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Abstract
The norm for data analytics is now to run them on com-
modity clusters with MapReduce-like abstractions. One only
needs to read the popular blogs to see the evidence of this.
We believe that we could now say that “nobody ever got fired
for using Hadoop on a cluster”!

We completely agree that Hadoop on a cluster is the
right solution for jobs where the input data is multi-terabyte
or larger. However, in this position paper we ask if this is
the right path for general purpose data analytics? Evidence
suggests that many MapReduce-like jobs process relatively
small input data sets (less than 14 GB). Memory has reached
a GB/$ ratio such that it is now technically and financially
feasible to have servers with 100s GB of DRAM. We there-
fore ask, should we be scaling by using single machines with
very large memories rather than clusters? We conjecture that,
in terms of hardware and programmer time, this may be a
better option for the majority of data processing jobs.

Categories and Subject Descriptors C.2.4 [Distributed
Systems]: Distributed applications

General Terms Performance

Keywords MapReduce, Hadoop, scalability, analytics, big
data

1. Introduction
We are all familiar with the saying “nobody ever got fired for
buying IBM”. In the data analytics world, are we at the point
where “nobody ever got fired for using Hadoop on clus-
ter”? We understand that there are many jobs that process
exabytes, petabytes, or multi-terabytes of data that need in-
frastructures like MapReduce [1, 6] (Hadoop) running over
large clusters of commodity servers. However, evidence sug-
gests that the majority of analytics jobs do not process huge
data sets. For example, as we will discuss in more detail later,
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at least two analytics production clusters (at Microsoft and
Yahoo) have median job input sizes under 14 GB, and 90%
of jobs on a Facebook cluster have input sizes under 100 GB.

We also speculate that many algorithms are complex
to scale out and therefore expensive in terms of human
engineering. Many important analytics jobs, for example
iterative-machine learning algorithms, do not map trivially
to MapReduce. Typically the algorithm is mapped into a
series of MapReduce “rounds”, and to achieve scalability
it often has to be approximated thus sacrificing accuracy
and/or increasing the number of MapReduce rounds.

Finally, we observe that DRAM is at an inflection point.
The latest 16 GB DIMMs cost around $220, meaning 192 GB
can be put on a server for less than half the price of the server.
This has significant cost implications: increasing the server
memory allowed 33% fewer servers to be provisioned, it
would reduce capital expenditure as well as operating ex-
penditure. Further, Moore’s Law benefits memory as well,
so every eighteen months the price drops by a factor of two.
Next year we would expect to be able to buy 384 GB for the
same price as 192 GB today.

In this position paper we take the stand that we should not
automatically scale up all data analytics workloads by using
clusters running Hadoop. In many cases it may be easier and
cheaper to scale up using a single server and adding more
memory. We will provide evidence of this using some of our
own experiences, and we also note that has been recognized
for a long time by the in-memory database community. How-
ever, in the MapReduce/Hadoop data analytics community
this message seems to have been drowned out.

To support this we consider (i) memory costs, (ii) job in-
put sizes, (iii) implementation complexity and (iv) perfor-
mance. The first two are based on empirical data. For the
complexity, we examine AdPredictor, a machine learning al-
gorithm that processes click logs to generate click-through
predictions for a search engine. AdPredictor makes trade-
offs between execution time and accuracy in order to achieve
scalability. We compare the performance of AdPredictor on
both a single large-memory server and a cluster, and also
compare implementations using different programming ab-
stractions. We also compare the single-server and cluster ap-
proaches for an embarrassingly parallel synthetic benchmark
that is a “best case” for MapReduce.
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Figure 1. Absolute and relative price of DRAM

2. Memory costs and job input sizes
Memory price/performance has a reached a tipping point.
The price of memory has dropped considerably just in the
last one year, as it benefits from Moore’s Law plus the in-
creased consumer demand from servers for larger memory
DIMM form factors. Currently, a 16 GB ECC DIMM can
cost as little as US$2201. Note that this is a retail price for
an average person on the street from a large commodity
vendor, and does not include bulk or preferred-vendor dis-
counts. Based on this memory module, Figure 1 shows how
much it costs to provision different memory sizes. A mere
192GB, commonly supported on motherboards supporting
12 or more DIMMs, costs approximately $2500. Figure 1
also puts this into further perspective by showing the price
normalized by the price of a commodity rack-based server
advertised at $66382. Upgrading this server to 192 GB would
cost $2640, i.e. 40% of the server price. Hence if this up-
grade improves server performance by more than 40% we
will have reduced overall capital expenditure. As we will
show later, a single “big memory” (192 GB) server we are
using has the performance capability of approximately 14
standard (12 GB) servers. In other words, we could replace
14 servers by one big-memory server with 192 GB for about
an eighth of the total cost.

