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Abstract
In distributed services shared by multiple tenants, man-
aging resource allocation is an important pre-requisite to
providing dependability and quality of service guarantees.
Many systems deployed today experience contention, slow-
down, and even system outages due to aggressive tenants
and a lack of resource management. Improperly throttled
background tasks, such as data replication, can overwhelm
a system; conversely, high-priority background tasks, such
as heartbeats, can be subject to resource starvation. In this
paper, we outline �ve design principles necessary for e�ec-
tive and e�cient resource management policies that could
provide guaranteed performance, fairness, or isolation.We
present Retro, a resource instrumentation framework that
is guided by these principles. Retro instruments all system
resources and exposes detailed, real-time statistics of per-
tenant resource consumption, and could serve as a base
for the implementation of such policies.

1 Introduction
Today, many distributed services are shared by multiple
tenants, both on private and public clouds and datacenters.
�ese include common storage, data analytics, database,
queuing, or coordination services like Azure Storage [4],
Amazon SQS [1], HDFS [26], or Hive [30]. While sharing
these services across tenants has clear advantages in terms
of cost, managing the underlying resources is challenging.
Ideally, multi-tenant service providers should be able

to implement resource management policies with various
high-level goals – e.g., admission control, fairness, guaran-
teed performance, or usage limits. �ese policies enable
the provider to guarantee service-level objectives (SLOs)
to a client, while simultaneously supporting other clients
with di�ering workload characteristics. Equally important,
these policies can ensure that a client does not trigger a
system-wide outage by adversarially or inadvertently starv-
ing essential background tasks of required resources.

Traditionally, resource isolation has been enforced using
OS-level primitives at the granularity of processes or users
(e.g., cgroups [5]) or using hypervisors that provide simi-
lar isolation among virtual machines. �ere is also some
progress in providing network performance guarantees to
groups of VMs [24, 20].
However, in distributed systems there is a mismatch

in granularity between resource management and the ex-
isting mechanisms: on the one hand tenants share the
same processes, thus using the same data structures, thread

pools, and locks; on the other hand, several processes span-
ning machines work on behalf of the same tenant, requir-
ing coordinated management. Prior approaches rely on
ad-hoc enforcement techniques that are di�cult to apply
to other systems [33, 25].

In this paper, we consider some of the challenges faced
by resource management policies, which we observed in
practice: 1) due to extensive APIs, a system can bottle-
neck on any hardware (e.g., disk) or so�ware resource (e.g.,
locks); 2) because users share resources at the application
level, it may not be apparent which user is responsible for
system load; 3) tenants interfere not only among them-
selves but with potentially expensive internal system tasks;
4) the resource requirements for each request issued by a
client can vary substantially based on its type, arguments,
and the system state; and 5) it can be unpredictable on
which machines a request will execute and for how long.

While ignoring some of these challenges can lead to
resource management policies that work in restricted sce-
narios (§5), we argue that one has to consider all of them
to build resource management policies that are e�ective,
i.e., that work in a general setting, and e�cient, i.e., that
achieve their objectives without being overly aggressive
andwasting resources.�ese observationsmotivate �ve de-
sign principles necessary to implement such policies (§2),
and the design of Retro (§3), our prototype framework for
resource tracking and enforcement in distributed systems.
Retro tracks the tenants of a system across a comprehen-
sive set of resources, exposes usage statistics in realtime,
and provides hooks back into the system to e�ect resource
management decisions. Retro’s design is guided by the
principles we outline, and our preliminary evaluation (§4)
shows evidence that it could be used by policies to properly
manage resources in a shared distributed system.

2 Resource Management Design Principles
�is section describes design principles that are necessary
for a resource management policy to be e�ective and ef-
�cient. �e principles are motivated by our experiences
and observations from multiple data, compute, and com-
munication oriented systems. For concreteness we present
our observations in the context of HDFS.
Observation:Multiple request types can contend onun-
expected resources. For our purposes, it su�ces to say
that an HDFS cluster has a single NameNode (NN) that
manages the metadata for the �lesystem, andmany DataN-
odes (DNs) that store replicated �le blocks.
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Figure 1: i) Request latency for a tenant reading 8KB �les from
HDFS [26] with intermittent background workloads A) replicat-
ing HDFS data, B) listing large directories, and C) making new
directories; ii) latency of DataNode disk operations, iii) latency
at NameNode RPC Queue, iv) latency to acquire NameNode
“NameSystem” lock.

