Helium, for Learning Haskell

Bastiaan Heeren

Daan Leijen

Arjan van IJzendoorn

Institute of Information and Computing Sciences, Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

{bastiaan, daan, afie} @cs.uu.nl

Abstract

Helium is a user-friendly compiler designed especially for learn-
ing the functional programming language Haskell. The quality of
the error messages has been the main concern both in the choice
of the language features and in the implementation of the compiler.
Helium implements almost full Haskell, where the most notable
difference is the absence of type classes. Our goal is to let stu-
dents learn functional programming more quickly and with more
fun. The compiler has been successfully employed in two introduc-
tory programming courses at Utrecht University.

Categories and Subject Descriptors

D.1.1 [Programming Techniques]: Applicative (Functional)
Programming; D.3.2 [Programming Languages]: Language
Classifications—Applicative (Functional) Programming; D.3.4
[Programming L anguages]: Processors—Compilers, Interpreters

General Terms

Design, Human Factors, Languages, Measurement

Keywords

learning Haskell, error messages, type inference, education, error
logging

1 Introduction

Helium [17] is a user-friendly compiler designed especially for
learning the functional programming language Haskell. Our goal
is to let students learn functional programming more quickly and
with more fun. This is quite a challenge! The subtle syntax and
sophisticated type system of Haskell are a double edged sword —
highly appreciated by experienced programmers but also a source

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Haskell’ 03, August 25, 2003, Uppsala, Sweden.

Copyright 2003 ACM 1-58113-758-3/03/0008 ...$5.00

of frustration among beginners, since the generality of Haskell of-
ten leads to cryptic error messages.

Our experience in teaching functional programming to students was
the motivation to develop a better learning environment for Haskell.
Helium has a host of features that help to achieve this goal.

e Helium generates warnings and hints to warn for common
programming mistakes and to stimulate good programming
practices. Although an experienced programmer might be an-
noyed by a warning about a missing type signature, it is very
helpful during a course on functional programming.

e \We use a sophisticated type checker to improve type error
messages. The type checker performs a global constraint anal-
ysis on the type inference graph to determine errors more ac-
curately than the usual bottom-up algorithm.

e Helium can optionally log compiled programs to a central
server. We have used this during introductory courses and
have logged literally thousands of programs produced by par-
ticipating students. We analyze these programs to determine
the kind of mistakes that beginning programmers make, and
use this collection to tune our heuristics in the compiler.

e Helium uses a wide range of heuristics to suggest improve-
ments in the case of an error. For example, a probable fix is
reported for missing function arguments and for misspelled
identifiers.

e Helium implements a proper subset of Haskell 98. It supports
almost full Haskell where the most notable difference is the
absence of type classes. Other changes are less profound and
include a simpler layout rule and a more restricted syntax for
operator sections. We have mixed feelings about leaving out
type classes: it improves the quality of error messages a lot,
but also forces a different style of programming as many com-
mon Haskell functions are overloaded. In the end, we felt that
in an educational setting it is paramount to have the highest
quality error messages, but at the same time we are currently
investigating the addition of a restricted form of type classes
for which good error messages are still possible.

e Helium uses the Lazy Virtual Machine (LVM) [10] to execute
the compiled code. When an exception occurs, the LVM not
only shows the exception itself, but also the chain of demand
that led to the exception, helping the student with debugging.
Besides the standard exceptions like unmatched patterns, the
LVM also checks all integer arithmetic against overflow, and
detects many forms of unbounded recursion.

e A simple but effective graphical interpreter is built on top of
the compiler (see Figure 1). On demand, it can jump to an

B Hint =Ofx|

File Interpreter Help

ERE RN

Helium

FOR LEARNING HASKELL

Prelude- takeWhile (< 1000) (iterate (*2) 1)
[1,2,4,8,16,32,64,126,256,512]
Preluder sin .2
Warning: Function composition (.) immediately followed by number
Hint: If a Float was meant, write "0.2"
Otherwise, insert a space for readability
Type error in infix application

EXpression Hi- b
operator R

type puargr=E b =P (ESEiA)r SRS EEh
right operand i

L¥DE EInE.

does not match : © -> a

Prelude>

fx|sin - 2|

Figure 1. A screenshot of the Hint interpreter

error location in a user configurable editor, and it uses color
to distinguish clearly between different kinds of errors and
program output.

Helium is still ongoing work and is not a complete Haskell sys-
tem. For example, it only implements the Haskell prelude and lacks
other standard libraries. However, Helium has been used success-
fully during two introductory courses at the Utrecht University, and
we have had very good experiences with it as an environment for
teaching Haskell.

In this article, we compare Helium with other Haskell implemen-
tations. For the sake of presentation, we only consider two widely
used implementations, namely GHC(i) and Hugs. GHC is an in-
dustrial strength compiler for Haskell, where much effort has been
put in the type checker to generate high quality error messages.
The Hugs interpreter is a more experimental system with generally
lower quality error messages than GHC, but we decided to include
it as it is still widely used in educational settings.

The paper is structured as follows. We start with a collection of
examples where we compare the warnings and error messages pro-
duced by the Helium compiler with the messages reported by GHCi
and Hugs. Section 3 discusses the implementation of the compiler.
In Section 4, we talk about our experiences with the compiler dur-
ing an introductory course on functional programming, and about
the logging facility. Section 5 mentions related work, and Section 6
concludes this paper.

