
Observer: keeping system models from becoming obsolete

Eno Thereska, Anastassia Ailamaki, Gregory R. Ganger
Carnegie Mellon University

Pittsburgh, PA, USA

Dushyanth Narayanan
Microsoft Research

Cambridge, UK

Abstract

To be effective for automation, in practice, system mod-
els used for performance prediction and behavior checking
must be robust. They must be able to cope with component
upgrades, misconfigurations, and workload-system interac-
tions that were not anticipated. This paper promotes mak-
ing models self-evolving, such that they continuously evalu-
ate their accuracy and adjust their predictions accordingly.
Such self-evaluation also enables confidence values to be
provided with predictions, including identification of situ-
ations where no trustworthy prediction can be produced.
With a combination of expectation-based and observation-
based techniques, we believe that such self-evolving models
can be achieved and used as a robust foundation for tuning,
problem diagnosis, capacity planning, and administration
tasks.

1. Introduction

To design and maintain complex systems, it is critical to
have a way to reason about them without resorting to full
implementation of alternatives. Hence, behavioral models
are often built to represent software and hardware compo-
nents. Such models are consulted for making acquisition,
planning and performance tuning decisions as well as for
verifying that the system behaves as expected when de-
ployed. For example, a distributed storage system model
that checks for compliance to specifications could verify
that, when 3-way replication is used, three storage-nodes
are contacted on a write. For performance tuning, a storage-
node model could predict whether it is best to buy more
memory or get faster disks in the cluster.

Whereas it is reasonable to expect system designers
to construct good behavioral models for how the system
should behave, one cannot expect that the models will ac-
count for all workload-system interactions. Systems and
workloads evolve, causing them to diverge from the mod-
els. Sometimes systems are misconfigured to start with.
The models that are built assuming an idealized, prede-

fined workload-system configurations thus become obso-
lete. When the models do not match reality, it is currently
up to the system designer/programmer/administrator (i.e.,
human being) to discover the root cause of the mismatch
and fix the models or system. In distributed systems with
hundreds of resources and tens of competing workloads,
this task is enormous and time consuming and raises sys-
tem management costs.

To be useful in practice, system models need to be ro-
bust. Robust models discover regions of operation where
the prediction confidence is high and regions for which they
choose not to predict. They handle deviations from the
physical system by localizing the likely cause of a mismatch
and continuously refining themselves to account for unfore-
seen (and hence not programmed-in) workload-system in-
teractions. Thus, in the long run, the models themselves
embody the necessary knowledge and rules of thumb that
currently humans attempt to learn.

Building self-evolving models will require detailed col-
lection of system statistics (far more detailed than currently
done) and efficient algorithms for evolving the models.
Hence, a significant amount of spare resources (CPU, net-
work, storage) will need to be used for model evolution.
Given that system management costs vastly eclipse hard-
ware costs [7], this is the right time to throw extra hard-
ware towards self-evolving models that are ultimately used
to better manage complex systems.

2. Context

System models allow one to reason about the behavior
of the system while abstracting away details. Models take
as input a vector of workload and system characteristics
and output the expected behavior (e.g., performance) of the
modeled component. System modeling approaches fall into
two categories: expectation-based and observation-based.
Neither is adequate for robust modeling, but each has a role
to play.

Second Workshop on Hot Topics in Autonomic Computing. June 15, 2007.
Jacksonville, FL.



Expectation-based models use designer and programmer
knowledge of how systems behave; thus, the system is con-
sidered as “white-box”. The models have a built-in, hard-
wired definition of “normalcy” (e.g., see [8, 9]). Indeed,
highly accurate models have been built for disk arrays, net-
work installations, file system caches, etc.

Designers can model both structural and performance
properties of a system and workload. For example, a struc-
tural expectation in a distributed storage system is that,
when RAID-5 encoding is used, five storage-nodes should
be contacted on a read. A CPU model might indicate that
storage decryption of the read data should use 0.02 ms for
16 KB blocks, and it should take 1.5 ms to send the data
from the five storage servers to the client over a 100 Mbps
network. A cache model could predict whether the requests
will miss in cache and a disk model could predict their ser-
vice time, and so on.

