
Eat All You Can in an All-You-Can-Eat Buffet:
A Case for Aggressive Resource usage

Ratul Mahajan Jitendra Padhye Ramya Raghavendra Brian Zill
Microsoft Research

Abstract —In contrast to a focus on efficiency, we ad-
vocate aggressive usage of available resources. This view
is embodied in what we call the Buffet principle: con-
tinue using more resources as long as the marginal cost
can be driven lower than the marginal benefit. We illus-
trate through several examples how this seemingly obvi-
ous principle is not adhered to by many common designs
and how its application produces better designs. We also
discuss broadly the considerations in applying the Buffet
principle in practice.

1. INTRODUCTION
Alice walks into a restaurant with an all-you-can-eat

buffet. She wants to eat enough to avoid hunger until the
next meal. Should she eat based on the expected time until
her next meal, or should she eat as much as she can?

The second strategy is clearly superior. It provides the
best possible protection against hunger, limited only by
the capacity of Alice’s stomach. With the first strategy,
misestimation of the time of the next meal or of the activ-
ity level lead to hunger. And note that both strategies cost
the same.

Surprisingly, system design often follows the first strat-
egy today. For instance, consider the task of adding for-
ward error correction (FEC) to transmissions over a wire-
less channel. In current designs, the number of added
FEC bits tends to be a function of the anticipated bit error
rate [2, 4, 23, 8], independent of the available spectrum
resources. This method protects against packet loss as
long as the errors are fewer than anticipated but fails with
higher or bursty errors. This failure is unfortunate if there
are available resources that would otherwise go to waste.

Underlying the use of the first strategy today is a de-
sire for efficient use of available resources. In the FEC
example, adding the number of bits that is a function of
the common-case error rate is an efficient way to use the
spectrum. More bits might be considered wasteful usage.
Yet if that spectrum would otherwise go unused, the real
waste is in not taking advantage of it to improve perfor-
mance. As demonstrated by the examples above, a singu-
lar focus on efficiency can lead to poor performance.

Based on these observations, we put forth theBuffet
principle: continue using more resources as long as the
marginal cost can be driven lower than the marginal bene-
fit. Stated differently, efficiency of resource usage should
not be a driving concern if more resources can be used at
a lower cost than the benefit from the additional use.

Through several case studies, we show that applying
the Buffet principle produces designs that are qualitatively
different and arguably perform better. Our cases span a
range of systems and resource types, including erasure
coding over lossy channels, replication for reliability, man-
aging control traffic, and speculative execution. The di-
versity of these examples points to the broad applicability
of the principle.

The key challenge in applying the Buffet principle is
that the default way to greedily use resources tends to
be costly. For example, in the FEC scenario, if the net-
work is CSMA-based and a transmitter greedily pads its
data transmissions, other transmitters will suffer and total
network goodput will drop. Unless this challenge can be
overcome, efficiency-oriented designs are likely prudent.

Our case studies suggest that this challenge can be met
in many settings. In the FEC scenario, for instance, it can
be met by having transmitters send additional FEC bits
in separate, short transmissions that occur with a lower
priority, so that they are less likely to hinder other data
transmissions. In addition to prioritization, we identify
opportunistic usage when the resource is vacant, utility-
driven usage, and background usage as useful methods in
building Buffet-based systems.

We also discuss broadly the other challenges in apply-
ing the principle, its limitations, and scenarios where it
can be naturally applied. These scenarios are where the
opportunity cost of greedily using resources can be effec-
tively controlled; where the resource in question goes to
waste if not used; and where greedy usage by one user
does not hurt others. The potential limitations of Buffet-
based designs are that performance can become a function
of the amount of spare resources and greedy usage of one
resource can increase the latency of certain tasks and bot-
tleneck other resources.

We do not claim that the Buffet principle has never been
used before. For example, one recent work appears to use
it [6], and there are undoubtedly others as well. In con-
trast to these works, the contribution of this paper lies in
an explicit and general specification of the principle and
in provoking a broader discussion of its value. In this re-
spect, we are inspired by the end-to-end argument [16],
which articulates a broadly useful principle across the de-
sign of many systems.