2 Examples

In this section we demonstrate Helium’s error messages by giving
a large number of examples. We start with warnings and hints that
are reported for potentially dangerous parts of a program. Next, we
show examples containing syntax errors (Section 2.2) and type er-
rors (Section 2.3). Section 2.4 discusses the advantages of having a
simplified type system without overloading, and finally, Section 2.5
considers error messages as they can occur at run-time.

2.1 Warningsand hints

In addition to rejecting incorrect programs, Helium also warns
about potential mistakes. Furthermore, hints can be given that sug-
gest fixes to certain problems. Since warnings and hints are based
on heuristics, one must be careful when adding them: a wrong hint
may be more confusing than giving no hint at all. Helium contains
a logging facility that we have used to determine the kind of mis-
takes that are often made by students in practice. Based on these
results we have added a range of warnings and hints that apply to
these situations. It is beyond the scope of this paper to describe
the log results in detail, but we describe some preliminary results in
Section 4.

In this section we look at a few interesting examples of common
warnings and hints. For example, take the following program.

-> Bool) ->[a] -> [a]
= [

Xs) =

nmyFilter p [

myFllter p (
if px
then x : nyFilter p xs
else nyFilter p xs

nmyFilter :: (a
]
X:

Although the program is legal Haskell and accepted by other inter-
preters without warnings, the Helium compiler spots many poten-
tially dangerous constructions.

(4,1): Warning: Tab character encountered,;
may cause problens with the layout rule
H nt: Configure your editor to replace tabs by spaces
(3,1) : Warning: Mssing type signature:
myFllter :: (a ->Bool) ->[a] ->[4q]
(2,10): Warning: Variable "p" is not used
(2,1), (3,1): Warning: Suspicious adjacent functions
"nyFilter" and "nyFllter"

First of all, we see that Helium can emit multiple warnings and
that it gives precise source locations: line and column. Actually,
the compiler maintains the entire error range, that can be used by
a development environment to highlight the offending terms inside
an editor. The last warning shows that messages can be attributed
to multiple locations. A development environment could use this
information to enable a user to jump from one location to the other.

The first warning is very helpful in education: layout errors due to
invisible tabs are a source of frustration among students. The sec-
ond warning about the missing type signature is typical for educa-
tion and the suggested type signature is presented in such a format
that it can be pasted directly into a program. For students, it is a
good practice to write down type signatures, but in this particular
case, the warning is caused by a typo. The last warning points di-
rectly to this hard to find problem: the name of the function in the
last clause is spelled wrong. Note that variants of this error were
registered several times by our logging facility.

For two adjacent definitions where only one definition has a type
signature, Helium calculates an edit distance between the identi-
fiers. The edit distance is the minimal number of edit operations
that need to be performed to transform one variable into the other.
Edit operations are the insertion of a character, the deletion of a
character, and changing the case of a character. When the edit dis-
tance is low enough, the Helium compiler assumes that a typo is
made and issues a warning.

The same mechanism is used to detect typos in the usage of vari-
ables and functions. Here is another student program that contains
a typo.

maxLen :: [String] -> Int
maxLen = maximun (map | ength xs)

This program is incorrect since it contains two undefined variables.

(2,10): Undefined variable "maxi mun"
Hnt: Didyou mean "maxi muni ?
(2,30): Undefined variable "xs"

The first error contains a hint that the identifier is very similar to
another variable in scope, namely maximum.

Sometimes, the hints are very specific for educational purposes. A
common mistake among students is to write floating point numbers
incorrectly.

test =sin .2

Syntactically, this is a legal Haskell program since the (.) is in-
terpreted as an operator. Hugs, for example, just gives a confusing
type error message for this program.

ERROR "l ex1. hs" (line 1): Unresolved top-level overloading
*** Bjnding . test
*** Qutstanding context : (Floating b, Num(c -> b))

Note that the overloading of integer literals makes the error message
hard to understand. Helium also gives a type error, but first warns
about the dangerous use of a dot in front of a number.

(1,13): Warning: Function composition (.) imediately
foll owed by nunber
Hnt: If a Float was neant, wite "0.2"
O herwise, insert a space for readability

(1,13): Type error in infix application

expression cosin. 2
oper at or :

type c(a->h) ->(c->a) ->c ->bh
right operand c 2

type o Int

does not match : ¢ -> a

Hints like these are very helpful for students. In this case, the warn-
ing is maybe geared too much towards education as it names the dot
operator as function composition, while in principle this operator
could be redefined by the user. We consciously took the decision to
target the messages to beginning programmers, but we plan to add
compiler flags that allow Helium to adjust its messages according
to the user’s level of expertise.

2.2 Syntaxerrors

As a first step in learning Haskell, students have to become famil-
iar with the syntax of Haskell. It is most helpful for students when
messages about syntax contain exact position information. Further-
more, we use the parser combinator library Parsec [11] that main-
tains not only the location of parse errors but also a list of terms
that would have been legal at that point in the input. The lexical
analyser also catches some common mistakes that normally lead to
cryptic parse errors. The following example demonstrates this.

test :: [(Int, String)]
test = [(1, "one"), (2, "two"), (3, "three")

In this example, the programmer forgot to add a bracket to close
the list. Our logs indicate that the illegal nesting of parentheses,
braces, and brackets is a very common lexical error. When lexing a
program, Helium keeps a stack of brackets in order to identify these
errors accurately.

