
Advanced Tools for Operators at Amazon.com

Peter Bod́ık‡, Armando Fox†, Michael I. Jordan‡, David Patterson‡,
Ajit Banerjee§, Ramesh Jagannathan§, Tina Su§, Shivaraj Tenginakai§, Ben Turner§, Jon Ingalls§

‡RAD Lab, UC Berkeley, †Stanford University, §Amazon.com

Abstract

Despite significant efforts in the field of Autonomic Com-
puting, system operators will still play a critical role in ad-
ministering Internet services for many years to come. How-
ever, very little is know about how system operators work,
what tools they use and how we can make them more effi-
cient. In this paper we study the practices of operators in a
large-scale Internet service Amazon.com and propose a new
set of tools for operators. The first tool lets the operators
explore the health of system components and dependencies
between them; the other monitors the actions of operators
and automatically suggests solutions to recurring problems.

1 Introduction

Large-scale Internet services invest significant amount of
time and money to achieve high availability of their service,
typically in the form of labor-intensive monitoring and re-
sponse teams. Despite the high human resource expendi-
tures, software and hardware failures still occur, and the
human-intensive approach to monitoring and troubleshoot-
ing scales poorly as the service’s complexity and workload
grow [1]. We hypothesize that the right kind of visualization
and automation can reduce the human effort required for
monitoring and repairing failures, allow operators to more
quickly recognize a problem as recurrent, and facilitate bet-
ter knowledge transfer in quickly-growing or high-turnover
teams.

One of the authors spent three months working alongside
the Amazon.com team responsible for real-time monitor-
ing of hardware and software and for providing monitoring
tools for the rest of the company. We collected quantitative
data via interviews and surveys and analyzed the data in the
trouble ticket database that contains information about each
failure in the last few years. Based on our observations, we
identify three challenges that make failures difficult to find
and fix, and describe prototypes and early evaluation of two
tools designed to address these challenges.

In particular, we find that the main challenges in trou-
bleshooting and monitoring in the Amazon.com environ-
ment are:

1. Complex dependencies among system components can
cause failures to propagate to other components, trig-
gering multiple alarms and complicating root-cause
determination.

2. Operators would be more effective if they had moresit-
uation awareness—they have local knowledge of the
behavior of a small part of the system, but no individ-
ual understands all the dependencies among different
parts of the system.

3. The whole system is heavily instrumented at a fine
grain, but even though many problems can ultimately
be characterized in terms of the behavior of a dozen or
so metrics, the total amount of information collected—
the combination of metrics multiplied by the number
of machines—can be overwhelming and makes it dif-
ficult for operators to analyze problems.

We present two tools that aim to help the operators deal
with these challenges in diagnosing and fixing problems.

2 Amazon.com Operations

2.1 Failures and Resolvers

Amazon.com’s approach distinguishes two major failure
types: Severity 1 (sev1) and Severity 2 (sev2). Sev1 prob-
lems affect customers directly and need to be resolved im-
mediately, and rarely recur. Sev2 problems do not immedi-
ately affect the behavior of the website, but could turn into
sev1 problems if not resolved quickly. Sev2s typically affect
only a single system component and tend to recur, so the op-
erators learn to recognize and fix them. However, they are
about 100 times more frequent than sev1 problems, in part
because of rapid churn of the site software: just in the Moni-
toring team, the online documentation repository registered



hundreds of changes per month during a four-month period
last year, and the deployment system registered an average
of over a hundred code changes per month being rolled into
the production system (excluding any testing or debugging-
related deployments). Furthermore, turnover among sev2
responders is higher than among sev1 responders, as we ex-
plain below.

Fewer than a dozen operators monitor the health of the
whole web site 24×7. Their task is to monitor for sev1
failures, perform a rapid troubleshooting, and immediately
page the affected services’ primary resolvers, who are ex-
pected to respond in 15 minutes. The primaries then per-
form extensive troubleshooting and recovery actions.

A few tens of software teams are responsible for design-
ing, implementing, deploying, and maintaining one or more
of the several services that collectively comprise the site’s
functionality, both customer-facing services and services
that support the site’s infrastructure. This means thatmost
software developers are also problem resolversand are part
of anon-call rotation. During his rotation of a few consec-
utive days, the developer/resolver becomes theprimary re-
solverfor services owned by his team. All told, then, there
are hundreds of resolvers working at Amazon.com.

2.2 Tools

Most of the data used by operators and resolvers for trou-
bleshooting consists of real-time hardware, operating sys-
tem, network, and application-level metrics collected from
every machine at fine grained intervals and stored in a cen-
tral database. In-house web-based tools can be used to
graph the metrics, offer predictions of metrics based on his-
toric values, and set threshold alarms on all metrics. Other
tools correlate various events like sev1/sev2 problems or de-
ployments of new software to hosts. These general mon-
itoring tools are sometimes inappropriate for some special
tasks; the monitoring team therefore offers programmatic
access to the data via APIs, and resolvers often build cus-
tom tools tailored to needs of their team.