We analyzed 174,000 jobs submitted to a production an-
alytics cluster in Microsoft in a single month in 2011 and
found that the median job input data set size was less than
14GB. Elmeleegy [7] analyzes the Hadoop jobs run on the
production clusters at Yahoo. Unfortunately, the median in-
put data set size is not given but, from the information in the
paper we can estimate that the median job input size is less
than 12.5 GB3. Ananthanarayanan et al. [3] show that Face-

1 Kingston 16GB 240-Pin DDR3 SDRAM ECC Registered DDR3 1066
Server Memory QR x4 w/TS Model KVR1066D3Q4R7S/16G from http:

//www.newegg.com/ accessed on 6th January 2012
2 HP ProLiant DL360 G7 X5650 1U Rack Server with 2 Xeon X5650s
(2.66 GHz - 6 cores), 12 GB of RAM (max 384 GB) from http://www.

newegg.com/ accessed on 6th January 2012.
3 The paper states that input block sizes are usually 64 or 128 MB with one
map task per block, that over 80% of the jobs finish in 10 minutes or less,

book jobs follow a power-law distribution with small jobs
dominating; from their graphs it appears that at least 90%
of the jobs have input sizes under 100 GB. We therefore be-
lieve that there are many jobs run on these clusters which are
smaller than the memory of a single server.

3. AdPredictor and platforms
AdPredictor is a machine learning algorithm that predicts
the click-through rate (CTR) for sponsored search on Bing.
It is based on a probit regression model that maps discrete or
real-valued input features to probabilities [8]. It is naturally
expressible as a factor graph over which inference is done
using expectation propagation (EP). The size of the factor
graph scales with the size of the input click log, since each
log entry introduces at least one edge into the graph. Typ-
ically multiple rounds of EP are run on a given set of in-
puts until the model probabilities converge. ADF (assumed
density filtering) algorithm [8] is an optimization that makes
the model state independent of the click log size, and allows
the click log data to be streamed once to build the model.
However the tradeoff is that ADF is an approximation of EP.
Coming up with this approximation is non-trivial and judged
worthy of a paper at a machine learning conference [8]. Thus
ADF adds complexity and impacts accuracy to gain perfor-
mance.

Scaling out the EP and the ADF algorithm to a Map-
Reduce cluster introduces further complexity and accuracy
loss. We have mapped both algorithms to a MapReduce like
abstraction. The input click log is sharded and a local model
is computed on each partition by iterating over the shard
data. The local models are then merged to create a global
model. A single MapReduce round does not give an accu-
rate model, since it does not capture all the interactions be-
tween data in different shards. Hence multiple MapReduce
rounds must be run, with the result of each round being used
as the “prior” by the mappers in the next round. A strict
MapReduce model forces mappers and reducers to be state-
less. State that persists across MapReduce rounds must be
written to shared storage and read back. This is particularly
expensive for EP where the state size scales with the input
data. To reduce this cost, we have implemented an extended
“MapReduce++” platform that allows state to be retained
in memory across rounds. Using MapReduce requires non-
trivial additional programming effort and is a less natural fit
for these algorithms than the factor graph. To explore scal-
ing out without sacrificing the factor graph representation,
we have also implemented EP on CamGraph, a distributed
infrastructure designed specifically to support graph algo-
rithms. CamGraph automatically partitions the factor graph
using well known techniques such as equals factors and al-
lows message passing within and across partitions.

and that 70% of these jobs very clearly use 100 or fewer mappers (Figure
2). Therefore conservatively assuming 128 MB per block, 56% of the jobs
have an input data set size of under 12.5 GB.

http://www.newegg.com/
http://www.newegg.com/
http://www.newegg.com/
http://www.newegg.com/
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(b) Execution time.

Figure 2. Accuracy and execution time for AdPredictor on
40 million click dataset.

Thus we have experimented extensively both with Map-
Reduce and graph-based scale-out solutions for AdPredic-
tor. A few years ago, scale-out was the only way to run such
algorithms on real-world data sets. However, it is worth re-
examining the need for scale-out in a world where machines
can be “scaled up” to hundreds of gigabytes.