(2,8): Bracket '[' is never closed

Unfortunately, GHCi does not maintain column information and is
imprecise in the location of the syntax error. In addition, it supplies
a misleading hint about the indentation.

syn3. hs: 3: parse error (possibly incorrect indentation)

For this particular example, the message produced by Hugs is also
interesting since it points to an unexpected "}’. This character does
not occur in the program, but was inserted by the compiler to handle
the layout rule.

ERROR "syn3.hs" (line 3): Syntax error in expression (un
expected ‘}', possibly due to bad layout)

We continue with a second example. Consider the following frag-
ment of code.

renove :: Int -> [Int] -> [Int]
remove n [] =[]
renove n (X:Xs)

| n=x = rest

| otherwise = x : rest
where rest = renpve n xs

The intended equality operator in the guard is confused with a ’=’:
the guard should read n == x. Helium spots the mistake directly
after the guard when a second ’=’ character is seen. The following
error message is given.

(4,16): Syntax error
unexpected '=
expecting expression, operator, constructor operator
"::17, |, keyword 'where', next in block (based on
layout), ;' or end of block (based on |ayout)

The following parse error is reported by GHCi.
synd. hs: 4: parse error on input ‘=

Hugs produces a similar error message for this example. Note that
the Helium error message is more accurate in two respects. Firstly,
the precise location clarifies which of the two ’=’ characters was not
expected by the parser. Secondly, the error message lists exactly
what terms would have been legal at that point in the input.

2.3 Typeerrors

Our logging facility shows that most errors made in practice are
type errors. Helium contains a constraint-based type inferencer that
tries to improve on the cryptic messages produced by most imple-
mentations. An important feature of the type checker is that it main-
tains the entire inference graph of a program. When a type error
occurs, Helium can inspect the type inference graph to produce a
clear and precise error message. For instance, the type inferencer
takes user-supplied type signatures into account to determine which
part of the program should be reported as incorrect. Consider the
following program.

makeEven :: Int -> Int
makeEven x = if even x then True el se x+1

Here, the if branches contain a Bool and an Int expression.
Guided by the type signature, Helium concludes that the Bool ex-
pression must be wrong, since there is more evidence that the return
type of the conditional should be Int.

(2,29): Type error in then branch of conditiona

expression : if even x then True else x + 1
term o True
type : Boo

does not match : Int

When the type signature is not taken into account, the error can be
attributed to the other branch. For example, the type checker in
Hugs, which suffers from a left-to-right bias and which does not
use the type signature, gives an opposite result.

ERROR "tp2.hs" (line 2): Type error in conditional
*** Expression . if even x then True else x + 1
*** Term x +1

*** Type cInt

*** Does not match : Boo

GHCi does not maintain column information. Unfortunately, it is
not clear from the type error message to what branch the error is
attributed, as the entire function body is shown.

tp2. hs: 2:
Couldn’t match ‘Int’ against ‘Bool
Expected type: Int
Inferred type: Boo
In the definition of ‘makeEven’
if even x then True else x +1

Type information about the complete program can be a big advan-
tage, especially if infinite types are detected. Take for example
the following (slightly modified) example from the Edinburgh type
checker suite [19].

test = \f ->\i ->(f i, f 2, [f,i])

The Helium compiler reports that the elements in the list are not
consistent.

(3,34): Type error in element of |ist
expression C[f, 0]
term :

type ©Int

does not match : Int -> a

Because of the type information from the rest of the program, there
is no need to mention infinite types in the type error message. How-
ever, both Hugs and GHCi report that unification would give an
infinite type. For instance, the following message is produced by
Hugs.

ERROR "tp6h. hs" (line 3): Type error in application

*** Expression o f

*** Term s

*** Type ca->b

*** Does not match : a

*** Because uni fication would give infinite type

Besides the global approach, the type inferencer also contains
heuristics to suggest hints and fixes to the program. For example,
consider the following program.

test = map [1..10] even

The student has accidently given the arguments of map in the wrong
order. Again, the logged student programs show that this is indeed
a common mistake.

(1,8): Type error in application

expression map [1 .. 10] even
term . map
type t(a->b) ->[q] -> [b]
does not match : [Int] -> (Int -> Bool) ->¢
probabl e fix . re-order arguments

Helium uses a minimal edit distance algorithm to determine how
terms can be changed to satisfy the type inferencer. Examples in-
clude the reordering of function arguments and the elements of a
tuple, and the insertion or removal of function arguments. A cor-
rection is only suggested if it completely removes the type incon-
sistency. Also note that the (uninstantiated) type signature of map
is given in the error message, nicely aligned to the inferred type. In
contrast, GHCi chooses one of the function arguments.

tpd.hs: 1
Couldn't match ‘a -> b’ against ‘[t]’
Expected type: a -> b
Inferred type: [t]
In an arithnetic sequence: [1 .. 10]
In the first argunent of ‘map’, namely ‘[1 .. 10]

The error message given by Hugs suffers from another problem.

ERROR "tp4.hs" (line 1): Type error in application
*** EXpression . map (enunfronio 1 10) even
*** Term . even

*** Type : b -> Boo

*** Does not match : [a]

Since Hugs does not maintain complete source information, the
arithmetic sequence has disappeared in the error message and is
presented as (enumFromTo 1 10).

