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ABSTRACT
The inclusion of the barometer sensor in smartphones signaled an
opportunity for aiding indoor localization efforts. In this paper,
we therefore investigate a possible use of the barometer sensor for
detecting vertically oriented activities. We start by showing the ac-
curacies of various commodity measurement devices and the chal-
lenges they bring forth. We then show how to use the barome-
ter values to build a predictor that can detect floor changes and
the mode (elevator, escalator, or stairs) used to change floors with
nearly 100% accuracy. We validate these properties with data col-
lected using 3 different measurement devices from 7 different build-
ings. Our investigation reveals that while the barometer sensor has
potential, there is still a lot left to be desired.

1. INTRODUCTION
There are a number of papers in ACM MobiSys and HotMobile

that have profited from the plethora of sensors on smartphones, in-
cluding the gyroscope, accelerometer, compass and microphone.
Many have employed these sensors for location and contextual aware-
ness. Imagine our excitement when we noticed a new sensor ap-
pearing on smartphones – the barometer – that has not been tapped
by our community. This sensor has appeared on “top shelf” de-
vices, including the Samsung Galaxy S4, Google Nexus 4 and 10.

Naturally, our first instinct was to use this sensor to solve one of
the key challenges in mobile computing – indoor location. Since
the barometer sensor measures ambient atmospheric pressure, and
since that pressure varies primarily with height, our objective is to
determine which floor of an indoor building the user is on.

In practice, this is a challenging problem. Atmospheric pressure
outdoors varies throughout the course of a day, subject to natural
weather phenomena. Some large indoor buildings are pressurized,
either for heating and cooling efficiency or for sanitary reasons.
While in some indoor location scenarios, an error of a few meters
may be tolerable, in this situation an error of even 2 meters might
indicate the wrong floor. Given these real-world challenges, can we
still determine which floor of a building a user is on?

For this paper, we conducted extensive measurements using sev-
eral devices in 7 buildings across Singapore across different times
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of the day and days of the week. As we anticipated, there is abso-
lute pressure variation observed by a phone that remains stationary
on a floor. Worse, we observed inter- and intra- phone model vari-
ations in absolute pressure readings that were large enough that two
phones next to each other of the same model give pressure readings
that are off by the equivalent of over one building floor. We sub-
sequently focus on relative pressure differences, the intuition being
that a change in pressure equivalent to a floor height indicates that
the phone has changed floors. Unfortunately, we also encounter
sensor drift, where the readings from a barometer sensor vary not
necessarily because the actual pressure has changed. Despite these
challenges, we have made the following findings:

1 Absolute pressure readings are unreliable indicators of floor-
level information, and there are several subtle pitfalls that
practitioners must consciously tackle.

2 The pressure difference between two floors of a building shows
significantly less variability across time and phone model.
Using readings from a single device, we can determine that
i) the user has changed floors, ii) and how many floors have
changed (or the change in absolute height) with almost per-
fect accuracy.

3 The three common modes for changing floors (escalators,
stairs and elevators) can be distinguished by looking at the
rate of pressure change. These rates are distinctly higher than
the typical drift we observe on barometer sensors.

4 The barometer is significantly more robust than an accelerom-
eter at detecting vertical activities. However, it consumes
similar amounts of energy, even though on paper, the barom-
eter is a very cheap sensor.

Unfortunately, there are key challenges that prevent us from us-
ing the barometer sensor on phones for determining which floor a
user is on. Since the absolute value reported by different phones
varies, we cannot simply use sensors embedded in the building to
provide reference values to compare against and then determine
what height or floor a user is on. Many large buildings have multi-
ple entrances that may be on different floors, hence it is not trivial to
identify which floor a user has entered on and then simply count up
or down each time the pressure changes. Finally, while the barome-
ter sensor could be used in conjunction with an infrastructure-based
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indoor location system, it provides limited value since it only pro-
vides how many floors have changed when the user moves.

If not for indoor location, what can the barometer sensor be used
for? The sensor was originally introduced to provide faster GPS lo-
cation fixes by providing an initial altitude estimate for the GPS lo-
cation calculations. However, we have run experiments with com-
parable devices, ones that have the barometer and ones that do not,
and we see no improvement in GPS lock speed or accuracy (aver-
age speed of 39.0s for a cold start GPS lock for a Nexus 4 with a
barometer compared to 20.3s for a Lumia 720 without). We there-
fore encourage the mobile community to find solutions, that over-
come the limitations we encountered in using barometer sensor for
indoor location, as well as identify other compelling use cases for
this new sensor.

