
Helios: Heterogeneous Multiprocessing with
Satellite Kernels

Edmund B. Nightingale
Microsoft Research

Orion Hodson
Microsoft Research

Ross McIlroy
†

University of Glasgow, UK

Chris Hawblitzel
Microsoft Research

Galen Hunt
Microsoft Research

ABSTRACT
Helios is an operating system designed to simplify the task of writ-
ing, deploying, and tuning applications for heterogeneousplatforms.
Helios introducessatellite kernels, which export a single, uniform
set of OS abstractions across CPUs of disparate architectures and
performance characteristics. Access to I/O services such as file
systems are made transparent via remote message passing, which
extends a standard microkernel message-passing abstraction to a
satellite kernel infrastructure. Helios retargets applications to avail-
able ISAs by compiling from an intermediate language. To simplify
deploying and tuning application performance, Helios exposes an
affinity metric to developers. Affinity provides a hint to theoperat-
ing system about whether a process would benefit from executing
on the same platform as a service it depends upon.

We developed satellite kernels for an XScale programmable I/O
card and for cache-coherent NUMA architectures. We offloaded
several applications and operating system components, often by
changing only a single line of metadata. We show up to a 28%
performance improvement by offloading tasks to the XScale I/O
card. On a mail-server benchmark, we show a 39% improvement
in performance by automatically splitting the applicationamong
multiple NUMA domains.

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Communications Management; D.4.7
[Operating Systems]: Organization and Design; D.4.8 [Operating
Systems]: Performance

General Terms
Design, Management, Performance

Keywords
Operating systems, heterogeneous computing

†Work completed during an internship at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’09,October 11–14, 2009, Big Sky, Montana, USA.
Copyright 2009 ACM 978-1-60558-752-3/09/10 ...$10.00.

1. INTRODUCTION
Operating systems are designed for homogeneous hardware ar-

chitectures. Within a machine, CPUs are treated as interchange-
able parts. Each CPU is assumed to provide equivalent functional-
ity, instruction throughput, and cache-coherent access tomemory.
At most, an operating system must contend with a cache-coherent
non-uniform memory architecture (NUMA), which results in vary-
ing access times to different portions of main memory.

However, computing environments are no longer homogeneous.
Programmable devices, such as GPUs and NICs, fragment the tra-
ditional model of computing by introducing “islands of computa-
tion” where developers can run arbitrary code to take advantage of
device-specific features. For example, GPUs often provide high-
performance vector processing, while a programmable NIC pro-
vides the opportunity to compute “close to the source” without
wasting time communicating over a bus to a general purpose CPU.
These devices are not cache-coherent with respect to general pur-
pose CPUs, are programmed with unique instruction sets, andoften
have dramatically different performance characteristics.

Operating systems effectively ignore programmable devices by
treating them no differently than traditional, non-programmable
I/O devices. Therefore device drivers are the only available method
of communicating with a programmable device. Unfortunately, the
device driver interface was designed for pushing bits back and forth
over a bus, rather than acting as an interface through which appli-
cations coordinate and execute. As a result, there often exists little
or no support on a programmable device for once straightforward
tasks such as accessing other I/O devices (e.g., writing to disk), de-
bugging, or getting user input. A secondary problem is that drivers,
which execute in a privileged space within the kernel, become ever
more complicated as they take on new tasks such as executing ap-
plication frameworks. For example, the NVIDIA graphics driver,
which supports the CUDA runtime for programming GPUs, con-
tains an entire JIT compiler.

Helios is an operating system designed to simplify the task of
writing, deploying, and tuning applications for heterogeneous plat-
forms. Helios introducessatellite kernels, which export a single,
uniform set of OS abstractions across CPUs of disparate archi-
tectures and performance characteristics. Satellite kernels allow
developers to write applications against familiar operating system
APIs and abstractions. In addition, Helios extends satellite ker-
nels to NUMA architectures, treating NUMA as a shared-nothing
multiprocessor. Each NUMAdomain, which consists of a set of
CPUs and co-located memory, runs its own satellite kernel and in-
dependently manages its resources. By replicating kernel code and
by making performance boundaries between NUMA domains ex-
plicit, Helios removes the kernel as a bottleneck to scalingup per-
formance in large multiprocessor systems.

Satellite kernels are microkernels. Each satellite kernelis com-
posed of a scheduler, a memory manager, a namespace manager,
and code to coordinate communication between other kernels. All
other traditional operating system drivers and services (e.g., a file
system) execute as individual processes. The first satellite kernel to
boot, called thecoordinator kernel, discovers programmable de-
vices and launches additional satellite kernels. Helios provides
transparent access to services executing on satellite kernels by ex-
tending a traditional message-passing interface to include remote
message passing. When applications or services communicate with
each other on the same satellite kernel a fast, zero-copy, message-
passing interface is used. However, if communication occurs be-
tween two different satellite kernels, then remote messagepass-
ing automatically marshals messages between the kernels tofacili-
tate communication. Since applications are written for a message-
passing interface, no changes are required when an application is
run on a programmable device.