Type synonyms assign an intuitive name to a complicated com-
posed type. Unfortunately, type synonyms are often unfolded dur-
ing the process of type inference, resulting in type errors that refer
to unnecessary complex types. Helium stores information about
type synonyms directly in the inference graph. Whenever possible,
the error messages are given in terms of type synonyms instead of
an unfolded type. This is especially important for domain-specific
combinator libraries that may contain complicated type synonyms.
For example, in a second year course we use a parser combinator
library that defines a Parser type as a synonym to abstract over a
function type — it is much better to get error messages in terms of
Parsers than to see the underlying function types. Here is a simple
example that contains String literals.

test :: String
test = xs : "def"
where xs = "abc"

And indeed, the Helium error message is in terms of strings.

(2,11): Type error in constructor
expression B
type D a -> [a] -> [a]
expected type : String -> String -> String
probabl e fix . use ++ instead

In contrast, both Hugs and GHCi forget the type synonym, and give
their error in terms of the unfolded type. GHCi reports the follow-

ing.

tp7b. hs: 2:
Couldn’t match ‘[Char]’ against ‘Char’
Expected type: [[Char]]
Inferred type: [Char]
In the second argunment of ‘(:)', nanmely ‘"def"’
In the definition of ‘test’: xs : "def"

24 Overloading

At the moment, Helium does not support overloading. In general,
the type inferencer can produce better error messages when over-
loading is not present. Although it is undoubtedly a powerful fea-
ture of Haskell, we felt that for educational purposes it is better to
have the best possible error messages. As an example of the prob-
lems associated with overloading, we return to an earlier example,
where we replace the character lists with integer lists.

test = xs : [4, 5 6]
where xs =[1, 2, 3]

The Helium message suggests (again) using concatenation.

(1,11): Type error in constructor
expression B
type T a ->[a] ->[a]
expected type : [Int] ->[Int] ->b
probable fix . use ++ instead

However, Haskell 98 prepends an implicit call to fromInteger to
all integer literals. On the type level, this means that every integer
literal is implicitly promoted to a type in the Num class. In GHCIi,
this leads to a rather confusing message as it tries to promote the
integers to lists.

tp7.hs: 1:

No instance for (Num[a])

arising fromthe literal ‘6’ at tp7.hs:1

Inthe list element: 6

In the second argunent of ‘(:)', namely ‘[4, 5, 6]’

Hugs does not do much better.

ERROR "tp7.hs" (line 1): Unresol ved top-1evel overloading
*** Bjnding . test
*** Qutstanding context : (Numb, Num[b])

Note that this is no critique of the respective systems: giving good
error messages in the presence overloading is known to be very dif-
ficult. However, the examples show that students are immediately
exposed to complex parts of the Haskell type system, even when
they are not consciously using those features.

The implicit promotion of integer literals appears to be the main
cause of complex type errors. We consider the following example
from the Edinburgh type checker suite [19] once more.

test = \f ->\i ->(f i, f 2, [f,3])

The program is ill-typed since the function f is erroneously placed
in the same list as the literal 3.

(2,34): Type error in elenment of Iist

expression C[f, 3]
term 03
type o Int

does not match : Int -> a

In Haskell, however, the type inferencer tries to find a Num instance
for function types. GHCi reports the following.

tp6. hs: 2:
No instance for (Num(tl ->1t))
arising fromthe literal ‘3 at tp6.hs:2
Inthe list element: 3
In a lanbda abstraction: (f i, f 2, [f, 3])

Hugs resolves type class constraints somewhat later. Information
about the origin of the type class constraints is lost.

ERROR "t p6.hs" (line 2): Unresol ved top-1evel overloading
*** Bjnding . test
*** Qutstanding context : (Numb, Num (b -> c))

Forcing students to write type signatures is not the solution to this
problem. Let us add a type signature to the previous example.

test :: (Int ->a) ->1Int ->(a,a/[Int ->a])
test =\f ->\i ->(f i, f 2, [f,3])

Even though the intended type of the list is known, there is still the
possibility of an instance of Num for function types. GHCi reports
the following.

t p6a. hs: 3:

Coul d not deduce (Num (Int->a)) fromthe context ()

Probabl e fix:
Add (Num (Int -> a)) to the type signature(s)
for ‘test’ or add an instance declaration
for (Num(Int -> a))

arising fromthe literal ‘3 at tp6a.hs:3

Inthe list element: 3

In a lanbda abstraction: (f i, f 2, [f, 3])

Although the type error messages benefit from a type system with-
out overloading, there are some drawbacks. Functions that are nor-
mally member of a type class have in Helium different names for
different instances. For instance, to test for equality, eqInt and
eqBool are available, but also egList, which is given the type (a
-> a -> Bool) -> [a] -> [a] -> Bool. Similarly, variants of
the show function exist. A show and eq function are automatically
derived for each type constructor that is introduced by a data type
declaration or type synonym. Arithmetic and comparison operators
are all specialized to work for integers. Therefore, (+) has type
Int -> Int -> Int, and (/=) has type Int -> Int -> Bool.
To obtain the variant that works for floats, a period is postfixed. For
example, (+.) and (/=.) are defined by Helium’s standard Pre-
lude. Special type inference heuristics suggest a fix if the wrong
variant of the operator is used.