Lastly, resolvers sometimes run shell commands manu-
ally on individual hosts to examine system logs, look for er-
ror/exception messages, or restart processes and other soft-
ware components, although this practice is receding as the
web-based tools mature.

3 Troubleshooting Sev1 Problems

The small group of “level 1” operators is charged with
detecting sev1 problems, which usually manifest them-
selves as anomalous traffic levels to parts of the site whose
traffic patterns are well known. The level 1 operators per-
form initial troubleshooting to identify the affected services,
and then page the primary resolvers of each. The resolvers

Figure 1. Maya in action: the directed graph visualizes
the system components, their health (red/black), and the de-
pendencies between them. The square in the top-right cor-
ner is a dashboard for one of the components showing the
most important metrics, alarms, and other information.

are expected to respond in 15 minutes and join a conference
call initiated by the operators to determine which service(s)
are actually responsible so the problem can be assigned to
the correct team. If the problem is not resolved in a speci-
fied period, it is escalated to higher management and more
people join the phone call.

As mentioned earlier, the obstacles to level-1 trou-
bleshooting are failure propagation, lack of global depen-
dency knowledge, and overwhelming amounts of low-level
information.

3.1 Dependencies and Propagation of Failures

Because of dependencies between system components,
an issue common to many sev1 problems is that a failure of
one component may affect other components that will also
report alarms and anomalies. Since in most cases all the
alarms are triggered within a few minutes, causality cannot
be established by analyzing the timestamps of alarms. This
complicates the root-cause diagnosis because it’s not clear
which of the components is actually failing. In these cases,
many primary resolvers are initially paged even though not
all of them will end up directly involved in problem resolu-
tion. Indeed, our analysis showed that many sev1s are mis-
diagnosed and consequently assigned to a different team.

3.2 Situation Awareness

Members of each team usually know which other ser-
vices they depend on; i.e., over time they learn the local



neighborhood around their service in the dependency graph.
But nobody remembers dependencies for all services in the
company, and there are no good tools for visualizing the de-
pendencies. As a result, the operators and resolvers don’t
always see “the big picture”, making it hard to diagnose
sev1 problems in which one failing component affects other
components that depend on it.

Overwhelming Amount of Information

Amazon.com collects a few million metrics from all their
datacenters. These metrics include about 100 hardware
metrics from every host (CPU and memory utilization, I/O,
swap space, and network interfaces) and application-level
metrics such as latency, availability, and error rate of each
service. On the one hand, the monitoring tools allow oper-
ators and resolvers to monitor all hosts in real time. On the
other hand, the sheer volume of information can be over-
whelming, making it hard to analyze all metrics from a sin-
gle service running on hundreds of machines.

A similar problem is posed by alarms which are manu-
ally set by resolvers. Some of the alarms are too sensitive
and fire too often, causing them to be often ignored by re-
solvers.

3.3 Maya

Maya is a new visualization tool designed to address the
issues described in the previous section. Maya displays
the dependencies among components as a directed graph.
Each component—web page, service, or database—is rep-
resented as a black (healthy) or red (unhealthy) dot. The
operators thus clearly see which components that are report-
ing alarms may simply be suffering from a cascaded failure,
and defer paging those resolvers.

The other goal of Maya is to let the users easily “zoom
in” to explore the important metrics of each component.
However, each component is associated with thousands of
hardware and software metrics, most of which are not di-
rectly useful when troubleshooting that component. To find
the useful metrics, each component in Maya is associated
with a dashboard that works like a Wiki: any resolver can
edit the graphs that are displayed on the dashboard. This
architecture makes it very easy for people to collaborate
on identifying the useful metrics, as multiple resolvers at
different computers can edit the dashboard simultaneously
based on their individual knowledge. Resolvers can also
specify which of the metrics defines the health of the com-
ponent and how it maps to the black and red colors. All the
important metrics for a given component can now be found
on a single page, with the notion of “importance” defined
by the collective actions of the resolvers who annotate that
component.

3.4 Experience With Early Deployment

Maya is now in beta and has been available for anyone in
Amazon.com to use since November 2005. It has turned out
to be useful in some situations, but because its user com-
munity is still small, it is premature to try to quantify its
potential usefulness in day-to-day operations.

However, interviews with the users of Maya identified
the following issues:

1. Most of the users think that the UI is still overwhelm-
ing and offers too much information. This is largely
because the tool displays more than 100 components;
we need to experiment with showing only the failing
components or only the important ones.