We also do not claim that the principle can be univer-
sally applied, only that it offers a useful perspective on
system design. The most attractive aspect is that the per-

1



Amount of resource 

consumed

P
e
rf
o
rm
a
n
c
e

Sweet spot

(a)
Cost

B
e
n
e
fi
t

Use more 

resources

Use fewer 

resources

(b)

Figure 1: (a): The thinking underlying many
efficiency-centric designs. (b): A simplistic illustration
of the Buffet principle.

formance of Buffet designs would be limited primarily by
the amount of available resources, rather than likely arti-
ficial limitations driven by efficiency concerns. However,
its full potential can only be understood in the context of
concrete, practical designs. We are currently building two
different systems based on the Buffet principle.

2. THE (SOMETIMES MISPLACED) FOCUS
ON EFFICIENCY

In this section, we describe how the focus on efficiency
manifests in system design today and when it may be un-
warranted. In many systems, the amount of resources
used depends on design choices, rather than it being a
simple function of workload. Examples include systems
that: i) add FEC to data transmitted over a communica-
tion channel, where the amount of resources consumed
depends not only on the payload but also on the extent
of error correction added;ii) replicate data over multi-
ple storage devices, where the amount of resources con-
sumed depends on the degree of replication;iii) prefetch
libraries into memory before user programs ask for it (to
speed execution), where the amount of resources used de-
pends on the aggressiveness of prefetching.

To those familiar with the design of such systems, Fig-
ure 1(a) may appear familiar. Thex-axis represents the
amount of resources consumed and they-axis represents
performance. In the FEC case, these can be the number of
added bits and the fraction of packets correctly received.

System designers often use such a graph as a guide.
They try to find the “sweet spot” such that:i) before it,
consuming more resources brings great additional bene-
fit; and ii) beyond it, there are diminishing returns. The
sweet spot is an attractive operating point when efficiency,
which may be characterized as performance per unit of re-
source consumed, is a central goal.

However, an exclusive focus on efficiency can be mis-
placed. We outline specific examples in§4, but the gen-
eral characteristics of such situations are the following.
• Extra resources can be used such that the marginal cost
is low and the resource itself is of “use it or lose it” variety,
that is, not using it leads to unnecessary wastage. Such
resources include disk space, channel capacity, etc. While

the returns from using resources beyond the sweet spot are
low, they nevertheless represent additional benefit, which
should be had when the cost is low.
• The amount of resource usage needed to hit the sweet
spot is hard to determine accurately because the system is
dynamic. This occurs, for instance, when the failures or
packet losses are bursty; here, even if the view of average
failure or loss rate is accurate, burstiness implies that at
any given instance the system may be operating far from
the sweet spot. The system would perform better and the
design may be simpler as well if the focus was on using
as much resource as possible, rather than trying to operate
at constantly a moving target.

We argue that instead of focusing exclusively on effi-
ciency, the designers must take a holistic look at the re-
sources at their disposal and use them aggressively. To-
wards this end, we propose the Buffet principle.

3. THE BUFFET PRINCIPLE

The Buffet principle is easily stated:continue using
more resources as long as the marginal cost can be driven
lower than the marginal benefit.Figure 1(b) illustrates it
somewhat simplistically, without capturing the dynamics
of marginal cost and benefit and thus the fact that the de-
signs may get less efficient as more resources are used.

The simplicity of the Buffet principle is deceptive, to
the extent that it might seem obvious and in wide usage.
But system design today is often not approached from the
perspective advocated by it. This point will be clarified
below and in the case studies outlined in the next section.

For a quick illustration, however, consider TCP, the
dominant transport protocol for reliable communication.
At first glance, it may appear that TCP uses the Buffet
principle because it tries to estimate and consume all avail-
able bandwidth. However, TCP consumes all available
bandwidth only if there is sufficient amount of new data,
for instance, during a large file transfer. It will not use the
spare bandwidth to proactively protect existing data from
loss.

For example, consider the case where TCP’s conges-
tion window is 8 packets and it receives only 4 packets
from the application. TCP will send only 4 packets even
though the path can support more, assuming that conges-
tion window reflects available bandwidth. It will send
more only after a packet is determined to be lost, which
takes at least a round trip time.