A second disadvantage is that it is harder to write and to use poly-
morphic functions that normally make use of overloading, such as
sort and nub. In case of the function nub, an equality function
must be passed explicitly as an additional argument. This function
now has the type (a -> a -> Bool) -> [a] -> [a] (which is
the type of Haskell’s function nubBy). Nonetheless, we believe that
students are more aware what is going on when they have to pass
these additional functions themselves. For education, this may be
preferred over the (invisible) dictionaries that are inserted by the
compiler.

core code
generation

LVM instruction execute)
file - ----- LVM runtime

Figure2. Pipeline of the Helium compiler

Given the disadvantages, we are currently investigating how we can
add type classes to Helium while still maintaining the quality of our
error messages. A promising direction is the introduction of ‘closed
world’ style type classes [13] in combination with type specification
files [9].

25 Runtimeerrors

Finally, we consider runtime errors. Most runtime errors are caused
by non-exhaustive pattern matches. Take for example the following
function definition.

inverseHead xs = case (head xs) of
0->0
X -> 1/x

When we evaluate the expression (inverseHead []) in GHCIi, we
get the following response.

Programerror: {head []}

This message is rather uninformative since it only mentions the
head function and not the demand trace that led to the error. The
Helium runtime maintains the demand trace and reports it.

exception: Prelude.head: enpty list.

trace:
demanded from "Runl.inverseHead"

In this example, the trace is rather simple, but in general the infor-
mation is very helpful to students trying to debug their course as-
signments. The trace facility reflects the dynamic demand structure
and is not nearly as sophisticated as dynamic debuggers like Hat or
Freya [2]. However, we are currently investigating the integration
of Buddha [12] into Helium.

The runtime further performs as many checks as possible without
penalizing execution speed too much. For example, all arithmetic
is checked against exceptional situations such as overflow and divi-
sion by zero. Take for example the following program.

test :: Bool
test = sqr 12345678 > 0
where sqr x = X*x

The expression (sqr 12345678) will overflow when 32 bit integers
are used. An exception is returned instead of an unexpected result.

exception at "Lvmliang.*":
integer overflow.

trace:
demanded from "Lvniang. >"
demanded from"Run3.test"

3 Implementation

In this section we briefly discuss interesting parts of the implemen-
tation. We first present a general overview on how the compiler is
implemented (Section 3.1), and then explain in more detail how we
tackle the problem of type inference.

3.1 A research platform

We have put a lot of effort into making the implementation of the
Helium compiler as simple and modular as possible. One of the
goals of the Helium compiler is to facilitate research into new func-
tional languages or language features. We therefore implemented
the compiler naively with no hidden dependencies and with modu-
lar internal interfaces. All intermediate data types have a concrete
syntax that can be communicated to files.

Figure 2 shows how the Helium compiler works internally. First,
Haskell source code is parsed using the Parsec [11] combinator li-
brary. After parsing, the program is represented using a data type,
called UHA (Unified Haskell Architecture), that closely resembles
the concrete syntax of Haskell. It is important to retain the link to
the concrete syntax at this point in order to give error messages in
the same terms as the user wrote them — desugaring is postponed un-
til all static checks have been made. Exact source ranges are stored
in the nodes of the tree to facilitate the integration of the compiler
with a development environment. UHA also covers Haskell fea-
tures that are not supported by Helium, such as type classes, uni-
versal and existential quantification, and records.

Static analysis (including type inference) is then performed on
UHA. Static checks analyze the program to catch mistakes like un-
defined identifiers. Many of those checks need the same kind of in-
formation during their analysis, for example, the current variables
in scope. This information must somehow be attributed to the nodes
of the UHA data type. A common solution in Haskell is to either
pass this information during each transformation as an argument,
or to extend the data type with extra fields. Unfortunately, the first
solution leads to more complex code as a transformation pass has
to compute different aspects within the same code. The second so-
lution separates these aspects, but may lead to inconsistencies when
the tree is transformed.

We solved this dilemma by using an attribute grammar system [14]
that acts as a pre-processor to Haskell. We can now specify dif-
ferent aspects and attributes orthogonally to each other, and use
them seamlessly for different static checks. The attribute gram-
mar system takes these specifications and glues them together into
a standard Haskell module. This aspect oriented approach makes it
much easier to change certain parts of the compiler without having
to modify unrelated code. Currently, a third-year student is adding
attribute specifications to detect pattern matches that are not ex-
haustive. Especially for such a student project it is important to be

AST traversal

constraint
tree

AST constraint

collection

type graph heuristics

greedy
constraint solver

constraint
list

substitution and
type error messages

global
constraint solver

Figure 3. Constraint-based typeinference

able to add code without having to understand every detail of the
compiler.

After the checks are done, the UHA is translated into an enriched
lambda calculus language, called Core. It is closely related to the
core language of GHC. The main differences are that it is untyped
and that it can contain structured meta-information to encode extra
compiler dependent information, like types or specialized function
instances. Furthermore, Core was designed separately from He-
lium as a general backend for (lazy) functional languages. As such,
it does not contain any Haskell specific parts nor specific Helium
dependent features. Currently, we have a fourth year student that
performs Core to Core optimizations using Stratego [18], a program
transformation system with programmable rewrite strategies.

Finally, the Core language is translated by a standard library into
instruction files for the Lazy Virtual Machine (LVM) [10]. Just like
the Java Virtual Machine, the LVM defines a portable instruction set
and file format. However, the instruction set is specifically designed
to execute non-strict, higher order languages. The interpreter itself
is implemented in portable C (using the excellent OCaml runtime
system), and it runs on many platforms, including Windows, vari-
ous Unix’s, MacOS X and 64-bit platforms like the DEC alpha. It
supports asynchronous exceptions, a basic foreign function inter-
face, generational garbage collection, and demand traces. We have
only compared the system using simple benchmarks, but it runs an
order of magnitude faster than Hugs and about three times as slow
as unoptimized GHC code.