In a heterogeneous environment, the placement of applications
can have a drastic impact on performance. Therefore, Heliossim-
plifies application deployment by exporting anaffinity metricthat is
expressed over message-passing channels. A positive affinity pro-
vides a hint to the operating system that two components willbene-
fit from fast message passing, and should execute on the same satel-
lite kernel. A negative affinity suggests that the two components
should execute on different satellite kernels. Helios usesaffinity
values to automatically make placement decisions when processes
are started. For example, the Helios networking stack expresses
a positive affinity for the channels used to communicate witha
network device driver. When a programmable network adapteris
present, the positive affinity between the networking stackand the
driver executing on the adapter causes Helios to automatically of-
fload the entire networking stack to the adapter. Offloading the
networking stack does not require any changes to its source code.
Affinity values are expressed as part of an application’s XMLmeta-
data file, and can easily be changed by developers or system admin-
istrators to tune application performance or adapt an application to
a new operating environment.

Helios uses a two-phase compilation strategy to contend with
the many different configurations of programmable devices that
may be available on a machine. Developers compile applications
from source to an intermediate language. Once an application is
installed, it is compiled down to the instruction set of eachavail-
able processor architecture. An additional benefit of an interme-
diate language is that it can encapsulate multiple implementations
of a particular feature tuned to different architectures. For exam-
ple, theInterlocked.CompareExchange function requires the
use of processor-specific assembly language instructions.Any pro-
cess that uses the function has all supported versions shipped in the
intermediate language; the appropriate version is then used when
compiling the application to each available architecture.

We built Helios by modifying the Singularity [13] operatingsys-
tem to support satellite kernels, remote message passing, and affin-
ity. We implemented support for satellite kernels on two different
hardware platforms: an Intel XScale programmable PCI Express
I/O card and cache-coherent NUMA architectures. We offloaded
several operating system components, including a completenet-
working stack, a file system, and several applications to theXScale
programmable device by adjusting the affinity values withinappli-
cation metadata. We improved the performance of two different
applications by up to 28% through offloading. On a mail-server
benchmark, we show a 39% improvement in performance by split-
ting the application among multiple NUMA domains.

We discuss the design goals for Helios in the next section and
we describe the implementation in Section 3. Section 4 evaluates
Helios, Section 5 discusses related work, and then we conclude.

2. DESIGN GOALS
We followed four design goals when we created an operating

system for heterogeneous platforms. First, the operating system
should efficiently export a single OS abstraction across different
programmable devices. Second, inter-process communication that
spans two different programmable devices should function no dif-
ferently than IPC on a single device. Third, the operating system
should provide mechanisms to simplify deploying and tuningap-
plications. Fourth, it should provide a means to encapsulate the
disparate architectures of multiple programmable devices.

2.1 Many Kernels: One Set of Abstractions
Exporting a single set of abstractions across many platforms sim-

plifies writing applications for different programmable devices. Fur-
ther, these abstractions must be exportedefficiently to be useful.
Therefore, when determining the composition of a satellitekernel,
the following guidelines were followed:

• Avoid unnecessary remote communication.A design that re-
quires frequent communication to remote programmable de-
vices or NUMA domains (e.g., forwarding requests to a gen-
eral purpose CPU) would impose a high performance penalty.
Therefore, such communication should be invoked only when
a request cannot be serviced locally.

• Require minimal hardware primitives.If a programmable
device requires a feature-set that is too constrained (e.g., an
MMU), then few devices will be able to run Helios. On the
other hand, requiring too few primitives might force Helios
to communicate with other devices to implement basic fea-
tures (such as interrupts), which violates the previous guide-
line. Therefore, Helios should require a minimal set of hard-
ware primitives while preserving the desire to do as much
work as possible locally.

• Require minimal hardware resources. Programmable devices
that provide slower CPUs and far less RAM than general pur-
pose CPUs should not be prevented from running Helios.

• Avoid unnecessary local IPC.Local message-passing is slower
than a system call. Therefore, resources private to a process
(e.g., memory) should be managed by a satellite kernel and
accessed via a system call. However, if a resource is shared
(e.g., a NIC), than it should be controlled by a process that
is accessible via message-passing, and therefore available to
processes executing on other satellite kernels.

Satellite kernels, which form the basic primitive for managing
programmable devices, were designed with each of these criteria
in mind. First, satellite kernels minimize remote communication
by initiating it only when communicating with the namespaceor
when transferring messages between kernels to implement remote
message passing. All other communication is provided either via a
system call, or through local message-passing.