A Buffet-based transport protocol might preemptively
send each packet twice, thus using the spare bandwidth
to provide faster loss recovery. Of course, whether such
a protocol is practical depends on whether other data can
be protected from the aggressive bandwidth usage by du-
plicate packets.

As suggested by the example above, the key to success-
fully applying the Buffet principle is that the aggressive

2



resource usage advocated by it must be enabled in a way
that does not hurt overall performance. Otherwise, the
marginal cost would be high and an efficiency-focused de-
sign would in fact be prudent. The default way to aggres-
sively use resources often has a high cost; for instance, the
duplicate packets above may lead to higher overall loss
rate. This reason is perhaps why many system designs
tend to focus on efficiency, almost by default; it is not the
case that designers are leaving obvious gains on the table.

Approaching the design from the perspective of the Buf-
fet principle challenges designers to devise methods to
lower the impact of aggressive resource usage. The exam-
ples below highlight that this is likely achievable in many
cases. The resulting designs can be qualitatively different,
sometimes simpler, and perform better.

Applying the Buffet principle also requires us to quan-
tify or at least compare the cost and benefit of using more
resources. This exercise is system-specific and must ac-
count for all relevant economic and performance-related
factors. We discuss this challenge in§5.1.

4. CASE STUDIES

We now describe several settings that can benefit from
Buffet-based designs. We classify them based on the na-
ture of the resource of interest. Our designs are not com-
plete but are meant to highlight the diversity of settings
where the principle can be applied. The next section has
a more general discussion of considerations surrounding
the application of the principle.

4.1 Wireless spectrum or bandwidth

4.1.1 Forward error correction (FEC)
Wireless media tends to be error-prone and the bits in-

ferred by the receiver may be corrupted in transmission.
Adding FEC bits can help recover from some of the bit
errors and improve performance by reducing packet loss.
The trade-off here is that each additional bit can lower
packet loss but also steal transmission capacity.

FEC designs that we are aware of either add a fixed
number of bits to each transmission or a number that adapts
based on estimated bit error rate (BER) [2, 4, 23, 8]. Cur-
rent designs use efficiency arguments similar to those in
§2 and add bits corresponding to the sweet spot where ad-
ditional bits present a diminishing reduction in loss rate.
However, by not explicitly considering available resources,
they either unnecessarily lose packets even when there are
spare resources or create unnecessarily high FEC over-
head under heavy load. Either way, throughput suffers.

A Buffet-based FEC design can enable the maximal
protection against bit errors that the amount of available
spectrum resources can provide. Such a design will add
some minimum number of FEC bits to all transmissions,
perhaps based on the expected common case BER. On top

0.5 0.6 0.7 0.8 0.9 1
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Load (Mbps)

T
hr

ou
gh

pu
t (

M
bp

s)

 

 

Buffet
FEC−30
FEC−20
FEC−10
No FEC Figure 2: Throughput

with different FEC mech-
anisms as a function of of-
fered load.

of that, it will greedily add more FEC bits as long as there
are spare resources.

We illustrate the benefits of such a design using a sim-
ple simulation experiment in which 8000-bit packets are
sent over a channel with 1 Mbps capacity and a BER of
10−6. We assume an optimal FEC code: whenk bits
of FEC are added, the packet is successfully delivered
if any 8000 out of 8000+k bits are received without er-
ror. Figure 2 shows the throughput in this setting with-
out FEC, with different levels of added FEC, and with a
Buffet design where the minimum number of FEC bits is
zero. FEC-K refers to adding FEC bits equivalent to K%
of the packet size – current FEC designs would sit on one
such curves. We see that the Buffet-based FEC performs
the best across the board. For any given load level, the
Buffet-based design matches the best other design. Indi-
vidual other designs suffer significantly either under low
load or under high load.

The example above also suggests how Buffet designs
can be simpler. Current FEC designs need to carefully
decide how many bits to add based on estimated BER or
packet losses [2, 4, 23]. This task is complicated by the
bursty and dynamic nature of the error process, and mises-
timations hurt throughput. Buffet designs skirt this com-
plexity altogether. By simply adding as many bits as the
currently available resources allow, they can get the best
performance at all load and BER levels.