2. Since Amazon.com uses multiple software frame-
works, Maya doesn’t yet properly cover all services,
all hardware, and all dependencies. Further, not all de-
pendencies can be detected automatically so we need
to add the ability to manually add a dependency.

3. Even though the dependencies are clearly visible on
the graph, a primary of a tangential service that is not
at fault may be paged. Maya needs to be integrated
with theautomatic alarming systemto suppress alarms
in services that depend on a different failing service.

All these features will be incorporated to Maya in the
near future.

4 Diagnosing and Resolving Sev2 Problems

Sev2 problems only affect a single system component
and the operators are not involved; only the correspond-
ing primary resolver is paged and he needs to respond in
15 minutes. Many sev2 problems are caused by bugs in
the source code as new features are added to the web site.
Finding and fixing these bugs is usually simple, but in some
cases a non-trivial reengineering of code is required, and in
the meantime a workaround must be found. Possibilities in-
clude restarting the affected software component, rebooting
the machine, or deleting temporary files. Since this doesn’t
actually fix the bug, the problem usually recurs later. For
example, in the monitoring team, the majority of sev2 prob-
lems are “repeat offenders” resulting from a bug that may
not be fixed for a few weeks, and in the meantime, they are
handled as described above.

These repeating problems are an important subcategory
of sev2s since they comprise the majority of problems re-
solvers have to deal with. To simplify handling of such
repeating failures, the resolvers create “notes for the pri-
mary” that describe how to detect, diagnose, and fix such
problems. However, sev2s are still hard to manage for the
following three reasons:



1. The high rate of code churn creates a high rate of new
sev2 problems appearing, so any documentation aimed
at solving any particular sev2 problem is incomplete or
short-lived.

2. Although the primary informs the rest of the team dur-
ing meetings or via email about the types of problems
he had to deal with and how he resolved them, this
information is not systematically stored or managed,
so a primary often needs to search through old emails
or documentation or ask more experienced colleagues
for help (sometimes waking them in the middle of the
night).

3. Resolvers often move between teams and need to be
trained to handle operations for that team. They usu-
ally shadowthe primary for a few weeks after which
they would join the on-call rotation as regular primary
resolvers. However, this time is not enough to learn
everything; again, new resolvers often find themselves
searching documentation and asking colleagues much
more often than the other resolvers.

4.1 Recommendation Service

Many Web sites already employ clickstream tracking and
analysis as the basis of recommending to the user some new
product for purchase. The insight behind clickstream anal-
ysis is that the user’s actions provide implicit information
about their interests.

We propose to apply this approach to sev2 troubleshoot-
ing. When an experienced troubleshooter is resolving a
sev2, it is likely that his troubleshooting actions—which
metrics he looks at, which commands he uses, etc.—
represent implicit knowledge about resolving that problem.
We propose to automatically populate database of past sev2
problems and their corresponding “solutions” by capturing
the actions of the resolvers as they troubleshoot and fix
the problems. The sequence of actions performed by a re-
solver describes a possible solution to that problem. When
a new sev2 problem appears, we automatically find “simi-
lar” problems in the past and suggest their solutions to the
resolver.

To implement such a system, for each problem we need
to know: 1) its type, 2) who worked on this problem and
when, and 3) actions performed by the resolvers.

4.1.1 Types of Problems

All of the repeating sev2 problems are detected through au-
tomatic alarming system. The mapping between types of
alarms and types of problems is many-to-many because the
same alarm can be caused by different problems and vice
versa. However, the type of alarm is a useful indicator of

the type of problem and we use it to classify problems into
categories.

4.1.2 Failure Database

To determine which resolvers worked on each sev2 problem
and when, we use the trouble-ticket database that contains
the following information about each problem: start and
end times, changes of severity, andworklogwhere resolvers
working on this problem post their progress reports. We
consider the list of resolvers who contributed to the work-
log as the resolvers who worked on the problem. It’s impos-
sible to precisely determine when each of them worked on
the problem. However, after discussing this issue with a few
resolvers, we came up with the following heuristic: each in-
volved resolver usually works on the problem the first thirty
minutes after its initiation and then thirty minutes before
posting each comment to the worklog.

4.1.3 Operator Monitor

To monitor the actions of resolvers during sev2 problems,
we need to monitor two types of tools: web-based and
command-line tools. The web-based tools are used for an-
alyzing graphs of various metrics, alarms, source code, and
documentation. They are all hosted on internal web servers
and the HTTP access logs contain time, login name and
URL for each access to these tools. Command-line actions
such as restarting processes and applications, rebooting ma-
chines, or searching logs are usually logged in thesudo
logs; all of them could be logged by usinghistory. Given the
resolvers and time intervals when they worked on a certain
problem, we can extract the performed actions by parsing
the logs of all internal tools.