3.2 Typeinference

The type checker is one of the more interesting parts of the He-
lium compiler. One of the difficulties of learning a higher-order,
functional language such as Haskell is becoming familiar with its
underlying type system. As we have seen in the examples, the so-
phisticated type system of Haskell can easily become a source of
frustration as the error messages produced by most modern compil-
ers are often hard to interpret, particularly for beginning students.
Frequently, a type error reports an unexpected program location,
that might be far from the actual mistake. There are a number of
causes for the poor quality of type error messages.

1. Extensions to the type system, and in particular type classes,
make the reported error messages harder to interpret. A be-
ginner is immediately confronted with error messages con-
cerning unresolved overloading. Currently, overloading is an
integrated part of Haskell, e.g., all numerical literals are auto-
matically overloaded.

2. Most type inferencers have been designed for good perfor-
mance and suffer from a left-to-right bias, which tends to re-
port type errors towards the end of the program.

3. Type errors concentrate on the two types that are not unifiable.
Ideally, the type error message should guide the programmer
in removing the type inconsistency, for instance by supplying
additional hints.

Constraint-based type inference

Constraint-based type inference is an alternative to algorithms that
are based on the bottom-up algorithm %/ [3]. Collecting the type
constraints (the specification) can be completely separated from
solving those constraints (the implementation). Several constraint
solvers may be around, each with its own advantages, and, if de-
sired, a set of constraints can be solved in a global fashion. Recent
projects that follow the constraint-based approach show that this is
a first step to improve the quality of type error messages [1, 6].

Figure 3 shows the process of type inference in Helium. From the
abstract syntax tree of a program, a constraint tree is constructed
that closely follows the shape of the original tree. By choosing a
traversal over this tree, the constraint tree can be flattened to an
(ordered) list of constraints. Then, the set of constraints can be
solved by the constraint solver one prefers. Currently, there are two
constraint solvers to choose from: a greedy constraint solver, and a
global constraint solver which uses type graphs.

Greedy constraint solving

The greedy constraint solver handles the type constraints one at a
time, and has two advantages: it is implemented in a straightfor-
ward way and has a good performance. However, this solver is
highly sensitive to the order in which the type constraints are con-
sidered, and is biased just like Hugs and GHC. Well-known algo-
rithms, such as 7/ and the top-down algorithm %/, can be simulated
by choosing an appropriate traversal over the abstract syntax tree.
Similarly, an explicit type declaration can be pushed down in the
corresponding function definition as the expected type! by choos-
ing the moment at which to consider the type constraint generated
for the type signature.

Global constraint solving

The global constraint solver considers the entire set of type con-
straints. Type constraints are incorporated into a type graph, which
is an advanced representation of a substitution (see [8] for further
details). A type graph also stores the reasons for the type unifica-
tions. Because a type graph can be in an inconsistent state, resolv-
ing type conflicts can be postponed until the very end. At this point,

1The GHC type inferencer is able to push down an explicit type.
Providing a type signature for a function definition guides the pro-
cess of type inferencing.

parse error | 13.6% 9.8% 7.4%

exercise 1 exercise 2 exercise 3
week 1 week2 week3 week4 week5 week6 week7 total
lex error 3.2% 2.6% 3.4% 4.0% 5.6% 3.9% 5.3% 4.0%

7.0% 7.9%

11.7% 9.0% 8.6%

static error 6.2% 9.0% 8.8% 9.6% 8.4% 13.5% 10.7% 9.6%
type error 28.1% 34.1% 347% 348% 25.7% 25.8% 29.6% | 31.6%
correct 48.9% 445% 458% 44.6% 52.4% 452% 45.4% | 46.3%
N 1109 3823 8230 5481 3871 3256 3661 | 29431

Figure4. Compilation results

information about all the contributing sites is available to construct
accurate type error messages. Heuristics are employed to deter-
mine which program location to report as the most likely source
of the type conflict. Although the construction of a type graph re-
quires extra overhead, the system behaves reasonably well for typi-
cal laboratory exercises. This constraint solver should undoubtedly
be preferred in an educational setting, and is the default for Helium.

To resolve a type inconsistency, we first look at the number of con-
straints that support one type over another. For example, if there
are three indications that variable x should be assigned type Int,
but only one that supports type Bool, then x will be assigned type
Int, and the reported error message will focus on the contradicting
Bool.

In addition to the standard type error message, a number of strate-
gies are applied that can suggest probable fixes to common mis-
takes. To prevent misleading hints, we only provide one if there is
a unique correction that completely resolves a type inconsistency.
Examples of hints include function arguments that are supplied in
the wrong order, or whether an argument is missing or superflu-
ous. An important strategy deals with siblings, semantically related
functions with slightly different types. Examples include (++) and
(3), curry and uncurry, but also integer and floating point num-
bers. If an element of such a pair contributes to a type error, we
test whether the type of the sibling would fit in that context. This
heuristic has proven to work quite well in practice. Currently, the
table of siblings is hard-coded, but we are working on a facility for
adding siblings dynamically [9].