A challenge, however, in the design of a Buffet-based
FEC system is to ensure that greedy addition of FEC bits
does not lead to fewer data bits being transmitted (e.g.,
due to carrier sensing). This property is easy to achieve
in systems where transmitters have a short- or long-term
dedicated share of the medium, as may be the case for
satellite links or long-distance point-to-point links [8,14].

It can also be achieved in CSMA-based systems. In-
stead of embedding all FEC bits in the data packet itself,
we can embed the minimum number of required bits in the
packet. The additional bits are transmitted separately with
lower priority, which makes it more likely for data trans-
missions of other senders to acquire the medium. Such
priority mechanisms can be implemented today using re-
cent WiFi hardware that supports quality of service (QoS)
enhancements (802.11e) [1]. We can further reduce the
impact of greedy FEC bits by making FEC-only packets
small, so that even when they do acquire the medium, they

3



delay data transmissions by only a short amount of time.
We are currently designing such an FEC system. Our

focus is on VoIP and multimedia streaming. For these ap-
plications, the aggressive addition of FEC bits would lead
to more timely data delivery, compared to retransmissions
based on exponential backoffs.

4.1.2 Erasure coding for lossy paths
Rationale similar to the one above also applies to pro-

tection against packet losses. For this setting as well, cur-
rent designs can lead to avoidable data loss. As an exam-
ple, consider a recent system, called Maelstrom [5], that
uses erasure coding to combat losses in dirty fiber. It adds
a fixed amount of redundancy to the data stream, based on
the observation that loss rates in fiber are generally low
and adding more redundancy would use more resources
in the common case. With Maelstrom, data would be lost
whenever loss rate is higher than the level of protection. A
Buffet-based system can provide greater protection from
losses by utilizing all remaining path capacity for erasure
coded packets.

The key challenge here is to send coded packets such
that they do not steal bandwidth from normal data traffic.
This is easily accomplished in a system like Maelstrom
if sits on the two ends of the fiber. It can also be ac-
complished by marking redundant information as lower
priority, so that routers drop them first during periods of
congestion. A way to accomplish it without router sup-
port is to send erasure coded data opportunistically, only
when the queues are estimated to be empty.

We are building a system that uses the third method
above. It targets paths provided by cellular providers from
moving vehicles; such paths tend to be lossy with unpre-
dictable loss rates [15]. Their roughly stable capacity lets
us estimate when the queues are empty and erasure coded
packets can be sent. This system is meant for users that
subscribe to an unlimited data plan, and thus the marginal
cost of sending erasure coded data is only performance-
related, not economic. Our early experiments show a neg-
ligible drop in throughput due to aggressive coding, even
under high offered load. They also show an appreciable
reduction in packet losses.

4.1.3 Mobility updates
The performance of systems that exhibit a high-degree

of mobility, such as a mobile ad hoc network (MANET),
depends on the frequency of mobility updates. A higher
frequency yields better performance as nodes will have
a more up-to-date view of the topology, but it can also
swamp data traffic. Existing systems get around this trade-
off by setting the frequency of updates to a tolerable level
that is based on an analysis similar to the sweet spot rea-
soning presented in the previous section [10, 3]. Such sys-
tems may perform poorly in situations with higher than
anticipated mobility levels even when there is spare ca-
pacity to support a high update frequency.

A Buffet-based mobility update mechanism will pro-
vide better performance whenever spare capacity is avail-
able. The practical difficulty here again is ensuring that
the additional updates do not hurt data traffic. This can be
accomplished using a priority mechanism similar to the
one suggested above for FEC transmissions.

4.1.4 Routing in delay tolerant networks (DTNs)
As further evidence of the value of the Buffet principle,

we note that system design in the domain of DTN routing
has evolved from not using the principle to using it. Many
DTN routing protocols replicate messages along multiple
paths to improve their delivery probability. Older proto-
cols limit the amount of replication to prevent a few mes-
sages from dominating network resources [17, 12, 18].
Because this limit is not guided by the amount of avail-
able storage or bandwidth between replication end points,
these designs can perform poorly even when plenty of re-
sources are available. A recent protocol, called RAPID [6],
implicitly uses the Buffet principle. It replicates as much
as available resources allow. To prevent network dom-
ination by a few messages, it takes a utility-driven ap-
proach in which messages are replicated based on their
expected utility. Messages that have been replicated more
have lower utility. The authors demonstrate that RAPID
significantly outperforms older designs.