2. MOTIVATION
The use of a barometer for identifying height (or floor) change

information is motivated by the fundamental property that atmo-
spheric pressure drops with an increase in altitude. It is well-known
that this relation between barometric pressure and altitude is af-
fected not just by the temperature, but also by various environ-
mental phenomena, such as weather patterns and humidity. For
example, during hurricanes or temperate depressions, the pressure
readings will obviously drop. Our focus is not on studying or in-
vestigating this fundamental relationship, but on ascertaining the
properties of pressure variations in indoor buildings, and on the
interplay between such variations and the measurement accuracy
of the phone-embedded barometer sensor.

We expect the use of the barometer for indoor height/floor es-
timation to be a non-obvious exercise, principally because indoor
environments have several distinct artifacts that we do not observe
outdoors. In particular, we can envision the following artifacts:

• Buildings are often pressurized and climate controlled (more
specifically, in the context of Singapore, air-conditioned).
As a consequence, we expect the humidity and temperature
indoors to be quite distinct from that outdoors. Also, the
pressure-gradient indoors may not follow a simple relation-
ship, as the building pressure on different floors may be reg-
ulated by different air-conditioning units or controllers.

• The floor heights of buildings are typically in the range 2.5-
6.0 meters, which may be well within the range of measure-
ment error of the smartphone-embedded barometer sensor.
So, while a 20 meter variation in height estimation may be
inconsequential for GPS, it may translate into an error of 8
or more floors inside a building!

• The floor heights of buildings are not only different, but are
non-uniform (even within the same building). In particu-
lar, our empirical studies showed that the heights of lower-
level floors (notably the entrance lobby) are often larger, and
even the heights of otherwise homogeneous floors (e.g, the
4th and 5th floors of a campus building) show unexpected
construction-specific artefacts.

3. DEVICE-SPECIFIC CHARACTERISTICS
We used three different devices for recording our data; 1) a Sam-

sung Galaxy S III smartphone (S3), 2) a Google Galaxy Nexus
smartphone (NX), and 3) an external USB weather board (UB) [3].
For the Android platform devices (S3 and NX), we wrote a small
application that queried the Android API for the barometer values
(at 15 Hz for NX and 25 Hz for S3). For the weather board (UB),
we used a laptop running a terminal program that captured the UB’s
barometer output at 1 Hz for 120 seconds. In the case of the UB
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Figure 1: 12 Hour pressure trend on a single floor
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Figure 2: Temporal Variation in height as computed from pres-
sure
device, we collected at least 120 samples (or 2 minutes of data) for
every result. Unless otherwise mentioned, every result for the An-
droid devices uses individual ‘data points’ that are an average of at
least 1,000 consecutive samples.

The NX and UB devices used Bosch barometer sensor [2] while
the S3 used a STM sensor [1]. The Bosch sensors were rated for an
RMS measurement error of 0.5 meters (corresponding to an RMS
pressure error of 0.06 hPa), while the STM sensors were rated for
an RMS measurement error of 0.65 meters (corresponding to an
RMS pressure error of 0.08 hPa).

3.1 Device Impact on Accuracy
Figure 1 shows the change in pressure as reported by four devices

(2 S3’s and 2 NX’s) for a 12-hour duration. All four devices were
left stationary on a table, next to one other, in a closed room in
our campus building. Figure 2 takes a closer look at this change
in pressure on the NX device for a shorter duration of 15 minutes.
There are several observations we make:

• Pressure does not remain constant for a given floor through-
out the day in an HVAC environment. To understand why,
we observe the variation in temperature and the correspond-
ing variation in pressure [Figure 3]1. The figure suggests that
this variation in pressure is perhaps a result of the variation
in temperature.

• The absolute pressure reported (at any given time) across
different device models as well as that reported within the
same device model are different. This difference is signifi-
cant and can correspond to the pressure difference across a
floor pair. For example, the average pressure difference be-
tween the two NX devices was 1.2 hPa which is equivalent

1For this observation we collected data using a Samsung Galaxy
S4 device that has a built-in barometer and temperature sensor.
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Figure 3: Temporal variation of Pressure and Temperature.
to height difference of ~10 meters. However, while the abso-
lute pressure reported is different, the pressure trend (change
in pressure) across all devices is similar.