Since the core functionality of HDFS involves reading
and writing �les from DNs, one could consider disk and
network as the primary resources that require explicit re-
source management. On the other hand, HDFS contains
many other request types – in fact, there are over 100 API
calls [15] – such as listing �les in a directory, creating di-
rectories, creating symbolic links, or renaming �les.

Figure 1 demonstrates how the latency of anHDFS client
can be adversely a�ected by other clients executing very dif-
ferent types of requests, contending at di�erent resources
such as queues and locks. �at experiment was run in a
very simple setup with one NN and one DN, running on
two machines. However, the ability of a single tenant to
adversely a�ect other tenants’ performance generalizes
beyond this simple scenario. For instance, a Hadoop job
that reads many small �les can stress the storage system
with disk seeks, like workload A in the �gure, and impact
all other tenants using the disks. Similarly, a tenant that
repeatedly resubmits a job that fails quickly puts a large
load on the NN, like workload B, as it has to list �les in
the job input directories. In communication with Cloud-
era [32], they acknowledge several instances of aggressive
tenants impacting the whole cluster, saying “anything you
can imagine has probably been done by a user”.

�e bottleneck resource in each of these instances varies
from locks, thread pool queues, to the storage and the
network. While it might be tempting to design throttling
and scheduling policies based only on the primary APIs
and resources, our experiments show that this would be
incomplete. �us, robust resource management requires a
comprehensive accounting of all resources that clients can
potentially bottleneck on, and consideration of all possible
API calls. Our �rst principle comes from this.

Principle: Consider all request types and all re-
sources in the system

Observation: Contention may be caused by only a sub-
set of tenants. Distributed systems comprise multiple
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Figure 2: �e �gures show the impact of manually throttling two
background tenants (t1,t2), demonstrating that only t1 impacts
the high priority tenant (hp)

processes acrossmanymachines, and di�erent tenants con-
tribute di�erent load to the system. Resource contention
may be localized to a subset of machines or resources.
Some tenants may not be accessing these machines or
resources, while other tenants may be consuming more
than their fair share. If a goal of the system was to reduce
contention on these resources, it would be ine�cient and
unfair to penalize all tenants equally when only a subset
may be culpable.
Figure 2 demonstrates the e�ect in HDFS on the la-

tency of a high priority tenant, when we manually throttle
the request rates of two other tenants. �e �gure shows
a high-priority tenant, thp , sending 4MB write requests,
sharing the service with two low-priority tenants. Tenant
t1 submits 8kB random reads, while tenant t2 lists �les in
a directory. When we separately throttle the request rates
of the background tenants, we observe an e�ect on the
latency of thp only when throttling t1.
In the above example, if our goal was to decrease the

latency of thp , we would only bene�t from reducing t1’s
request. A non-trivial system should be capable of target-
ing the cause of contention - the tenants, machines, and
resources responsible.�is motivates our second principle.

Principle: Distinguish between tenants.

Observation: Foreground requests are only part of the
story. Many distributed systems perform background
tasks that are not directly triggered by tenant requests, but
compete for the same resources. For instance, HDFS per-
forms data replication a�er failures, asynchronous garbage
collection a�er �le deletion, periodic DN heartbeats, and
more. �ese background tasks can adversely a�ect the
performance of foreground tasks. Jira HDFS-4183 [14] de-
scribes an example of NNoverloadwhen a large number of
�les are abandonedwithout closing, which triggers a storm
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Figure 3: Heartbeat latency is initially 5ms. Heartbeat latency
jumps to 500ms when the tenant’s workload is introduced.

of block recovery operations a�er the lease expiration in-
terval one hour later. Guo et al. [13] describe a failure in
Microso�’s datacenter where a background task spawned
a large number of threads, overloading the servers.

On the other hand, critical system-generated tasks need
to be protected from foreground tasks. Guo et al. [13]
describe a cascading failure resulting from overloaded
servers not responding to heartbeats, triggering further
data replication and overload. Figure 3 shows how HDFS
DN heartbeat latency increases from 5ms to nearly 500ms
when a tenant overloads the shared NN thread pool.