Second, in addition to CPU and DRAM, satellite kernels require
three basic hardware primitives: a timer, an interrupt controller, and
the ability to catch an exception (i.e., trap). Without these primi-
tives, Helios could not implement basic services, such as schedul-
ing, directly on the programmable device. We believe these re-
quirements are quite reasonable; although the current generation

of GPUs do not provide timers or interrupt controllers, Intel’s next
generation GPU (the Larrabee [29]) will provide all three hardware
primitives required to run a satellite kernel. We expect these three
primitives will appear on more programmable devices in the future,
providing new platforms upon which to run Helios.

Third, satellite kernels have minimal hardware resource require-
ments. Helios runs with as little as 128 MB of RAM on a TI OMAP
CPU running at 600 MHz. We believe Helios could run on as little
as 32 MB of RAM and a few hundred MHz CPU with additional
tuning. However, we have not yet tested Helios on a programmable
device that was so resource constrained. A small resource footprint
allows Helios to “scale-down” while still providing the benefits of
local resource management and a single set of OS abstractions.

Finally, satellite kernels are designed to manage a very small
number of private resources: memory and CPU cycles. Satellite
kernels expose APIs for memory management, process manage-
ment, and thread management. Satellite kernels also contain code
to bootstrap communication with the namespace, but all other op-
erating system services, including device drivers, execute as pro-
cesses and use message passing for communication.

As a result of following these guidelines, satellite kernels pro-
vide a small and efficient platform for using programmable devices.
Satellite kernels simplify developing applications for a heteroge-
neous platform by making the abstractions that are available on a
general purpose CPU also available on a programmable deviceor a
NUMA domain.

2.2 Transparent IPC
Our second design goal was to provide transparent, unified inter-

process communication, independent of where a process or service
executes. Two problems must be solved to meet this design goal.
First, an application must be able to name another application or OS
service that is executing somewhere on a machine. Second, appli-
cations written to work when executing on the same kernel should
continue to work if the two ends of a message-passing channelare
executing on two different satellite kernels.

Helios meets the first requirement of this design goal by export-
ing a single, unified,namespace. The namespace serves multiple
purposes. Drivers use it to advertise the availability of hardware
on a machine and satellite kernels advertise their platformtype,
presence, and any available kernel services (such as performance
counters) that are available via message passing. OS services (e.g.,
a file system) and arbitrary processes use the namespace to expose
their own functionality. For the sake of brevity, we refer toany pro-
cess that advertises itself in the namespace as a service. The Helios
namespace allows an application to depend upon a service without
knowing ahead of time where the service will execute.

Helios meets the second requirement of this design goal by im-
plementing both local message passing (LMP) and remote message
passing (RMP) channels beneath the same inter-process communi-
cation abstraction. If a service is local, then the fast, zero-copy,
message-passing mechanism from Singularity [6] is used. How-
ever, if the service is located remotely, Helios transparently mar-
shals messages between an application and the remote service. To
the application, execution proceeds as if the service were co-located
on the same satellite kernel.

Remote message passing allows an application to execute on an
arbitrary platform while still communicating with other services
upon which it may depend. The “network” of memory and PCI
buses that connect satellite kernels is very robust compared to tra-
ditional LAN or WAN networks. Therefore traditional distributed
systems protocols (e.g., TCP) are not required. Instead, each satel-
lite kernel implements RMP using the communication primitives

available to it. For example, the satellite kernel that executes on
the XScale I/O card uses an ADMA (asynchronous direct memory
transfer) controller to implement RMP, while a satellite kernel that
executes on a NUMA domain usesmemcpy instead.

One might think that routing among many kernels would be com-
plex. In fact, routing is quite simple since there are no multi-hop
routing paths between satellite kernels. When the coordinator ker-
nel starts a satellite kernel it establishes a point-to-point connection
with all other kernels in the system. This approach has worked well
for a small number of satellite kernels, but if in the future machines
have a very large number of programmable devices or NUMA do-
mains, an alternative network topology may be required.

The namespace and RMP allow applications that depend upon
sharing an I/O service to continue to function as if the service were
executing on the same satellite kernel as the processes using it. For
example, two processes that share state through a file systemcan
continue to do so, since an incoming connection to a file system
looks the same whether RMP or LMP is used.

2.3 Simplify Deployment and Tuning
The third design goal for Helios is to simplify application de-

ployment and tuning on heterogeneous platforms. A heterogeneous
platform adds three new constraints that make tuning process per-
formance more difficult and therefore makes the task of determin-
ing where a processinitially executes important. First, heteroge-
neous architectures make moving processes between devicesquite
difficult; therefore the most practical strategy is to choose a device,
put a process on it, and leave it alone. Second, the lack of cache
coherence results in remote as well as local message passing. If an
application is written expecting fast, local message passing, and is
executed on a device where its communication to other processes
is remote, then performance could suffer dramatically. Finally, an
application mightprefera device with certain performance charac-
teristics if it is available.