• Even when stationary, the pressure drift on a device can re-
port a 1.4 meter change in height after a short duration of 15
minutes. Thus change in pressure need not always be associ-
ated with a floor change.

These observations have the following implications:
• Identifying the floor level based on pressure alone will not

work.
• While the short-term (within tens of seconds) measurement

errors are reasonably low, the medium-term variations are
not. Thus to identify floor change, change in pressure as well
as the rate at which pressure changes matter.

In particular, we shall see the practical implications for these ob-
servations, both on the accuracy of fingerprinting-based strategies
for obtaining the number of floors changed (in Section 6) and on
the reliability of pressure-change as a criteria for detecting the on-
set of vertical activities (in Section 5). We note that while the first
issue can be resolved by calibrating the sensor, practical deploy-
ment will require additional infrastructure to assist the calibration.
In this paper we therefore explore the sensor without the need for
any additional setup.

4. TIME, LOCATION, & DEVICE EFFECTS
In this section, we show that even with the measurement drifts

reported earlier, the barometer’s results are quite robust even across
different types of buildings, different times of the day, and impor-
tantly, different devices. We collected data from 7 different build-
ings, using the 3 devices explained in Section 3. The details of
these buildings are shown in Table 1.

4.1 Effect of Time, Loc., & Building Type
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Figure 4: Robustness of Absolute Pressure Values

As stated in Section 3.1, the absolute values reported by the mea-
surement devices have inherent noise in them. Hence, comparing

Level PLA SIS SOE SMU CIT HDB BUG

B1 to 1 0.38 0.77 0.84 0.72
1 to 2 0.49 0.53 0.49 0.60 0.36 0.67
2 to 3 0.49 0.49 0.52 0.89 0.60 0.32 0.67
3 to 4 0.49 0.43 0.37 0.72 0.63 0.28 0.70
4 to 5 0.47 0.47 0.47 0.61 0.65 0.29 0.72
5 to 6 0.50 0.76 0.62 0.30
6 to 7 0.50 0.32

Empty values indicates that that building did not have those
levels.For SMU there is no level 2

Table 2: Pressure Diff. Across Levels and Buildings

the absolute values directly would result in quite a high error. In
addition, as shown in Figure 4 (where we took three pressure read-
ings on three different levels of SIS (levels 3, 4, and 5) at 3 differ-
ent times across 3 different days), time of day and day of the week
effects can also significantly change the absolute pressure values.
However, what if we compared the relative values between differ-
ent levels in a building? Would the difference between the absolute
values help to reduce the error caused by measurement noise and
time/day effects?
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Figure 5: Robustness of Pressure Diff. Across Building Types
Figure 5 shows the results of this experiment. For this experi-

ment, we computed the average pressure difference between con-
secutive floor pairs for multiple building types across 3 different
days and 3 different times. The results showed that the maximum
error in the pressure differences (for the same building and levels
across the multiple days and times) was at most 0.2 hPa. This trans-
lates to an error of about 1.6 meters. Hence, even with the various
sources of error, as long as the distance between floors exceeded
1.6 meters, the barometer could still be a useful sensor to detect
floor changes and activities related to that.

Figure 5 also demonstrates that the type of building, the time of
day, and the day of the week does not really affect the usefulness
of the barometer. However, it was most effective if the inter-floor
height of the building was at least 0.2 hPa or 1.6 meters. To under-
stand if this requirement was a restriction in practice, we computed
the inter-floor pressure differences for our entire set. This is shown
in Table 2.

From the table, we see that most of the inter-level differences are
much greater than 0.2 hPa. However, there are some cases (such as
all the levels in HDB), where the pressure difference is quite close
to the required minimum level. In these cases, the probability of
having erroneous results (e.g., we predict a floor change that never
happened) is higher. Indeed, as shown later, our floor change and
vertical activity prediction accuracy is lower than 100% in part be-
cause of pressure differences that are close to the 0.2 hPa minimum
requirement.