From these observations we derive our second principle.
Resource management policies should treat both system-
and client-generated tasks as �rst class entities.

Principle: Treat foreground and background tasks
uniformly.

Observation: Resource demands are very hard to pre-
dict. Many schedulers [12, 28, 10] need the cost of a re-
quest to be speci�ed a priori, o�en in a multidimensional
space representing the di�erent resources.
We argue that resource requirements estimated o�ine

would be insu�cient for a number of reasons; a) the re-
sources requested by a task could be in�uenced by one or
more of the arguments of the API call; b) a model would
need to encode both the total cost and the rate of resource
consumption; c) the presence of other tenants could in�u-
ence the behavior of a request (eg, by evicting cache en-
tries); d) in order to handle localized congestion a model
would need to know which machines will execute a re-
quest; and e) the state of the system can a�ect the success
of operations (eg, renaming a non-existent �le).

Principle: Estimate resource usage at runtime.

Observation: Requests can be long or lose importance.
Admission control is a common example of resource man-
agement, whereby requests are admitted or rejected at en-
try to the systembased on their perceived impact.However,
in systems with partitioned data, a large set of requests
might be directed to the same disk holding a popular piece
of data, creating a hot spot. While at the entry point, the
overall load of the requests might seem small in compari-
son to the system’s total capacity, the localized load intro-
duced by the requests could be substantial if all directed
to a single machine (e.g., if all read from a single DN).

Intercepted resources
Throttling points

Entry
points

Throttling
parameters

Resource
stats

Retro

Tenant request

Figure 4: Retro architecture with the execution path of a tenant’s
request highlighted. Metadata is propagated alongside requests
as they traverse the system. Resources are intercepted during exe-
cution and statistics reported via Retro. Retro exposes throttling
points for developers to impose schedulers on the system.

Additionally, the duration of oneAPI call or background
task can vary substantially; an HDFS rename call executes
in a matter of milliseconds, but writing a 128MB data
block takes many seconds even in an uncontended system.
Once admitted, a long request will continue to consume
resources until completion. If a tenant of higher priority
were to suddenly start competing for resources, the lower
priority requests already admitted to the systemwould con-
tend with the high priority tenant for a potentially long
period of time. In this case, the system should be able to
intervene to throttle, pause or cancel the lower priority
requests if necessary.
Our last principle stems from this: a resource manage-

ment policy should be able to act on requests while they
are in-�ight.

Principle: Schedule early, schedule o�en.

3 Retro Instrumentation Platform
Based on the challenges and principles outlined in the
previous section, we argue that an e�cient resource man-
agement system will require detailed and timely tracking
of the resources used by each tenant and each request.�is
motivates the design of Retro, a prototype framework for
resource tracking and throttling in distributed systems.
At a high level, Retro collects per-tenant, per-request re-
source usage at di�erent points as the system executes,
both within processes and across nodes. It then aggre-
gates these in near real time. Tenants in Retro can be both
foreground clients and background tasks. Finally, Retro
provides hooks to throttle particular tenants or requests.
Figure 4 shows Retro’s architecture.