4.2 Storage

4.2.1 Long-term storage
Replication protects data against node failures and la-

tent sector errors in disks. The amount of replication,
however, is often pre-determined today, based on antici-
pated failure rate. This unnecessarily limits the protection
level even when there may be spare resources. A repli-
cation system based on the Buffet principle will provide
maximal protection given available resources.

Consider two scenarios. The first is replication across
one or more disks on a single computer. Today’s mech-
anisms such as various RAID configurations are based
on a preset amount of replication that provides protec-
tion against a certain number of failures. This can lead
to data loss when more failures occur even though ample
working storage may still be available. A Buffet-based
design will replicate aggressively to fill all available stor-
age, thus providing maximal possible protection. The key
challenge is to not hurt read and write performance in the
process, which we believe can be accomplished by rele-
gating the task of additional replication to the background
and conducting it only when the disk is idle.

The second scenario is replication across computers in
a data center or in a wide-area peer-to-peer system. Here
too, the system will be more reliable with replication that
uses all available resources rather than a fixed replication
level. The key challenge is to manage the bandwidth im-
pact of aggressive replication, which is a particularly rel-
evant concern for the wide-area setting. We believe that

4



this concern can be handled through background transfer
protocols such as TCP Nice [21].

4.2.2 Short-term storage
Program execution can be slowed by the time it takes

to load the program and the libraries it uses into memory.
One can speed this up by preemptively loading in memory
commonly used binaries when there is space (and time)
available. Indeed, this strategy has already been proposed
or implemented for modern operating systems [9, 19]. A
Buffet-based strategy will maximize performance by ag-
gressively filling available memory, instead of being lim-
ited to the most promising candidates.

Similar ideas have been explored in the context of pre-
fetching web pages that users are likely to view in the fu-
ture [11, 22, 13]. If the bandwidth impact of such prefetch-
ing can be controlled, for instance, using TCP Nice, such
systems should aggressively fill available cache capacity
to maximize user-perceived performance.

4.3 Computational resources
Speculative execution is a commonly used technique

in modern processors. In it, parts of code are executed
even though the results may eventually be discarded, de-
pending on the outcome of the (if) conditions that oc-
cur prior to these parts. The execution of the program
is non-sequential to parallelize processing. When the re-
sults prove useful, speculative execution boosts perfor-
mance. The performance benefit of speculative execution
depends on the accuracy of branch prediction. Conven-
tionally, only one branch is speculatively executed even
though additional resources may be available for execut-
ing more branches. More recent designs attempt to ex-
ecute multiple paths [20]. For maximal performance, a
Buffet design would speculatively follow as many paths
as current resources levels allow. As the number of cores
inside processors increase, such a design would increas-
ingly outperform strategies that limit speculative execu-
tion to more likely paths.

5. APPLICABILITY CONSIDERATIONS

In this section, we discuss broadly the issues related to
applying the Buffet principle in practice. These are based
on our early experiences and will be refined over time.

5.1 Challenges in applying the principle
There are two key challenges. The first challenge of

course is ensuring that greedy resource usage does not de-
tract from other productive work. The last section men-
tions several techniques to address this challenge in the
context of specific examples. We summarize them here.
One technique is prioritization, so that greedy tasks get
lower priority. Prioritization can be explicit, e.g., embed-
ding priority in packet headers for routers. It can also be
implicitly implemented by sources, by them deferring to

other tasks, e.g., background transfers of TCP Nice [21]
and the use of higher inter-frame spacings in 802.11e [1].
Prioritization may not suffice in settings where aggressive
usage of multiple nodes need to be traded-off with one
another based on their relative benefit. Utility-driven re-
source consumption, which is a generalization of prioriti-
zation, can help here. In it, tasks are executed in order of
their estimated utility, as in RAPID [6]. Yet another tech-
nique is opportunistic usage, as in our erasure coding sys-
tem (§4.1.2) in which greedy usage occurs only when the
resource is idle. We believe that one of these techniques
or a combination can be applied in many situations.