Expectation-based models are the right starting point for
future system designers (some formality in system design
is a must). However, the issue remains how to evolve these
models over time with minimal burden to humans. We ob-
served that performance models in systems that we tradi-
tionally considered to be white-box (since we designed and
built them from scratch) exhibited black-box behavior that
resulted from 1) unforeseen workload characteristics or sys-
tem configuration characteristics, 2) unforeseen interaction
of white-box components [6] or 3) administrator misconfig-
uration of the system.

Observation-based models do not make a priori assump-
tions on the behavior of the system. Instead, they infer
“normalcy” by observing the workload-system interaction
space. As such, these models usually rely on statistical tech-
niques (e.g., see [2, 4, 13]). These models are often used
when components of the system are “black-box” (i.e., no
knowledge is assumed about their internals). For example,
Cohen et al. [4] describe a performance model that links
sudden performance degradations to the values of perfor-
mance counters collected throughout the black-box system.
If correlations are found, for example, between a drop in
performance and a suspiciously high CPU utilization at a
server, the administrator investigates the root cause by first
starting to look at the CPU utilization on that server. In
another example, Wang et al. [13] built a storage server
model based on observing historical behavior and correlat-
ing workload characteristics, such as inter-arrival time, re-
quest locality, etc., with storage system performance.

Observation-based models are the remedy option when
pre-existing models are not available. However, they re-

quire a large set of training data (i.e., previous observa-
tions), an issue which can be a show-stopper even for sim-
ple modeling tasks. In particular, observation-based mod-
els predict poorly the effects of workload interference in
shared systems. Consider a data center, for example. The
performance of any workload is strongly correlated with
the load placed on the system’s resources (e.g., CPU, net-
work, cache, disk) by other interfering workloads. With the
“load” attribute taking values from 0-100% for each of the
resources, the observation-based model would need to have
seen hundreds of distinct load configurations to make a rea-
sonable performance prediction (which can be made in a
straightforward manner when employing expectation-based
models that use queuing analysis).

A simple analogy that illustrates the difference between
the two kinds of models comes from the chess world: one
can make the next move by knowing nothing about chess
rules (i.e., black-box) and only considering an annotated
database of board setup images. The other option is to make
the move by applying chess rules (i.e., white-box). Systems
and workloads change over time (whereas the chess rules
remain the same), hence purely black-box observations in
systems risk being obsolete every 1-2 years.

We have come to believe that a robust modeling archi-
tecture will need to augment expectation-based approaches
with observation-based approaches, as shown in Figure 1.
Known expectations should be continuously observed and
verified. Over time, high-confidence suggestions from the
observation-based models should be incorporated into the
expectation-based models. We are less concerned with what
exact tools and algorithms will be used for the models —
indeed there are plenty to choose from (e.g., decision trees
and Bayes Nets [5] or reinforcement learning [10] from the
machine learning community) — and more concerned with
how systems should be built so that these tools can be ap-
plied in a meaningful way.

3. Components of a solution

We believe that any solution that addresses the problem
of model evolution must address two issues: mismatch lo-
calization and re-learning. The former is responsible for lo-
calizing mismatches between the model and actual system.
The latter is responsible for evolving the model.

A robust, self-evolving model must detect when there is
a deviation between the model and current workload-system
interactions. Thus, in addition to answering hypothetical



Observation-based 
model

Expectation-based 
model

Environment 
attribute pool

runtime
observations

what-if
questions

predictions

F(A1, ..., An)=O

A1

A2Aμ

Aß

runtime
observations

W
F q

u
estio

n
s

p
red

ictio
n

s

simulator
A1

A2Aμ

Aß

runtime
observations

W
F q

u
estio

n
s

p
red

ictio
n

s

...

model 0

model 1 model n

Domain 
knowledge

Scarce data

Little domain 
knowledge

 Plenty of data

Figure 1: Modeling architecture in a multi-tier system. Each
model self-checks and builds confidence for its predictions. New
correlations discovered by observation-based models are eventu-
ally incorporated into expectation-based models.

what-if questions, individual models should continuously
self-check.