While Retro does not currently perform any action auto-
matically, it is the �rst step towards a complete system that
implements resource management policies that are robust
and e�cient. We describe Retro in more detail below, and
some early results in §4 suggest that Retro can inform and
help enforce such policies with acceptably low overhead.
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Tenant abstraction Retro uniformly abstracts fore-
ground clients and background tasks as tenants. A tenant
is a collection of tasks that serve some common purpose,
such as tasks from a speci�c user account, heartbeat re-
quests to detect failed nodes, or data replication tasks. In
Retro, a tenant is the granularity of resource attribution
and management, and is identi�ed by a unique ID.
End-to-End ID Propagation Borrowing from end-to-
end causal tracing [8, 22, 27, 29], Retro propagates tenant
IDs along the execution path of a request, such that at
any point in time, the instrumentation knows on behalf of
which tenant an operation is executing. At the beginning of
a request, Retro associates the thread executing the request
with a tenant by storing the tenant ID in a thread local
variable, removing this association when the request com-
pletes. �e resource instrumentation queries this variable
to charge the resource usage to a speci�c tenant.
Automatic Resource Instrumentation using AspectJ
Retro uses AspectJ [17] to automatically instrument all
hardware resources and resources exposed through the
Java standard library. It captures disk and network usage by
intercepting constructor and method calls on �le and net-
work streams; it tracks CPU usage by the time a thread is
associated with a tenant using QueryThreadCycleTime
in Windows or clock_gettime in Linux. To capture
locking we instrumented Java monitor locks and all im-
plementers of the Lock interface, while we instrumented
thread pools using Java’s Executors framework. �e
only manual instrumentation required is for application-
level resources created by the developer, such as custom
queues, thread pools, or pipeline processing stages.
Aggregation and Reporting When a resource is inter-
cepted, Retro determines the tenant associated with the
current thread, and increments in-memory counters that
track the per-tenant resource use. �ese counters include
the number of resource operations started and ended, total
latency spent executing in the resource and any operation-
speci�c statistics such as bytes read or queue time. A sep-
arate thread reads the counters and reports the values to
any subscribed clients at a regular interval.
Entry and�rottling Points Retro exposes hooks for a
developer to specify entry and throttling points in their
application. An entry point establishes the tenant initi-
ating the execution. For example, in our HDFS instru-
mentation we added entry points in the HDFS client API,
and in code that initiates background tasks. A throttling
point can impose a scheduler on queues in the system,
rate-limit a tenant by pausing threads, or take advantage
of more sophisticated mechanisms such as distributed rate
limiters [21]. For example, in our HDFS instrumentation
we added throttling points at the high-level system entry
points, the NameNode RPC queue, and in the DataNode
block transfer threads.

operation latency
Deserialize metadata 80ns
Read active metadata 9ns
Serialize metadata 46ns
Record use one resource operation 342ns

Table 1: Costs of Retro instrumentation

Retro satis�es each of the design principles outlined
in §2: by measuring resource consumption at runtime, it
exposes the resources actually being consumed by a ten-
ant, eschewing the need for a priori models of request
types. Retro tracks multiple resources (it is extensible to
new types of resource), and end-to-end tracing allows it
to distinguish the tenant responsible for resource usage
within and across processes. �e entry point mechanism
allows Retro to treat foreground and background tasks uni-
formly, and throttling points allow it to impose scheduling
decisions in multiple places on the execution path.

4 Evaluation on HDFS
We instrumented HDFS with Retro prototype, and show
early evidence that it can be useful for resource manage-
ment policies, while keeping low overhead. We also show
integrating Retro presents a low burden for developers.
Experiments �e experiments outlined in §2 give exam-
ples of how Retro could be useful to resource manage-
ment policies, showing how it exposes granular informa-
tion to identify bottlenecks, how the cause of a bottleneck
can then be targeted, and how both foreground and back-
ground tasks can be acted upon. Figure 1 demonstrates
per-tenant and per-resource statistics that Retro can record
in real-time. A policy could easily identify the bottleneck
resource for each of the three di�erent background work-
loads, and which tenants are contending on that resource.
Figure 2 shows two di�erent manual interventions using
Retro’s throttling points, and demonstrates how an e�-
cient resource management policy could target only the
tenant responsible for congestion in order to achieve some
high level goal. Figure 3 demonstrates that policies could
act on client requests, or on internal system tasks, taking
advantage of how Retro treats both as �rst-class entities.
OverheadofRetro. Retro propagates a tenant ID (3 bytes)
along the execution path of a request, incurring up to 80ns
of overhead (see Table 1) to serialize and deserialize when
making network calls. �e overhead to record a single
resource operation is approximately 340ns, which includes
intercepting the thread, recording timing, CPU cycle count
(before and a�er the operation), and operation latency, and
aggregating these into a per-tenant report. To estimate the
impact of Retro on throughput and end-to-end latency,
we benchmark HDFS and HDFS instrumented with Retro
using three di�erent request types (rename, and reads of
8kB and 4MB), see Figure 5 for results across four 20-
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Figure 5: Normalized latency (le�) and throughput (right) for
rename and read operations comparing HDFS to HDFS instru-
mented with Retro, along with error bars showing one standard
deviation across four runs. Standard deviation in both read 8kB
experiments is about 0.1.

minute runs. Per-request latency increases the most for
the rename API, by 3.5%, because it performs in-memory
operations on the NameNode with a comparatively high
number of trace points; its throughput drops by 7.7%. �e
read operations slow down by 0.6% and 0.3%, respectively,
because they spend most of their time reading from disk.
�e average throughput of read 4MB increases with Retro,
most likely due to the large variance observed.