4.2 Pressure Difference is Device Independent
So far we’ve seen that the pressure difference between different

levels in a building are relatively independent of time and location.
However, for a practical solution this property needs to hold across
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Name Code Purpose Size (sq.m) Floors Location Type

University Building SIS Academic Building 9,064 6 Singapore Short, Narrow
University Admin Building SMU Office Building 52,637 13 Singapore Tall, Narrow

University Building SOE Academic Building 17,250 5 Singapore Short, Narrow
Residential Housing HDB Apartment Building 21,375 18 Singapore Tall, Open Air

Plaza Singapura PLA Shopping Mall 67,500 9 Singapore Tall, Wide
Bugis Junction BUG Shopping Mall 38,907 5 Singapore Short, Wide

City Square CIT Shopping Mall 32,516 6 Singapore Narrow
All the buildings, except for HDB, were air conditioned and not exposed to the outside air pressure.

Table 1: Buildings Used for Our Experiments
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Figure 6: Absolute Pressure versus Pressure Difference

the different measurement devices as well. Figure 6 plots the ab-
solute pressure reported by the NX and S3 devices, as we moved
several times (up and down) between a floor pair, as well as the
pressure difference between the floors. Clearly, while the abso-
lute pressure reported by the two devices differ by a magnitude of
around 2hPa the pressure difference are relatively in-sync.

Overall, our measurements show that pressure differences are
quite robust even across difference measurement devices, different
types of buildings, different times of the day, different days of the
week, and different locations. The main requirement is that the
pressure difference between the two floors needs to be at least 0.2
hPa (or 1.6 meters). In the next two sections, we show how to use
these pressure differences to build two extremely accurate (close to
100% accuracy) and robust services — namely, a floor change pre-
dictor that can also determine the exact number of floors changed,
and a predictor that can determine whether an escalator, elevator,
or stairs was used to change floors.

5. DETECTING MODE OF TRANSPORT
We hypothesise that the different mode of transports differ prin-

cipally in two parameters: a) rate of change of height (or equiva-
lently, rate of change of pressure P), given by ∆P

∆T , and b) total time
duration T needed to move between floors.

However, the mappings between ∆P
∆T and the modes of transport

is not straightforward. For example, for elevators, a) the rate of
pressure change (∆P) varies depending on the ’number of floors’
changed (the period for which an elevator accelerates and decel-
erates depends on the number of floors changed), and b) the aver-
age rate of change of pressure, in most buildings, is higher while
ascending than descending, suggesting that elevators travel faster
while ascending. There are also similarly confounding effects for
escalators and stairs usage.

To navigate these effects in a tractable way, we experimented
with four different classification strategies, each of which uses a
different combination of 3 distinct features: i) ∆P (the pressure
change between the final and initial floors), ii) ∆P

∆T and iii) the tran-
sition time T . We used the J48 classifier in Weka, with 10-fold
cross validation, to compute the accuracy of our various classifiers.

Mode of Transport dp dp,T (dp/dt) (dp/dt),T

Escalator/Elevator/Stairs 69 99.67 98.3 100
Escalator 79 99 100 100
Elevator 28 100 95 100

Stairs 100 100 100 100
For each mode of transport, we collected 100 samples with
50 samples going up and 50 going down. The samples were
collected in 6 buildings by 2 different people using 3 devices.

Table 3: % accuracy for detecting vertical mode of transport

In Table 3, we present the effectiveness of the barometer at de-
tecting the mode of transport used to change floor levels. When
we use both the pressure difference, the time difference, and the
total time taken ((dp/dt)/T), we achieve 100% accuracy at detecting
the mode of transport. However, this is under the assumption that
the time taken to change floors using the elevator, escalator, and
stairs is different from each other. It also assumes that the floors
are at least 1.6 meters apart. This translates to about 5-7 seconds
of movement on a typical escalator, stairs, and often less for an
elevator.

6. DETECTING FLOOR CHANGES
In this section, we describe the effectiveness of the barometer in

determining that the measurement device has changed floors. We
show this in two steps; 1) how effective is the barometer at just
detecting that a floor change has happened, and 2) how effective is
the barometer at detecting the exact number of floors changed?

6.1 Detecting That The User Has Changed Floors
To determine the accuracy of the barometer at determining that

a device has changed floors, we collected 220 samples. This data
included 110 samples that involved the user changing floors and the
rest when the user did not. The floor transitioning data also had a
50-50 split between going up and coming down. In both cases we
recorded the change in pressure for the duration of the activity.