The second challenge is quantifying or at least being
able to compare the marginal benefit and cost of using
more resources. For cost, the primary difficulty is tak-
ing into account the opportunity cost of greedily using re-
sources, that is, for what else could those resources be
used. This is not a concern where the greedily allocated
resource can be easily reclaimed when needed or would
otherwise remain unused. But it could be problematic oth-
erwise. Additionally, if precise accounting is desired, we
need to quantify the cost of the side-effects produced by
greedy usage as well (§5.3).

We can avoid the task of quantifying marginal cost by
driving it to zero or negligible levels. The techniques
above for managing greedy usage help here. If done suc-
cessfully, we can continue to use more more resources
until the marginal benefit becomes negative.

Quantifying marginal benefit can also be tricky, e.g.,
in the face of correlated failures [7]. But because the
marginal benefit of using more resources is usually pos-
itive, more resources can be used whenever the marginal
cost is negligible.

5.2 Applicable resources
Two categories of resources are well-suited for apply-

ing the Buffet principle. The first is non-conservable re-
sources, i.e., those that would go to waste if not used.
Storage, bandwidth, and computational resources are typ-
ically non-conservable. An example of a conservable re-
source is battery power.

We do not claim that the Buffet principle does not ap-
ply to conservable resources, only that it is easily applied
to non-conservable resources. Applying it to conservable
resources requires a more involved evaluation of marginal
benefit that includes predictions of future behavior.

The second category is where the resource is not shared
with non-Buffet users who may not be able to differentiate
normal usage from greedy usage with lower value. Such
users might reduce their own consumption on observing
aggressive usage, which would reduce overall system through-
put. In some cases, Buffet users can co-exist with non-
Buffet users. For instance, our wireless FEC design co-
exists by implementing greedy usage at lower priority and
deferring to non-Buffet users.

5



5.3 Side effects of greedily using resources
We have encountered three side-effects. First, the sys-

tem performance becomes a function of the workload it-
self. For example, our FEC design loses fewer packets
at lower loads and more at higher loads; in current de-
signs, the loss rate for transmitted packets is independent
of load. One might argue that such load-dependent per-
formance abstraction is hard for applications. But observe
that performance is already often load-dependent. For in-
stance, wireless loss rate increases with load because the
collision frequency increases. Even along wired paths,
loss rate observed by applications can depend on load.
Sending at 0.9 Mbps along a 1 Mbps capacity path leads
to no loss but sending at 1.1 Mbps leads to 10% loss.

The second side-effect is that greedy usage can strain
the system. It can increase task-completion latency. For
instance, a read request for a disk block will have to wait
longer if it arrives during greedy replication. The level of
latency increase depends on how fast the greedy task can
be completed or preempted. It can be controlled by keep-
ing individual greedy tasks short or preemptable. Another
strain is that aspects of the system that were originally not
the bottleneck can become bottlenecks with greedy usage.
For instance, disk I/O bandwidth may become a bottle-
neck with aggressive replication, even if it was not previ-
ously. Careful design is needed to alleviate this problem.

A final side-effect is that with greedy usage, the re-
sources will frequently appear fully utilized. This behav-
ior will typically not matter but it may in some cases, for
instance, if administrators use utilization levels to make
provisioning decisions. This issue can be dealt with by
separately counting normal and greedy usage.

5.4 Benefit of the principle in practice
It depends on the workload and the amount of available

resources. So it might vary from none to a lot. For exam-
ple, in our erasure coding system, a Buffet-based design
leads to zero loss under low load and a a loss rate that is
equal to the underlying path loss rate under heavy load.
The appropriate view of a Buffet design is that its perfor-
mance is limited by the amount of spare resources instead
of specific design parameters, and thus it provides the best
performance for a given level of resource investment.