From a system’s perspective, there are challenges. First,
the self-checking must be managed in terms of when it
should happen and how frequently. Second, care must be
taken to build efficient models that do not consume unrea-
sonable amounts of resources to self-check. Because man-
agement is quickly becoming the dominant cost in systems,
it may be justified to throw money at dedicated hardware
for modeling, but the costs need to be examined.

After a successful mismatch localization, a re-learning
component should be responsible for automatically evolv-
ing the expectation-based models (or at least making edu-
cated suggestions to the model designers). Any algorithm
used for evolving must address two issues. First, it should
discover new attributes of the workload-system interaction
space that should be incorporated into the model. Second,
this component should discover regions of operation where
the prediction confidence is high and regions where it is not.
Hence, any eventual model outputs should have a notion of
confidence associated with them. Below, we discuss a high-
level approach that could address both issues.

3.2.1 Attributes, and more attributes

An observation we make is that, in many cases, system de-
signers know the workload and system attributes that are
correlated with the workload’s eventual behavior, but not
the exact nature of the correlation. Indeed, most model

designers build expectation-based models using initial at-
tributes they “feel sure” about (because, perhaps they have
a theoretically proven correlation with reality).

For example, disk arrays come with a specification of
their expected sequential- and random-access throughput.
This is the information on which many disk array models
are initially built. However, there are other workload char-
acteristics (e.g., request locality, burstiness, stripe width,
etc.) that make a large difference in the eventual workload
performance. Storage system designers know that these at-
tributes will have an impact on the prediction, but do not
always know 1) which of the attributes are most important,
2) their effect when combined, and 3) their effect on a par-
ticular disk array type.

Hence, we believe that expectation-based models should
have observation-based parts to them. The observation-
based parts should incorporate learning algorithms that con-
tinuously sample the workload-system space for new at-
tributes and discover whether these attributes are strongly
correlated to the output. Over time, new highly-correlated
attributes should be incorporated into the expectation-based
model. Observation-based models can also help with de-
riving confidence values for each prediction. This should
be done as part of keeping historical data that over time re-
flect the model’s prediction accuracy. Confidence values
can then be used to make policy decisions.

Of course, the issue of having a rich attribute pool to se-
lect from is challenging. However, we believe we are close
to being able to collect much more detailed system statistics
than 10 years ago (mostly due to hardware resources that
are now cheap enough to be dedicated to statistics manage-
ment). For example, in our cluster-based storage system [1]
we have started to collect environmental data (tempera-
ture, humidity, etc), hardware demands (per-request, per-
machine), error messages, request flow traces [12], hard-
ware and software configuration data (components, topol-
ogy, users), and annotations of human activity.

3.2.2 Active probing and the big, red button

Two approaches can be used to accelerate the process of dis-
covering strongly correlated attributes: active probing and
some human involvement. Without acceleration, important
correlations may be missed due to infrequent observations
(e.g., one in 100 clients uses small stripe units, and their
effect might not have been modeled).

First, once an attribute is observed to have some corre-
lation with the model’s output, active probing (generating
synthetic workloads to test that hypothesis) should be used.
The challenges here involve how to have the system itself
construct meaningful probes, what kind of physical infras-
tructure is needed to run the probes onto, and when should
these probes run (i.e., a sensitivity study on how much cor-



relation is good enough to justify a probe).
Second, there needs to be a way to involve a human

in directing and shaping the algorithms’ focus. There are
plenty of “false alarm” events that may trigger the system
to behave strangely for a while (e.g., power outages, back-
ups, machine re-configuration). In those cases, the human
should advise the algorithm to ignore what it learned. The
challenge is to have the system designed with a “big, red
button” in mind that the administrator can press when such
false alarm events happen.

This section discusses how self-evolving models might
help solve some real modeling challenges. We experienced
these challenges in Ursa Minor, our cluster-based storage
system [1], which currently uses static expectation-based
models. The models in this system are used for performance
prediction by keeping track of the per-client bottleneck re-
source (CPU, network, cache, disks). The first example il-
lustrates how individual models would evolve. The second
illustrates how a collection of models that work fine individ-
ually, might struggle when composed. The third illustrates
how self-checking models could be used as a layer to build
on for successful problem diagnosis.