The heuristics described above cover a substantial part of the type
incorrect programs, but if none succeeds, then soft heuristics decide
which location is reported. For instance, a type error concerning
an expression is to be preferred over one that refers to a pattern.
Another tie-breaker is to consider the position of the constraints in
the flattened list.

Consider the following program written by one of our students?.

maxLength :: [String] -> Int
maxLength xs = max (map | ength xs)

The effort to write a function that returns the maximum length given
a list of strings is almost correct, except that the binary function max
is used instead of the function maximum that works on a list. Hugs
reports the following error.

ERROR "A.hs":2 - Type error in explicitly typed binding
*** Term . maxLength
*** Type ©[String] -> [Int] -> [Int]

*** Does not match : [String] -> Int

2This function was part of the first laboratory exercise. Several
individuals made this same mistake.

The definition of maxLength is well typed (also because the type of
max, which isOrd a => a -> a -> a, is polymorphic in its first
argument), but the inferred type does not match the explicit type
signature that was given. Arguably, GHC’s error message is more
clear.

A hs: 2:
Couldn't match ‘Int’ against ‘a -> a
Expected type: Int
Inferred type: a -> a
Probabl e cause: ‘max’ is applied to too few argunents
inthe call (max (map length xs))
In the definition of ‘maxLength’: max (map |ength xs)

Given the type signature of maxLength, GHC notices that a second
argument should be supplied to max in order to return a value of
type Int, hence the probable cause in the message. However, the
message is hard to understand if you are not aware of max’s type.
Consider Helium’s type error message.

(2,16): Type error in variable

expression . max
type cInt ->Int ->Int
expected type : [Int] -> Int

probabl e fix . use maximum instead

This message is easier to understand because it mentions the type
of max, and the type that was expected. In addition, it suggests a
probable fix based on a pair of sibling functions.

4 Experience

As a special feature of the compiler, we have set up a logging fa-
cility to record compiled programs during an introductory course
on functional programming at our institute. The students that took
the course were informed about this experiment in advance, and, if
desired, they could disable the logging of their programs. To pass
the course, three laboratory exercises had to be completed. In a
period of seven weeks, thousands of compiled programs produced
by participating students were stored on disk. This collection con-
tains both correct and incorrect programs together with the kind of
error, and with historical information about a particular user. This
anonymous collection of programs reflects the problems that stu-
dents encounter when learning Haskell, although the choice of the
exercises and the lectures of the course may influence the data. The
collection is primarily used to further improve the compiler, but it
can also give insights in the learning process over time.

Logger results

The collected programs have not yet been analyzed thoroughly, but
some overall results can be presented. Figure 4 shows the ratio of
programs that were accepted by the compiler, and the phases of the

static error N (%)
undefined variable 2682 49.9%
undefined constructor 726 13.5%
undefined type constructor 479 8.9%
type signature without definition 409 7.6%
arity mismatch for (type) constructor 361 6.7%
arity mismatch for function definition 228 4.2%
duplicated definition 212 3.9%
filename and module name don’t match 87 1.6%
duplicated type signature 49 | <1.0%
duplicated variable in pattern 42
pattern defines no variables 29
undefined type variable 16
undefined exported module 13
duplicated type constructor 10
duplicated constructor 10
fixity declaration without definition 9
type variable application 8
last statement is not an expression 4
recursive type synonym 3 .
total 5377 | 100.0%

Figure5. Reported static errors

compiler in which an error was detected. Overall, 46% of the com-
piled programs were accepted by the compiler. We hope that this
is an indication that the programs are constructed incrementally by
using smaller helper-functions. For more than half of the rejected
programs, a type error message is reported. This emphasizes the
importance of understandable type error messages once more.

Figure 5 shows the frequencies of the reported static errors. Almost
three quarters of the reported static errors are due to an undefined
variable, constructor, or type constructor. Of course this includes
the misspelling of variable names (a hint is given if there is a re-
sembling variable in scope), but it also suggests that the scoping
rules are not well-understood. We intend to analyze the collected
data more carefully.

5 Redated work

The Helium compiler is certainly not the first to identify the prob-
lems that are caused by cryptic error message when learning a
language. For the Scheme language, the programming environ-
ment DrScheme [5] has been developed, which was initially tar-
geted at students. To gradually become familiar with the language,
DrScheme offers a set of language levels, that is, syntactically re-
stricted variants of Scheme. Particularly interesting is the Teach-
Scheme! project [15], which is not only in use at universities, but
also at a large number of high schools.

Another interesting project is Pan# [4], a functional graphics lan-
guage that is in development at Yale University. Pan# combines ba-
sic mathematical operations with functional abstraction and a sim-
ple vocabulary of images. The system has been used to teach high
school students basic algebra operations using images. However,
the primary focus is not on teaching a language and not much effort
has been put into the quality of error messages. For instance, no
type inferencer is present.

During the development of Helium, we paid particular attention to
existing example sets, such as the catalogue of Hugs error messages
collected by Thompson [16]. A set of type incorrect SML programs
by Yang and others [19] was used to highlight the problems of type

inference. Another source of inspiration was a recent lively discus-
sion on the Haskell mailing list [7] about teaching Haskell, as well
as the feedback we received from our students.