Helios meets this design goal by allowing processes to specify
their affinity for other processes. An affinity value is written in the
metadata of a process, and is expressed as a positive or negative
integer on a message-passing channel. When a process expresses
a positive affinityvalue it represents a preference to execute on the
same satellite kernel as another currently executing process. Pos-
itive affinity hints that two processes will benefit from communi-
cating over a fast, zero-copy message-passing channel. Processes
may also use positive affinity to express aplatform preferenceby
listing a positive affinity value for a satellite kernel executing on a
particular programmable device.

When a process expresses anegative affinityvalue it represents
a preference to execute on a different satellite kernel thananother
currently executing process. Negative affinity hints that two pro-
cesses will benefit from non-interference and is therefore ameans
of avoiding resource contention. Processes may also useself-refer-
ence affinity, where a process expresses negative affinity for itself,
to ensure multiple instances of a process execute independently.

Since affinity is expressed via metadata, it is very easy to tune
the performance of a set of processes by changing affinity values.
Developers can readily experiment with different placement poli-
cies, and system administrators or users can add or change place-
ment policies to adapt to environments not considered by devel-
opers (e.g., new devices). In our experiments, we use affinity to
quickly determine policies that maximize performance.

Helios does not strive to optimally map an arbitrary graph of
processes to a graph of active processors on a system. Instead, He-
lios attempts to strike a balance between practicality and optimality
by choosing the satellite kernel where a process will execute based

A
p

p
li

ca
ti

o
n

N
IC

 D
ri

v
e

r

N
e

t
S

ta
ck

ID
E

 D
ri

v
e

r

F
il

e
 S

y
st

e
m

0

+1 +10 +1

Coordinator kernel Satellite kernel

x86 XScale Programmable Device

Local channel Remote channel stub

Scheduler
Memory
Manager Namespace

Hardware abstraction layer DMA Hardware abstraction layerDMA

Memory
Manager

Scheduler

This figure shows a general overview of the architecture of the Helios operating system executing on a machine with one general purpose
CPU and a single programmable device. Applications co-located on the same kernel communicate via a fast, statically verified, message-
passing interface. Applications on different kernels communicate via remote message-passing channels, which transparently marshal and send
messages between satellite kernels. The numbers above the channels are affinity values provided by applications to the operating system.
Helios uses affinity values as hints to determine where a process should execute

Figure 1: Helios architecture

upon the affinity values a process expresses and the locationof the
other processes with which it wishes to communicate. We notethat
affinity does not prevent a process from harming its own perfor-
mance. The values are only hints, and we assume that the fact that
they are easily modified will allow poorly designed affinity policies
to be easily remedied.

2.4 Encapsulate Disparate Architectures
The last design goal for Helios is to efficiently encapsulatea

process that may run on multiple platforms while preservingthe
opportunity to exploit platform-specific features. Heliosachieves
this design goal by using a two-phase compilation strategy.Appli-
cations are first compiled into the common intermediate language
(CIL), which is the byte-code of the .NET platform. We expectap-
plications to ship as CIL binaries. The second compilation phase
translates the intermediate language into the ISA of a particular
processor. Currently, all Helios applications are writtenin Sing#,
compiled into CIL, and then compiled again into different ISAs us-
ing a derivative of the Marmot [7] compiler called Bartok.

As an alternative, one could ship fat binaries, which would con-
tain a version of the application for each available platform it sup-
ports. Packaging an application using CIL has two advantages over
fat binaries. First, a developer that uses fat binaries mustchoose
ahead of time which platforms to support and fat binaries will grow
in size as the number of ISAs supported by an application increases.
Second, CIL already contains infrastructure for efficiently support-
ing multiple versions of a method. This feature allows an applica-
tion to take advantage of device-specific features if they are present,
while still functioning if these features are missing. For example,
an application could have one process that executes large amounts
of vector math. If a GPU were present, the calculations wouldbe
accelerated, but if it were not, the process would still function us-
ing a general purpose CPU. Helios already uses this functionality
in libraries that support applications, such as code to implementInterLocked.CompareExchange and code that implements anAtomic primitive. The two-phase compilation strategy also means
that an older application could run on a new programmable device
without modification, as long as a compiler exists to translate from
CIL to the new instruction set.

3. IMPLEMENTATION
Figure 1 provides an overview of Helios running on a general

purpose CPU and an XScale programmable device. Each kernel
runs its own scheduler and memory manager, while the coordinator
kernel also manages the namespace, which is available to allsatel-
lite kernels via remote message passing. In the example, an appli-
cation has a local message-passing channel to the file system, and a
remote message-passing channel to the networking stack, which is
executing on a programmable NIC. The numbers above each chan-
nel describe the affinity the application or service has assigned to
the channel. Since the file system and networking stack have pos-
itive affinities with their device drivers, they have been co-located
with each driver in a separate kernel. The application has expressed
positive affinity to the file system and no preference to the network-
ing stack, therefore the application runs on the same kernelas the
file system.