4. Evaluation
We evaluate the two versions of AdPredictor (EP and ADF)
on a single server (Standalone) and on three cluster-based
configurations: MR Classic (MapReduce), MR++ (Map-
Reduce with state retention), and CamGraph. For Map-
Reduce and MapReduce++ we use CamDoop, a highly
optimized implementation with considerably higher per-
formance than Dryad or Hadoop [5]. Both CamDoop and
CamGraph are implemented in C# and run on a customized
cluster [4]. The cluster has 27 servers, each with two dual-
core 2.66 GHz Xeon processors for a total of 4 cores (8
hyperthreads) per server. Each server has 12 GB of memory
and an Intel X25 enterprise grade SSD. The click log data
is stored on the SSDs and distributed uniformly over the
27 servers. For standalone we use a server with two 6-core
2.66 GHz Xeon processors for a total of 12 cores (24 hyper-
threads) with 192 GB of memory on 6 DRAM channels in
two NUMA domains. The click log data is stored on a single
local SSD.
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Figure 3. Comparison of execution time for AdPredictor on
40 million click dataset using single sever.

Figure 2 compares the MapReduce and Standalone ver-
sions of AdPredictor EP and ADF. We use ‘xN ’ to denote
N iterations (or MapReduce rounds). The MR++ EP con-
figuration has nested iterations (local passes over the data as
well as multiple MR rounds) and we denote this as ‘MxN ’.
Figure 2(a) shows the RIG — the standard accuracy mea-
sure for this algorithm — for the MR++ and standalone con-
figurations (MR++ is strictly better than MR classic in all
cases, so we omit the latter). For reference we show the RIG
achieved by the current production system using a custom
implementation. Although the differences in prediction ac-
curacy may appear small, they are significant as they ap-
ply to a large number of click-through predictions. We ob-
serve that ADF is faster than EP in both configurations but at
the cost of additional complexity and loss in accuracy. Both
MR++ configurations have significantly lower accuracy than
standalone due to the additional approximation introduced
by running a distributed MapReduce. Despite this, MR++
is slower than standalone for ADF and less than 2x faster
than EPx2. MR++ runs on 27 servers whereas the standalone
configurations are a single server running a single-threaded
implementation.

Figure 3 shows the execution time and RIG of Standalone-
EP with 1–6 rounds. Execution time is linear in the number
of rounds, but accuracy flattens out beyond 2 rounds as the
EP algorithm converges on a fixed point. Standalone EPx2
thus achieves near-ideal accuracy with competitive perfor-
mance. Figure 4 summarizes all the results for AdPredic-
tor. CamGraph retains the simplicity and accuracy of factor
graphs and EP, but has poor performance due to the high
network overheads of a partitioned graph algorithm. Map-
Reduce shows better performance but sacrifices simplicity
and accuracy. The Standalone configuration is simple, accu-
rate, and within 2x of the performance on a 27-node cluster,
simply by having more memory on a single server. Hence it
would be fair to assume that the single big-memory machine
performs about as well as 13.5 servers running MapReduce.

So far all the results we have presented use a relatively
small data set of 40 million log entries, because CamGraph
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Figure 4. Comparison of performance and execution time
for various versions of AdPredictor on 40 million click
dataset using MapReduce (MR Classic), MapReduce++
(MR++), CamGraph and single server (Standalone).
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Figure 5. Comparison of execution time for various ver-
sions of AdPredictor on 280 million click dataset using sin-
gle sever.

could not support larger data sets. However, the Standalone
configuration with big memory does scale to larger data
sets. In Figure 5 we show the time taken for ADF and EP
with between 1 and 6 rounds for a 280 million click data
set. The performance scales linearly with the data size, with
Standalone EPx2 taking about 40 min.

Load time One potential concern with big-memory scal-
ing is the time to read the input data from the network or
storage device. The execution times shown so far include
computation time and load time: the time taken to read and
parse the input data. Figure 6 shows load time alone for the
standalone ADF and EP configurations, for both the 40 mil-
lion and 280 million click data sets. The 40 million entry
click log is ~5 GB and the 280 million entry click log is
~34.5 GB. Load time for EP is slightly higher as it has to
create a more complex data structure. Scaling to the larger
dataset is slightly worse than linear: we believe this is due
to the C# garbage collector. In all cases, the load time is sig-
nificant, representing 20–25% of the total execution time.
This suggests that as we scale up single servers by increas-
ing memory sizes and core counts, we will need to simul-
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Figure 6. Comparison of load and data structure creation
time for AdPredictor on 40 and 280 million click dataset
using single sever.
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Figure 7. Comparison of MapReduce-like computation on
a centralized server normalized by the performance of run-
ning distributed over 20 servers.

taneously scale up I/O bandwidth to avoid this becoming a
bottleneck.