Developer E�ort While Retro requires manual devel-
oper intervention to propagate tenant IDs across network
boundaries and to verify correct behavior of Retro’s au-
tomatic instrumentation, our experience shows that this
requires little work. Instrumenting resource operations
for HDFS was handled automatically using AspectJ. To
instrument HDFS we only added about 150 lines of code.
We manually instrumented HDFS’s Protocol Bu�er [11]
messages, and data transfer packets, to include Retro meta-
data. We speci�ed entry points at the client RPC server on
the NN, and in the source code where heartbeats, block
replication, and block invalidation was initiated. We also
placed throttling points at these entry points.

5 RelatedWork

Many shared distributed systems implement some variant
of performance isolation, such as fair sharing [25, 28, 9],
throttling aggressive tenants [4, 26], and providing latency
or throughput guarantees [33, 34, 28, 7]. Some systems
drop or queue requests at client-facing entry points or at
machine boundaries, though with great variation in the
granularity of decisions. High-level schedulers such as
Mesos [16], Yarn [31], or Sparrow [19] centrally allocate
tasks tomachines. Some cloud storage systems, e.g., S3 [23]
or Azure Storage [4], make admission decisions for each
individual API call. Others have proposed distributed rate
limiters, at the network [28, 21] and disk [12] layers, to
enforce global reservations, limits and shares on IO.

Lack of visibility of actual resource bottlenecks leads to
the ad-hoc selection of the metrics used for performance
isolation. For example, Azure Storage [4] and Pisces [25]
select only request rate and operation size as metrics.
SQLVM [18] uses CPU, I/O, and memory as key resources.
Cake [33] breaks HDFS requests into equal-sized chunks,
then assumes disk as a bottleneck and uniform cost for
each chunk. In our communication with operators run-
ning planet-scale cloud services at Microso�, unexpect-
edly long-running requests in new workloads o�en force
adjustments to admission control rules and mechanisms.

In some cases, careful system design or restricted oper-
ating environments can obviate some of our observations.
For example, some approaches bene�t from having �xed-
or bounded-sized requests; IOFlow [28] provides guaran-
tees for networked storage, and enforces them at the net-
work packet level; Cake [33] explicitly sub-divides large
HDFS reads into smaller, equal-sized chunks. Amazon’s
DynamoDB [7] hedges that uniform load distribution and
�exible durability guarantees are su�cient to satisfy client
latency requirements.

In all cases we observed, the enforcement mechanisms
for high-level policies were manually implemented. For
example, Cake [33] manually instruments the RPC entry
points of HDFS and HBase to add queues and associates
tenants based on an identi�er from the HDFS RPC head-
ers; IOFlow [28] modi�es queues in key resources (e.g.,
NIC, disk driver) on the data path; and Pisces [25] mod-
i�es the scheduling and queueing code of Membase and
directly updates tenant weights at these queues.
Banga and Druschel addressed the mismatch between

OS abstractions and the needs of resource accounting
with resource containers [2], which, albeit in a single ma-
chine, aggregate resource usage orthogonally to processes,
threads, or users. Retro achieves per-tenant, distributed
resource accounting by combining previous results in re-
sourcemonitoring [6], automatic source code instrumenta-
tion [17], and end-to-end metadata propagation [3, 8, 27].
Retro extends the notion of a resource to arbitrarily in-
clude hardware and so�ware resources and its throttling
point abstraction can automatically insert mechanisms
such as distributed rate limiters at resources.

6 Conclusion
In this work we presented Retro, a framework for e�ecting
resource management decisions in distributed systems.
Retro tackles important challenges in this direction: it ad-
dresses the requirements of a robust and e�cient resource
management mechanism in shared distributed systems,
and is a practical approach with low overheads. We view
Retro as a step to developing broader resource manage-
ment policies that are applicable to a variety of systems. It
o�ers a platform for future work to develop such policies,
and guidance to designers of alternative mechanisms.
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