3.1 Singularity Background
Helios was built by modifying the Singularity RDK [22] to sup-

port satellite kernels, remote message passing, and affinity. We
begin by providing a brief overview of Singularity.

Singularity is an operating system written almost entirelyin the
Sing# [6] derivative of the C# programming language. Applica-
tions in Singularity are composed of one or more processes, each
of which is composed of one or more threads. Threads share a sin-
gle address space, while processes are isolated from each other and
can only communicate via message passing. Applications written
for Singularity are type and memory safe. The operating system re-
lies on software isolation to protect processes from each other and
therefore all processes run in the same address space at the highest
privilege level (ring 0 on an x86 architecture).

Singularity supports a threading model similar to POSIX, where
threads have contexts that are visible to and scheduled by the op-
erating system. Further, threads have access to all the usual syn-
chronization primitives available in C#. Since all processes exe-
cute in the same address space and rely on software isolation, con-
text switches between processes are no more costly than context
switches between threads. Further, Singularity does not require an
MMU or a virtual address space. Virtual memory is, however, cur-

rently used as a convenient method of catching a null pointerderef-
erence by trapping on accesses to page 0.

The kernel exports a system-call interface called the kernel ABI.
It exposes calls to manage memory, processes, threads, the name-
space, message passing, and calls for drivers to gain accessto spe-
cial hardware resources such as I/O ports. All other OS services
execute as processes and are accessed via message passing. Fur-
ther, theonly method of inter-process communication available to
a process is message passing; Singularity does not support shared
memory, signals, pipes, FIFOs, System V shared memory, or any
other traditional inter-process communication mechanismoutside
of message passing. Processes can communicate through I/O de-
vices (e.g., a file system), but there is no explicit support for such
communication.

Message passing in Singularity is designed to be fast. When a
message is sent, only a pointer to the message metadata is passed
to the receiving process. When the message is received, it can be
used immediately (i.e., without making a copy) by the receiving
process.

Zero-copy message passing is implemented using the Sing# pro-
gramming language, compiler, and runtime. Sing# is used to write
contracts, which describe what data will be passed across the two
ends (endpoints) of a message-passing channel. The Sing# com-
piler then uses the contracts to generate code that implements the
machinery to send and receive data on the channel. The contract
ultimately defines a state machine, and the legal sequences of mes-
sages that can be sent or received within any given state. Thecon-
tract also determines which party can send or receive a message (or
response) at any given point in the state space.

Each Singularity process has two heaps. One heap is the .NET
garbage collected heap, and the other heap, called the exchange
heap, is used for passing messages and data over channels. Sing#
uses compile-time analysis to guarantee that processes will not have
dangling pointers, race conditions, or memory leaks related to ex-
change heap data. Sing# also guarantees that only one threadmay
write to an endpoint at any time, thus preventing any race condi-
tions on the use of endpoints.

Finally, each process, service, and driver has a separate manifest
that describes the libraries, channels, and parameters required for
execution. Helios also uses the manifest to express affinitypolicies.

3.2 Helios Programming Model
Singularity provides fast message passing and context-switching

to promote a modular programming model; an application is com-
posed of one or more processes that communicate via message
passing. Singularity is designed for a homogeneous, symmetric
computing environment. Any process (or thread) can run on any
CPU, and all CPUs are assumed to be equivalent.

Helios builds upon this model by running additional satellite ker-
nels on programmable devices and NUMA domains. Since mes-
sage passing is the only means for two processes to communicate,
support for remote message passing ensures that processes writ-
ten for Singularity continue to operate even if they are executing
on different satellite kernels. Each satellite kernel manages its re-
sources independently; resources from one kernel (e.g., CPU cycles
or memory) are not available to processes executing on othersatel-
lite kernels. Further, a process cannot exist on more than one satel-
lite kernel and therefore the threads within a process must all exe-
cute on the same satellite kernel. However, since applications are
composed of one or more processes, applications do span multiple
satellite kernels. A satellite kernel is fully multi-processor capable,
and if a programmable device or NUMA domain is composed of
more than one CPU, then multiple threads will run concurrently.

Programmable devices are not cache coherent with respect to
other programmable devices or general purpose CPUs. The He-
lios programming model makes the boundaries between devices
explicit by disallowing a process from spanning multiple kernels.

However, on a NUMA machine, NUMA domains are cache co-
herent with other NUMA domains on a system. Most operating
systems allow processes to span multiple NUMA domains; this
functionality comes at the cost of complexity within the operating
system and complexity in the programming model for applications.
In a NUMA architecture processors have access to memory that
is local and memory that is remote. Local memory accesses are
much faster than accessing memory in other NUMA domains. In
our tests, we have found local memory have access latencies that
are 38% lower than remote memory.