Ideal MapReduce workload AdPredictor is not an ideal
fit for MapReduce. We repeated the comparison with a syn-
thetic workload that is ideally suited to MapReduce: a sim-
ple aggregation over a key-value store. A large number of
64-bit keys with 350-byte values were uniformly partitioned
over 20 servers. A local mapper on each server touches each
value and extracts a 64-bit result; these are then reduced to
a single 64-bit value per server by a machine-local reducer,
and finally sent to a global reducer. The data were stored in a
non-optimized in-memory key-value store written in C#. We
compared the performance of this configuration with one in
which all the data were stored on a single server.

Figure 7 shows the execution time for the single server
normalized by the execution time across the cluster for data
set sizes of 1.5 GB to 20 GB. At approximately 15 GB the
cluster performs the operation three times faster than the
single server. Hence, the 20 servers provide only 3 times
the performance of the single server. Even for an “ideal”
MapReduce job, the cluster performs 6 times worse per
server and 4 times worse per dollar at these sizes.



Summary Scaling up with memory is a competitive op-
tion for AdPredictor. It reduces programmer effort and com-
plexity, improves accuracy, and reduces hardware cost. At
40 million records, a single server performs only a factor of
2 worse than a cluster of 27 servers, yet achieves better ac-
curacy. A non-optimized C# implementation on a 192 GB
server can scale to 280 million records. The full production
load could be run with 384 GB of DRAM, in about an hour
using today’s hardware and implementation, which we un-
derstand would be an acceptable frequency with which to
run the job. Optimizing storage I/O would help to further
reduce this time.

5. Conclusion and Future Work
Nobody (yet!) ever got fired for using a Hadoop cluster! But
memory is becoming cheap, by historical trends very cheap,
and this is potentially very disruptive. Single big-memory
servers may simply be more efficient than clusters, which
can substantially change price points and complexity. In this
paper we have described the trends, and conjectured that
many jobs simply do not need large-scale clusters to run. We
have demonstrated this with a machine learning algorithm,
where complexity and cost can be lowered by using a single
server solution.

We have shown that AdPredictor could scale using a
server with big memory rather than clusters. We have also
experimented extensively with a second algorithm: Frequent
Itemset Mining (FIM) [2]. This is used to determine sets
of items that occur together frequently, e.g., in shopping
baskets. This also has a version that is designed to sup-
port parallel or distributed implementation called SON [9],
which also was suitably complex that the parallel version
of the algorithm was published. The distributed version pre-
dates MapReduce, but is well suited to implementation on a
MapReduce-like framework, and we have implemented on
all the same platforms as AdPredictor. We omit the results
here for space reasons, but they support similar conclusions
as for AdPredictor.

Are these results applicable more generally? We believe
that DRAM sizes are at a tipping point for human gener-
ated data. Examples of such data are social (e.g. Twitter,
FourSquare) and shopping baskets. The size of such data
is fundamentally limited by the number of people on the
planet, which (fortunately) does not double every 18 months.
Core counts and DRAM sizes per server by contrast, are still
on a Moore’s Law trajectory. Back of the envelope calcula-
tions convince us that a 512 GB server could process all the
items purchased at a major UK food retailer in the last year
or could handle a GPS location per day per person in the UK,
for an entire year.

We also see some new challenges introduced by “big
memory”:

Storage I/O Data for analytics must be loaded before it
can be analyzed, either from local storage or from a scalable

storage back end, and this can become a bottleneck. If we
follow the argument in this paper, then we think that we can
afford to spend more on I/O bandwidth per server (as we will
have significantly fewer servers) and we conjecture that we
should aim at at least 2–4 10 Gbps Ethernet ports per server
or 1–4 SSDs (at 300 MB/s each) if using local storage.

Storage filtering: Datasets such as click logs have many
different analytics run on them, each potentially requiring
only a few fields out of 10s or 100s. We need easy and
efficient filtering of the data at or near the storage servers.

Programming: We need to think of providing program-
ming abstractions and runtimes that support big-memory
servers efficiently, but also allow programs to be transpar-
ently run on clusters when they truly need the scale beyond
a single server.

So, to conclude, for workloads that are processing multi-
gigabytes rather than terabyte+ scale, a big-memory server
may well provide better performance per dollar than a clus-
ter. When will Amazon rent me a 1TB VM?
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