAC 11, 2007.

[20] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and W.-Y. Ma.
Automated known problem diagnosis with event traces. In EuroSys, 2006.

2

[4

[6

http://android-developers.blogspot.com/2010/05/google-feedback-for-android.html
http://android-developers.blogspot.com/2010/05/google-feedback-for-android.html
http://code.google.com/p/acra/
http://code.google.com/p/android-remote-stacktrace/
http://developer.windowsphone.com

	Introduction
	Survey of current practices
	Diagnostics support in mobile OSes
	Developer interviews
	Trouble ticket analysis

	Goals & challenges
	Prior work on failure diagnosis
	Proposed solution: MobiBug
	Overview
	Reducing measurement overhead using spatial spreading
	Making sense of incomplete data using statistical inference
	Refining the dependency graph using adaptive sampling
	Failure diagnosis
	Example: The Elevator Bug

	Summary
	References