In a monolithic operating system, the OS and applications must
be carefully tuned to touch local rather than remote memory.Fur-
ther, as the number of CPUs increases, locks can quickly become
bottlenecks and must be refactored to improve performance.He-
lios takes an alternative approach by treating NUMA domainsas
high-speed programmable devices; it therefore executes a satellite
kernel in each NUMA domain. Processes are not allowed to span
NUMA domains. In return for this restriction, memory accesses are
always local and as the number of available processors increases,
the kernel does not become a bottleneck because multiple kernels
run in parallel. However, limiting processes to a single NUMA
domain could hamper large, multi-threaded processes that are not
easily decomposed into separate processes. Such processescould
scale-out across NUMA domains if Helios supported a program-
ming model similar to Hive [4], which allows threads to use CPUs
and access memory located on remote NUMA domains.

3.3 XScale Satellite Kernel
The first platform to support satellite kernels is an IOP348 RAID

development board. The board communicates with the host over
an 8-lane PCI-Express interface and features a 1.2 GHz XScale
(ARM v5TE) processor with its own chip interrupt controller, pro-
grammable timer, and clock. It also has a gigabit Ethernet con-
troller, a PCI-X slot, a SAS controller, and 256 MB of DRAM.

To implement the satellite kernel, we wrote our own bootloader
that initializes the card and then presents itself on the PCI-Express
bus of the host PC. The bootloader first waits for the coordinator
kernel to load on the host PC. The coordinator kernel then detects
the device and loads a driver, which copies the satellite kernel im-
age to the card and allows it to start executing. The satellite kernel
is aware that it is not the coordinator kernel, and checks within the
code ensure it does not, for example, start its own namespaceand
attempt to export it to other satellite kernels. The satellite kernel
then requests any drivers that it needs from the file system via the
namespace.

The satellite kernel runs the identical C# code-base as the ker-
nel on a general purpose CPU (but compiled to an ARM v5 vs. an
x86 ISA). Code that was written in assembly (e.g., code that im-
plements a context switch) must be ported to the native assembly
language of the programmable device. The XScale satellite ker-
nel contains about 3,000 lines of ARM assembly language, andan
additional 13,000 lines of ARM assembly is contained in the Crun-
time library.

Once the XScale I/O card completes booting, it starts a controller
process and registers itself in the namespace of the coordinator ker-
nel. This registration process is the mechanism that allowsthe co-
ordinator kernel to launch applications on the XScale I/O card.

3.4 NUMA Satellite Kernel
NUMA machines comprise the second platform to support satel-

lite kernels. We have implemented satellite kernels on a dual-socket
AMD hyper-transport architecture. Each socket has its own NUMA
domain, and each socket is populated with a dual-core processor.
Each processor has an on-chip programmable interrupt timerthat
it can use for scheduling and also has access to shared clock re-
sources. Device interrupts are received by I/O interrupt controllers
(I/O APICS) that are configured to steer all device interrupts to the
processors running the coordinator kernel. This avoids theissue
of sharing access to the I/O APICS between NUMA domains. Al-
though routing device interrupts to the coordinator kernelrestricts
the location of device drivers, it does not limit the location of the
services that use them. For example, we have run a mounted FAT
file system on a satellite kernel while the disk driver is executing
on the coordinator kernel. We rely on the safety properties of C#
to prevent wild writes and cross-domain accesses, and the memory
manager of each satellite kernel is aware of only the RAM local to
its domain.

When Helios boots, its bootloader first examines the ACPI sys-
tem resource affinity table (SRAT) to see whether or not the ma-
chine has a NUMA architecture. If a NUMA architecture exists,
the Helios boot loader enumerates the different NUMA domains,
recording the physical addresses of the memory local to thatdo-
main and the processor identifiers associated with each domain.
The bootloader then loads the coordinator kernel in the firstNUMA
domain.

Once the coordinator kernel has booted all of its processorsthe
CPU with the lowest processor identifier in the next domain en-
ters the bootloader and is passed the address range of its ownlocal
memory. Helios makes a copy of the page table and other low-level
boot data structures into the local memory of the domain and then
boots the satellite kernel image. Finally, as part of the implemen-
tation of remote channels, the boot loader takes a small partof the
address space of each satellite kernel and marks it as an areaavail-
able for passing messages. Once a satellite kernel within a NUMA
domain completes its boot process it registers itself in thename-
space and waits for work.