6. CONCLUSIONS
We articulated the Buffet principle, which advocates

a different perspective on system design than a singular
focus on efficiency. Through several examples, we ex-
plain how Buffet designs differ from efficiency-centric de-
signs and how they are likely to perform much better. We
also discussed broadly the considerations surrounding the
application of the principle in practice. This discussion
points to both strengths as well as limitations. Overall,
we find the principle promising and offering a useful per-
spective on system design. Instead of being limited by

artificial design choices, Buffet designs have the poten-
tial to provide the best performance for the level of avail-
able resources. Its eventual worth can be understood only
by studying the performance of many concrete designs,
which is an active area of research for us.

Acknowledgments We thank John Douceur for feed-
back on this paper.

7. REFERENCES
[1] Medium access control (MAC) quality of service enhancements.

IEEE Standard, 2005.
[2] J.-S. Ahn, S.-W. Hong, and J. Heidemann. An adaptive FEC code

control algorithm for mobile wireless sensor networks.Journal of
Communications and Networks, 7(4), 2005.

[3] S. Ahn and A. Shankar. Adapting to route-demand and mobility
in ad hoc network routing.Computer Networks, 38(6), 2002.

[4] A.Levisianou, C.Assimakopoulos, N-F.Pavlidou, and
A.Polydoros. A recursive IR protocol for multi-carrier
communications. InInt. OFDM Workshop, Sept. 2001.

[5] M. Balakrishnan, T. Marian, K. Birman, H. Weatherspoon, and
E. Vollset. Maelstrom: Transparent error correction for lambda
networks. InNSDI, Apr. 2008.

[6] A. Balasubramanian, B. Levine, and A. Venkataramani. DTN
routing as a resource allocation problem. InSIGCOMM, Aug.
2007.

[7] J. R. Douceur and R. P. Wattenhofer. Large-scale simulation of
replica placement algorithms for a serverless distributed file
system. InMASCOTS, Aug. 2001.

[8] M. Emmelmann and H. Bischl. An adaptive MAC layer protocol
for ATM-based LEO satellite networks. InVTC, Oct. 2003.

[9] B. Esfabd.Preload: An adaptive prefetching daemon. PhD thesis,
University of Toronto, 2006.

[10] R. K. Guha, Y. Ling, and W. Chen. A light-weight location-aware
position update scheme for high mobility networks. InMILCOM,
Oct. 2007.

[11] Z. Jiang and L. Kleinrock. An adaptive network prefetchscheme.
IEEE JSAC, 16(3), 1998.

[12] A. Lindgren, A. Doria, and O. Schelen. Probabilistic routing in
intermittently connected networks. InSAPIR, Aug. 2004.

[13] V. Padmanabhan and J. Mogul. Using predictive prefetching to
improve World-Wide Web latency. InSIGCOMM, Aug. 1996.

[14] R. Patra, S. Nedevschi, S. Surana, A. Sheth, L. Subramanian, and
E. Brewer. WiLDNet: Design and implementation of
high-performance WiFi-based long distance networks. InNSDI,
Apr. 2007.

[15] P. Rodriguez, R. Chakravorty, J. Chesterfield, I. Pratt, and
S. Banerjee. MAR: A commuter router infrastructure for the
mobile Internet. InMobiSys, June 2004.

[16] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments
in system design.ACM ToCS, 2(4), 1984.

[17] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Spray and
wait: an efficient routing scheme for intermittently connected
mobile networks. InWDTN, Aug. 2005.

[18] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Performance
analysis of mobility-assisted routing. InMobiHoc, May 2006.

[19] Windows Vista SuperFetch. http://www.microsoft.com/windows/
products/windowsvista/features/details/superfetch.mspx.

[20] A. K. Uht. Speculative Execution in High Performance Computer
Architectures, chapter Multipath Execution. CRC Press, 2005.

[21] A. Venkataramani, R. Kokku, and M. Dahlin. TCP-Nice: A
mechanism for background transfers. InOSDI, Dec. 2002.

[22] Q. Yang and H. H. Zhang. Integrated web prefetching and caching
using prediction models.WWW, 4(4), 2001.

[23] L. Zhao, J. W. Mark, and Y. Yoon. A combined link adaptation
and incremental redundancy protocol forenhanced data
transmission. InGLOBECOM, Nov. 2001.

6