Unexpected CPU bottleneck: The CPU model in our
system predicts the CPU demand needed to encode/decode
and encrypt a block of data when a particular data encod-
ing scheme is used (e.g., replication or erasure coding).
A certain workload was getting less than half of its pre-
dicted throughput. A manual inspection of the resources
consumed revealed a CPU bottleneck on the client machine.
The model was significantly under-predicting the amount of
CPU consumed and thus did not flag the CPU as a poten-
tial bottleneck. It was later discovered that this was because
the workload used small block sizes (512 B) and the ker-
nel network stack consumed significant amounts of CPU
per-block. Hence, it was impossible to keep the network
pipeline full, since the CPU would bottleneck. Our CPU
model was built using commonly-used block sizes of 8-
16 KB for which the per-block cost is amortized by the per-
byte cost. We did not foresee the different behavior from
small block sizes.

Using robust models would ideally require no manual di-
agnosis. All resource models (CPU, network, cache, disks)
would self-check and the CPU one would be found the
culprit (e.g., it predicted each block needed 1 ms of CPU
time; in reality it was taking 2-3 ms). An observation-
based model might notice that the attribute “block size”
was significantly smaller than in the test cases and would
start generating test cases with small block sizes. These
probes could run at night on the same physical infrastruc-
ture. Eventually the “block size” attribute would be incor-

porated into the CPU model.
Figure 2 illustrates re-learning results for this exam-

ple obtained from an early implementation of observation-
based models in Ursa Minor. We borrowed a machine learn-
ing algorithm, called CART [3] and combined it with our
expectation-based models. The initial CART model does
not need any training data (the CPU demand as a function of
block size can be calculated using expectation-based mod-
els, as first described in [11]). Over time, it incorporates a
new attribute, “block-size” in its structure. The leaves of the
CART tree maintain a notion of confidence in the predic-
tions, which is strongly related to the number of sample data
seen in the field. CART picked the attribute “block size”
from request flow traces, which are collected online [12].

When striping goes wrong: The network model in our
system predicts the network time to read and write a block
of data when a particular data encoding scheme is used.
A particular workload had larger-than-expected response
times when data was read from multiple storage-nodes at
once (e.g., when striping data over more than 5 servers).
All other workloads that shared servers with the first work-
load had normal response times. A manual diagnosis of the
problem took unreasonably long. Different tests were run,
on different machine types, kernels and switches. Using this
semi-blind search, the problem was eventually localized at
a switch. The switch’s buffers were overflowing and pack-
ets were getting dropped. That started TCP retransmissions
on the storage nodes. The problem is known as TCP-influx,
and is rather unique to storage systems that read data from
multiple sources synchronously (i.e., all storage-nodes were
sending data to the client at the same time).

Ideally, any manual diagnosis would be side-stepped by
having the models self-check as the workload is running.
For example, the cache model might predict that the work-
load would get a hit rate of 10% with 256 MB, and in-
deed that is what the workload would be getting. However,
the network model might reveal that remote-procedure-calls
(RPCs) are taking 20 ms, when they should only be tak-
ing 0.2 ms. Sub-models of the network model, the NIC
and switch model, also self-check and the switch model
might report structural mismatches (same packet sent mul-
tiple times). The high-level data flow model would then
incorporate the retransmission probability related to the at-
tribute “number of stripes”.

Understanding upgrade effects: We made the decision
to upgrade each cluster server from the Linux 2.4 to the 2.6
kernel about a year ago. However, we still have not made
the move. Several of our nightly tests performed differently
on 2.6 (some performed better, but a third of the tests per-
formed much worse). Ideally, each of the behavioral models
would self-check to locate the mismatches with the previous
kernel version.