3.5 Namespace
Services are made available through a namespace, similar inspirit

to the namespace provided by the Plan9 [25] operating system. Ser-
vices register in the namespace so that applications can findthem.
A process passes one end of a pair of endpoints to the service,
which uses the received endpoint for communication. When a mes-
sage passing channel is established, the kernel connects each end
of a message passing channel into the address space of the service
and of the process that initiated the connection.

Services may execute on any satellite kernel, and Helios does not
put any restrictions on the number or types of services that execute.
For example, the boot file system is available at “/fs,” whileother
file systems may be advertised at other locations in the namespace.
A service need not be tied explicitly to a hardware device. For ex-
ample, Helios provides a service that decompresses PNG images;
the application registers itself in the namespace, and awaits connec-
tions from applications wishing to use the service. Traditional I/O
devices (i.e., those that cannot support a satellite kernel), are repre-
sented by a single driver that communicates with one or more ap-
plications or services. For example, each non-programmable NIC
has a single driver, registered as ‘NICx,’ where x is a monotonically
increasing number, and the networking stack has multiple compo-
nents (ARP, UDP, TCP, routing) that communicate with each NIC
driver.

The coordinator kernel manages the namespace, and it serves
three different roles for applications. First, registration allows an
application to create an entry in the namespace, which lets other
applications know a service is running and awaiting connections.
During registration, the coordinator kernel checks to makesure that
the entry in the namespace is available; the coordinator kernel then
sets up a message passing connection between the namespace en-
try and the service awaiting connections. Second, binding allows
a process to request that a message passing channel be established
with a service advertised in the namespace. When a bind request
is received, the coordinator kernel forwards the message tothe ser-
vice, which then establishes a new message passing channel di-
rectly with the process that requested a connection. Finally, entries
in the namespace are removed either when the service advertising
in the namespace requests it, or when the message passing channel
into the namespace channel is closed.

The namespace is the only component of Helios that relies on
centralized control. This was done for the sake of simplicity and
because communication with the namespace occurs only when a
process is started and when it establishes connections to other ser-
vices. However, the centralized namespace does mean that mes-
sages sometimes travel further than they need to when initially es-
tablishing a connection between a process and a service. Forex-
ample, if a process attempts to establish a connection to a service
that is executing on the same satellite kernel it will first contact the
namespace remotely. The namespace will forward the request, via a
second remote message-passing channel, back to the service. When
the service receives a request for a connection, the remote message-
passing runtime recognizes the service and requesting process are
executing on the same satellite kernel, and the connection is con-
verted to a local message-passing channel. Therefore, in this par-
ticular case, two remote message passing channels are traversed
in order to establish a local message passing channel between two
processes that are executing together on the same satellitekernel.

3.6 Remote Message Passing
Implementing message passing across remote Singularity chan-

nels is more challenging than implementing message passingacross
local Singularity channels. As described in section 3.1, two pro-
cesses communicating over a local channel share the same address
space, exchange heap, and thread scheduler, so that the sender can
write pointers directly into the receiver’s endpoint without copying
the pointed-to data. A remote channel, on the other hand, connects
processes running on different satellite kernels, where each satellite
kernel has its own exchange heap, its own thread scheduler, and its
own address space. Therefore, the remote channel implementation
must copy data between the different exchange heaps, and must use
non-local data transfer and signaling mechanisms.

To manage this copying and signaling while preserving the orig-
inal Singularity channel programming interface, Helios creates two
shadow endpointsB′ and A′ for each remote channel between or-
dinary endpoints A and B. Endpoint B′, which resides on the same
satellite kernel as endpoint A, shadows the state of the remote end-
point B. (Similarly, endpoint A′ shadows the state of endpoint A.)
When a sender wants to send a message from endpoint A to end-
point B, it first sends the message locally to the shadow endpoint
B′. Endpoint B′ then encapsulates the message type and pointer
information into a message metadata structure and places itinto a
FIFO queue connected to the receiver’s satellite kernel. After the
receiver dequeues this message metadata structure from theFIFO,
the receiver pulls the updated state from endpoint B′ to endpoint
B and copies the exchange heap data pointed to by the message
metadata structure, allocating memory to hold the exchangeheap

data as necessary. Note that the exchange heap data is copiedonly
once, directly from the sender’s exchange heap into the receiver’s
exchange heap.

The lower-level details of the message passing depend on thehet-
erogeneous system’s underlying communication mechanisms. On a
NUMA kernel, each kernel’s page table maps all memory available
to the NUMA machine (although the memory manager is aware of
only the memory available locally within its own NUMA domain).
The inbound and outbound message FIFOs are shared between do-
mains, with one kernel pushing onto a FIFO and the other pulling
from it. A dedicated thread in each kernel polls for inbound mes-
sages and handles the message reception process. Since a NUMA
satellite kernel can translate the addresses provided in a message
from another NUMA satellite kernel into addresses mapped into its
address space, it can directly copy the data from a remote domain
into its own.