4.2 Evaluating a Prototype

We have implemented a prototype of this tool and eval-
uated it on the nine most frequent types of sev2 problems
in the Monitoring team which represent majority of all their
sev2s. The type of each problem was determined by the
alarm that generated it; examples of these alarms are the
following: “size of the/var directory above limit,” “CPU
utilization above limit,” “host unreachable,” or “number of
errors in a log file above limit”. We analyzed all instances
of these alarms during a period of two months. For each
problem we determined who worked on it and when and
extracted all actions performed by each involved resolver.
Unfortunately, since we only had access to logs for various
metric-monitoring tools, our system can suggest only which
metrics and alarms are useful for each type of problem.

For each of the nine types of alarms, we generated a list
of metrics that were accessed most often. We presented
these ranked lists to two resolvers in the Monitoring team



and asked them to mark the metrics that they find useful
for troubleshooting each type of problem and also whether
there are any metrics missing. The two resolvers received
lists of metrics based on two months and three weeks worth
of data, respectively. In both cases, we missed almost no
important metrics (recall close to 100%). Precision, the
fraction of reported metrics that were indeed useful (in the
opinion of the experienced resolvers), was approximately
75% and 60% for two months and three weeks of data, re-
spectively. Although the precision is not perfect, most of the
useful metrics were ranked close to the top of the lists, sug-
gesting that some postprocessing could further improve the
precision. The higher precision for the two-month dataset
confirms the intuition that the precision is higher for prob-
lems that repeat more often. To put these numbers into some
context, Amazon.com collects a few million metrics used
for long-term analysis and correlation, whereas the number
of metrics actually useful for immediate troubleshooting is
usually around ten.

5 Ongoing Work

As mentioned above, we are continuously improving
Maya to make it more useful for operators. An important
aspect of deploying this new tool lies in convincing opera-
tors and resolvers that it’s useful and that they should use
it. To achieve this, Maya needs to provide the features that
resolvers care about most; we’re also planning to organize
training sessions.

To improve the usefulness of the recommendation sys-
tem for operators, it should be extended in a few ways. First,
we should instrument all operator tools so we can monitor
all their actions; this is feasible since most of the tools are
built in-house. Second, actions depend on previous actions
and their results; we should incorporate this into our sugges-
tions, however, monitoring theresultsof actions is difficult.
Finally, the operators and resolvers themselves could im-
prove the precision of such a tool by inspecting the actions
they performed and marking the important ones.

One way to evaluate the usefulness of both tools is to
compare the efficiency of two groups of operators and re-
solvers: those who use these tools versus those who don’t
use them. Since not everybody will choose to use these
tools, we should have enough samples for such evaluation.
For a more precise evaluation of the recommendation sys-
tem, we’re planning to compare the suggested actions with
the actual actions of the resolvers.

6 Related Work

Internet sites detect and localize failures using various
commercial monitoring tools such as IBM Tivoli or HP

OpenView. These tools, however, don’t provide the func-
tionality needed to address issues of sev1 and sev2 prob-
lems and usually don’t scale to the thousands of machines
used at Amazon.com.

The most extensive study of operators and system ad-
ministrators known to us is [1]. The authors surveyed
one hundred operators and collected and analyzed approx-
imately two hundred hours of videotaped administrators in
action. They found that ”the available sysadmin tools do a
relatively poor job of supporting sysadmins in several im-
portant areas”. In particular, they found the following prob-
lems: lack of support for planning, rehearsal, and collabora-
tive work, low situation awareness of administrators work-
ing with complex systems, and low support for multitasking
of operators. The most significant difference between this
study and our work is the environment in which the opera-
tors work; the operators described in [1] work in large cor-
porate data centers, usually administering third-party soft-
ware that doesn’t change very often. However, as described
in our work, the environment in Amazon.com is quite differ-
ent: hundreds of software developers, working also as op-
erators, administer rapidly changing software behind Ama-
zon.com.

7 Conclusion

In this paper we presented two promising tools for opera-
tors. Maya, a tool for visualizing the health of system com-
ponents and dependencies between them that allows oper-
ators to collaborate on finding the most important metrics
for each system component. The recommendation system
for resolvers automatically monitors the actions of resolvers
and later suggests actions that might help in diagnosing and
resolving the current problem.

Acknowledgments

We would like to thank George Borle, Pieter De Tem-
merman, Monty Vanderbilt, Chris Whitaker, John Zook of
the Monitoring team as well as others who contributed to
this work.

References

[1] R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber, L. A.
Takayama, and M. Prabaker. Field studies of computer sys-
tem administrators: analysis of system management tools and
practices. InCSCW ’04: Proceedings of the 2004 ACM
conference on Computer Supported Cooperative Work, pages
388–395, New York, NY, USA, 2004. ACM Press.