It could be the case that several of the models report a



yesno

3-of-51-of-3

18 MB/s

yesno

3-of-51-of-3

<3KB

<12KB

27% lower 9% lower

Block size

Encryption

Encoding

Block size

Encryption

Encoding
<3KB

<12KB
Block size

Server IDs

Block size

ss1-ss30

22 MB/s

72% lower

100 samples
90% accurate

500 samples
78% accurate

1500 samples
89% accurate

70% lower

100,000 sam.
92% accurate

30% lower

200,000 sam.
92% accurate

10% lower

900,000 sam.
98% accurate

Figure 2: Evolving an encode/decode CPU model in Ursa Minor. The initial CART model is constructed using expectation-based
models. It evolves in the field over time. First, it incorporates a new attribute “block-size” in the models (the second tree). Second, it
generalizes over a rack of machines with similar CPUs (the third tree). The second and third trees predict how much worse performance is
when compared to what the first tree predicts.

discrepancy. For example, a change in the TCP stack pro-
cessing affects both network transmission times and CPU
consumption. Both affect eventual throughput and response
time. However, we believe orthogonal diagnostic methods
could be built on top of a robust modeling layer that self-
checks. Such diagnostic methods could, for example, per-
form a large run of tests that are slightly different from one
another. It could make use of the modeling layer to see how
each test interacts with parts of the system.

4. Conclusions

This position paper argues that humans should be re-
lieved of the task of maintaining system models. After
a good-enough initial implementation, the models should
evolve in the field, by incorporating new relevant workload-
system attributes. A robust model design will require main-
tenance of fine-grained, pervasive system statistics, and
may benefit from accelerated observation-based learning
techniques. In the long run, the models themselves will thus
embody the necessary knowledge and rules of thumb that
currently humans attempt to learn.

5. Acknowledgements

We thank the members and companies of the PDL Con-
sortium (including APC, Cisco, EMC, Hewlett-Packard,
Hitachi, IBM, Intel, Network Appliance, Oracle, Panasas,
Seagate, and Symantec). This research was sponsored in
part by NSF grants #CNS-0326453, #CCF-0621508 and
#CCF-0621499, by DoE award DE-FC02-06ER25767, and
by ARO agreement DAAD19–02–1–0389.

References

[1] M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. R.
Ganger, J. Hendricks, A. J. Klosterman, M. Mesnier,

M. Prasad, B. Salmon, R. R. Sambasivan, S. Sinnamohideen,
J. D. Strunk, E. Thereska, M. Wachs, and J. J. Wylie. Ursa
minor: versatile cluster-based storage. In Conference on File
and Storage Technologies, pages 59–72, 2005.

[2] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed
systems of black boxes. In ACM Symposium on Operating
System Principles, pages 74–89, 2003.

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and regression trees. Chapman and Hall/CRC,
1998.

[4] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and
J. Symons. Correlating instrumentation data to system states:
a building block for automated diagnosis and control. In
Symposium on Operating Systems Design and Implementa-
tion, pages 231–244, 2004.

[5] T. M. Mitchell. Machine learning. McGraw-Hill, 1997.
[6] J. C. Mogul. Emergent (mis)behavior vs. complex software

systems. In EuroSys, pages 293–304, 2006.
[7] F. Moore. Storage New Horizons. Horison Information

Strategies, 2005.
[8] S. E. Perl and W. E. Weihl. Performance assertion checking.

In ACM Symposium on Operating System Principles, pages
134–145, 5–8 December 1993.

[9] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A.
Shah, and A. Vahdat. Pip: Detecting the unexpected in dis-
tributed systems. In Symposium on Networked Systems De-
sign and Implementation, pages 115–128, 2006.

[10] G. Tesauro, R. Das, N. Jong, and M. Bennani. A hybrid rein-
forcement learning approach to autonomic resource alloca-
tion. In International Conference on Autonomic Computing,
pages 65–73, 2006.

[11] E. Thereska, M. Abd-El-Malek, J. J. Wylie, D. Narayanan,
and G. R. Ganger. Informed data distribution selection in a
self-predicting storage system. In International Conference
on Autonomic Computing, 2006.

[12] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-El-
Malek, J. Lopez, and G. R. Ganger. Stardust: Tracking ac-
tivity in a distributed storage system. In ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Sys-
tems, pages 3–14, 2006.

[13] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos,
and G. R. Ganger. Storage device performance prediction
with cart models. In MASCOTS, pages 588–595, 2004.