We then used Weka to perform a 10-fold cross validation and ob-
tained a floor change accuracy, using just the difference in pressure
values (dp), of 99.54%. I.e., we can use the barometer to very ac-
curately determine if the measurement device has changed floors.
However, this again assumes that the floor change is at least 1.6
meters.

6.2 Identifying the Exact Floor
Up to this point, the barometer can be used to very accurately

determine that a floor change has occurred. However, can we also
determine the number of floors that have been changed? For exam-
ple, can we determine that the measurement device has gone up 2
floors, or gone down 3 floors? This information could be incredibly
useful in any kind of indoor localization tool.

6.2.1 Without Any Additional Information
We investigate the accuracy levels achievable without any addi-

tional information (beyond the pressure and time differences ob-
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Figure 7: Accuracy At Determining No. of Floors Changed
tained when changing floors). To do this, we collected data from
every possible floor transitions of 1-5 levels (up and down) from all
our buildings, using all the three measurement devices. For each
possible floor transition, we collected 11 samples going up and 11
samples going down for a total of 22 * 5 = 110 samples. We entered
all our measurements into Weka and built a suitable predictor that
could be used to accurately determine the exact number of floors
changed.

Figure 7 shows the accuracy of determining the exact number
of floors changed using just pressure and time differences. We ob-
serve that the accuracy of determining just a single floor change is
very high (close to 100% using the (dp/dt)/T predictor). However,
the accuracy drops significantly for two and three floor changes.
This is because the time taken to change these number of levels can
overlap (for example, an elevator can go up three floors just as fast
as another elevator can go up two floors).

However, if we are willing to accept up to a one floor error, we
can achieve a 100% accuracy using the (dp/dt)/T (+1/-1) predictor.
This predictor uses the direction of motion to accurately predict
either the exact number of floors changed or the number of floors
changed + 1. For example, if you went up 3 floors, it will return
either 3 or 4 floors up (and no other value). If you are went down 2
floors, it will return either 2 or 3 floors down (and no other values).

6.2.2 With Basic Fingerprinting Information
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Figure 8: No.of Floors Changed Accuracy with Fingerprinting

Finally, we investigate the accuracy of determining the number
of floors changed if we are able to complement our data with a lit-
tle bit of fingerprint information. In particular, what if we knew the
height of the various floors or in other terms the relative pressure
difference between the various floors of the building the device is
currently in. If this information was available, we would not need to
measure the pressure values while changing floors and then using
that to compute the difference in pressure and difference in time
needed by our previous predictor. Instead, after the floor change
was done, we could just measure the absolute pressure seen at the
new floor and immediately compute the number of floors changed
(using the difference between the current floor and the level 1 pres-
sure as an index into a pre-computed “relative pressure map” table).

Figure 8 shows the accuracy possible under these assumptions.
Each floor pair in the figure was the average of at least 1,000 sam-

Device S3 Nexus
Frequency (Hz) Acc/Bar 100/25 15/5 125/15 15/5

Measured Power Consumption (mW) After 10 mins of Use
Base 28.3 65.06

Accelerometer 719.05 594.97 748.67 662.29
Barometer 582.37 574.72 662.62 621.66

% Improvement 23.74 3.48 12.99 6.54

Table 4: Power Consumed by the Accelerometer & Barometer

ples. We observe that we can obtain 96.5% under these condition
with just one measurement taken on the new floor by the device. As
mentioned earlier in Section 3.1, the measurement device noise can
be quite high and this affects our accuracy. To achieve better accu-
racy, we should use more samples to smooth out the noise. If we
are willing to take 30 samples, for example, the accuracy becomes
almost 100% (99.94%).

7. BETTER THAN AN ACCELEROMETER?
Prior work has used the accelerometer to perform some of the

functions described earlier [13]. We therefore compare the barom-
eter with the accelerometer for these functions, as well as the power
consumed, to evaluate the true utility of the barometer. As before,
we use the S3 and set the 3-axis linear accelerometer to a sampling
frequency of 15 Hz. We performed the experiments under two dif-
ferent conditions. One, when the phone was kept flat in the right
hand for the entire duration of the recording, and the second when
the phone was perturbed for the entire duration of the recording.
There were two types of perturbations. In the first type, the phone
was being used to play a game. In the second type, the user was
attending to a phone call. The perturbed data was collected in SIS
from six stairs, six escalators and six elevators for the floor com-
binations of 1, 2 and 4 floor changes (both up and down). The
un-perturbed data contained 100 different sets of measurements for
using the stairs (across all the buildings in our dataset). Similarly,
we had 100 different measurements for the escalators and elevators
in our un-perturbed data. When taking the stairs, escalators or el-
evators, the sensor values were recorded just before stepping onto
the transport and stopped just after stepping off the transport. The
un-perturbed data was labeled and used to create a training set for
the perturbed data using the J48 classifier in Weka.