6 Conclusion

Helium is a user-friendly compiler for learning Haskell that pro-
duces clear and precise error messages and warnings. The compiler
has been used during two introductory courses on functional pro-
gramming at our institute with great success. Although the com-
piler is not yet mature, we have received numerous enthusiastic
comments, suggestions, and remarks from participating students.
In particular, we noticed that the students were no longer distracted
by cryptic type error messages caused by overloading. However,
at the same time the absence of type classes introduced other prob-
lems: dictionaries had to be passed explicitly and advanced text-
book examples had to be adapted. Recently, Simon Thompson has
released a supplement to his book on functional programming [16],
that describes how the textbook can be used with Helium.

In the future, we plan to make Helium more compatible with exist-
ing text books, for example, by including a restricted form of over-
loading. A challenging constraint we impose on ourselves is that
the type classes should not have a negative impact on the quality of
the (type) error messages.

Further improvements that we would like to make are the in-
tegration of documentation into the interpreter, adding warnings
about non exhaustive pattern matches, adding a source analyser that
recognises common higher-order patterns like map and filter, and
adding a GUI library to support more appealing demos and labora-
tory exercises. We also investigate the use of external type specifi-
cations that guide the type inferencer. These specifications can be
used, for example, to specify domain specific type errors [9].

Acknowledgments

Special thanks to Rijk-Jan van Haaften for spending so much time
on Helium while still being a student, to Big Brother Jurriaan Hage
for building the logging facility, to Arie Middelkoop for saving
Helium from the command-line by writing a very pleasant inter-
preter, and to Martijn Lammerts for designing the logo and website.
Also thanks to Arthur Baars, Remco Burema, Atze Dijkstra, Jeroen
Fokker, Maarten van Gompel, Andres Loh, Doaitse Swierstra, and
to all the students who used Helium and inspired us to introduce
new warnings and hints.

7 References

[1] The Chameleon system, http://www.comp.nus.edu.sg/
“sulzmann/chameleon.

[2] O. Chitil, C. Runciman, and M. Wallace. Freya, Hat and
Hood — a comparative evaluation of three systems for tracing
and debugging lazy functional programs. In M. Mohnen and
P. Koopman, editors, Proceedings of the 12th international
conference on the Implementation of Functional Languages
(IFL 2000), volume 2011 of LNCS pages 176-193, Aachen,
Germany, Sept. 2000. Springer-Verlag.

[3] L. Damas and R. Milner. Principal type schemes for func-
tional programs. In Principles of Programming Languages
(POPL '82), pages 207-212, 1982.

[4]

5]

[6]

[7]
(8]

9]

[10]

[11]

C. Elliott, O. de Moore, S. Finne, and J. Peterson. The Pan#
functional graphics language. http://haskell._cs._yale.
edu/edsl/pansharp.html.

R. B. Findler, J. Clements, M. F. Cormac Flanagan, S. Krish-
namurthi, P. Steckler, and M. Felleisen. DrScheme: A pro-
gramming environment for Scheme. Journal of Functional
Programming, 12(2):159-182, March 2002.

C. Haack and J. B. Wells. Type error slicing in implicitly
typed higher-order languages. In Proceedings of the 12th Eu-
ropean Symposium on Programming, pages 284-301, April
2003.

The Haskell mailing list, http://www.haskell .org.

B. Heeren and J. Hage. Parametric type inferencing for He-
lium. Technical Report UU-CS-2002-035, Institute of Infor-
mation and Computing Science, Utrecht University, August
2002.

B. Heeren, J. Hage, and S. D. Swierstra. Scripting the type
inference process. In International Conference on Functional
Programming (ICFP’ 03), 2003. To appear.

D. Leijen. The lazy virtual machine. Technical Report UU-
CS-2003, Department of Computer Science, Utrecht Univer-
sity, 2003. http://ww.cs.uu.nl/~daan/pubs.html.

D. Leijen and E. Meijer. Parsec: Direct style monadic parser
combinators for the real world. Technical Report UU-CS-
2001-35, Department of Computer Science, Utrecht Univer-
sity, 2001. http://www.cs.uu.nl/"daan/parsec.html.

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

B. Pope. Buddha: A declarative debugger for Haskell. Hon-
ours thesis, Dept. of computer science, University of Mel-
bourne, Australia, June 1998.

M. Shields and S. Peyton Jones. Object-oriented style over-
loading for Haskell. In First Workshop on Multi-language In-
frastructure and Interoperability (BABEL'01), Firenze, Italy,
Sept. 2001.

S. D. Swierstra, A. |. Baars, and A. L6h. The UU-AG attribute
grammar system. http://www.cs.uu.nl/groups/ST.

The TeachScheme!
org.

Project, http://www.teach-scheme.

S. Thompson. Haskell: The Craft of Functional Pro-
gramming, Second Edition. Addison-Wesley Longman,
1999. http://www.cs.ukc.ac.uk/people/staff/sjt/
craft2e.

A. van lJzendoorn, D. Leijen, and B. Heeren. The Helium
compiler. http://www.cs.uu.nl/helium.

E. Visser, Z. Benaissa, and A. Tolmach. Building program
optimizers with rewriting strategies. In third ACM SG-
PLAN International Conference on Functional Programming
(ICFP’98), pages 13-26. ACM Press, Sept. 1998.

J. Yang, P. Trinder, J. Wells, and G. Michaelson. Exam-
ples to compare the error reportings from the W, M, Upg,
I'ET algorithms. Technical Report RM/00/12, Department of
Computing and Electrical Engineering, Heriot-Watt Univer-
sity, October 2000.