Figure 9 shows the results of this study. Figure 9a) shows the
results for detecting the mode of vertical transport (elevators, es-
calators, stairs) while the measurement device was left stationary
(Normal), used to play a game, and used to make a call. Figure 9b)
shows the results for detecting that the measurement device has
changed a floor under the same 3 conditions.We observe that when
the measurement device was left in a normal position, the accuracy
of both solutions was almost identical and quite high. However,
when the measurement device was perturbed, the accuracy of the
accelerometer-based solution dropped significantly while the accu-
racy of the barometer-based solution remained almost constant (and
close to 100% accurate).

Finally, the power consumption of each sensor measured over
a 10 minute time period using the Monsoon power measurement
device showed the barometer (on both devices) consumes between
3 to 23% less power than the accelerometer (Table 4). This suggests
that the barometer, in practice, is more energy efficient than the
accelerometer — but only just.

8. RELATED WORK
Barometers have recently started appearing on smartphones and

tablets. Given the novelty of these sensors, we have found little
prior work that has used them for indoor location.
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Figure 9: Robustness Of The Accelerometer Versus The Barometer

Brush [4] unsuccessfully attempted to use a barometer to help
users find where they parked their car. Lester [8] focused on activity
recognition, including going up or down stairs and elevators. While
their data collection included barometric pressure, it was not used
to infer where a user is.

Varshavsky [12] used a GSM fingerprinting based system to infer
the current floor of a user, but with lower accuracy than our system
and with higher fingerprinting overhead. Ojeda [10] deployed a
dead reckoning system to capture floor level transitions. However,
that system is limited to stairs and cannot capture floor changes via
an elevator or escalator.

Johannsson [6] used vertical accelerometer information over time
to determine the number of floors traveled. While the paper reports
high accuracy in classifying floor level transition it is unclear if
the results hold for multiple buildings. Similarly Ye [13] used a
phone’s accelerometer to record the time taken for traveling across
different floors via an elevator and the step count in the case of
stairs. The system was shown to achieve a high accuracy, but as
we observe, the accelerometer sensor is susceptible to any sort of
perturbation which can result in lower accuracies.

A large body of literature proposes indoor location techniques
which can be used to identify the physical location of users with
varying levels of accuracy. This could in theory be translated to de-
tection of floor changes. Some techniques rely on custom hardware
or radios [5, 7, 9, 11]. Custom radios can also offer TOA (time of
arrival), TDOA (time difference of arrival) or AOA (angle of ar-
rival) information for location. These approaches have hardware
adoption challenges.

9. CONCLUSIONS
We have provided what we believe to be the first exhaustive study

on the properties of mobile-embedded barometers across a number
of buildings with heterogeneous characteristics. Our results show
that while absolute pressure readings have significant time-of-day
variations, the difference in pressure across different floor pairs is
remarkably consistent and steady for any given building. As a con-
sequence, we are able to use pressure difference as a useful fin-
gerprint to detect the exact number of floors changed with almost
100% accuracy. Additionally, pressure-based features (such as the
change in pressure) enable us to classify vertical activities (such
as taking escalators, stairs or elevators) with high accuracy. The
barometer is highly robust to changes in the phone’s on-body place-
ment and orientation, making it a significantly more robust sensor
than the accelerometer for real-life vertical activity detection.

Unfortunately, we also conclude that it is difficult to use the
barometer to determine the actual floor that a user is on. Knowing
how many floors a user has changed and what modality was used
is not a particularly useful piece of context. While the promise of

the barometer was that it would aid GPS location, in practice we
find that it does not help there either. In summary, we advise our
colleagues in the mobile computing community to be aware of the
limitations of this sensor when being considered as part of their
system.
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