On the XScale, our initial implementation used shared memory
to pass message metadata structures andmemcpy to pass message
data between the PC host and the XScale card. However, direct
memory accesses across the PCI-E bus stall the initiating CPU,
and we therefore found that up to 50% of CPU time was spent
in memcpy routines. To reduce direct shared memory access and
to allow overlap between I/O and computation, we used the XS-
cale’s asynchronous DMA (ADMA) engine to transfer metadata
and data. This reduced the number of CPU cycles used during a
data transfer by an order of magnitude. Since the data transfer is
asynchronous, we needed to determine when the transfer completes
without resorting to polling. We therefore programmed the ADMA
controller so that, after transferring the data to the receiver, it ini-
tiates a DMA from the memory of the XScale to a registerin the
XScale’s own messaging unit. This DMA triggers an interrupt to
the x86 when the transfer is complete, which notifies the satellite
kernel on the x86 that it is safe to free the memory associatedwith
the transferred data.

We further improved performance by adding a new allocator
method that is DMA-aware. Normally, the allocator zeroes out
pages to prevent information written by other processes from leak-
ing. Since pages are immediately overwritten during a DMA, the
DMA-aware allocator skips the step that zeroes out pages, which
saves CPU cycles.

3.7 Affinity

3.7.1 Expressing Affinity Policies
Affinity policies are expressed in a manifest that accompanies

a process executable. The manifest is an XML file that is auto-
matically generated when a process is compiled into CIL, andit
contains a list of message-passing channels the process depends
upon. Message-passing channels are expressed as the names of
Sing# contracts, which were used to generate the code that exe-
cutes the details of message passing within each process. Although
the initial manifest is generated by the Sing# compiler, theXML
file is designed to be human readable and edited without necessar-
ily making any changes to the binary that accompanies it. In fact,
since affinity has no impact on a process once it begins execution,
processes that are not developed with affinity in mind will continue
to operate correctly even if affinity values are added to a manifest
by a third party without any changes to the program binary.

Figure 2 shows a portion of a manifest from the Helios TCP test
suite. Every process has at least two message-passing channels,
stdin and stdout, connected to it by default. In Figure 2, stdin is
represented in the manifest and has an affinity value of 0, which
means that the process does not care where it executes in relation

<?xml version="1.0" encoding="utf-8"?>

<application name="TcpTest" runtime="Full">

<endpoints>

<inputPipe id="0" affinity=“0”

contractName=“PipeContract“/>

<endpoint id="2" affinity="-1"

contractName="TcpContract“/>

</endpoints>

Figure 2: Example process manifest with affinity

to the stdin process. The second message-passing channel listed in
the example is a connection to the Helios TCP service. The process
lists an affinity value of -1, which means the process expresses a
wish to execute on a satellite kernel that differs from the kernel
that is servicing TCP packets and sockets. The placement of the
application is changed simply by changing the affinity entries in
the manifest.

3.7.2 Types of Affinity
Affinity is either a positive or negative value. A positive affin-

ity value denotes that a process prefers local message passing and
therefore it will benefit from a traditional, zero-copy, message-
passing channel. A negative affinity value expresses an interest
in non-interference. A process using negative affinity willbene-
fit from executing in isolation from other processes with which it
communicates. The default affinity value, which is zero, indicates
no placement preference for the application.

Affinity could be expressed as two different values. However,
since preferences for local message passing and non-interference
are mutually exclusive, Helios uses a single integer value to repre-
sent one preference over the other. Beyond its simplicity, affinity
allows developers to express the dependencies that are important
to maximize the performance of an application without having any
knowledge of the topology of a particular machine.

Positive affinity is generally used to describe two different types
of dependencies. First, positive affinity represents a tight coupling
between two processes. These tightly-coupled relationships are
sometimes between a driver and a process that uses it. For example,
a NIC driver and a networking stack are tightly coupled. Receiving
packets and demultiplexing them is a performance-sensitive task.
Therefore the Helios networking stack expresses positive affinity
with networking drivers to ensure that the networking stackand the
driver will always execute on the same device. In this example,
the driver exists on a device because the hardware requires it, and
therefore the networking stack wanted to express the policythat
“wherever a NIC driver executes, the networking stack should exe-
cute as well.” Positive affinity is not limited to drivers, but is used
to express a preference for fast message passing between anytwo
processes that wish to communicate with each other.

The second use of positive affinity captures a platform prefer-
ence. Platform preferences do not require any additional mecha-
nism. Instead, they are expressed as preferences for the message-
passing channels to other satellite kernels, which are usedto launch
processes remotely. The name of the service describes its platform.
For example, a satellite kernel on a GPU may advertise itselfas
a “Vector CPU” while a typical x86 processor is advertised asan
“Out-of-order x86.” A process with a preference for a particular set
of platforms can express a range of affinity values. For example, a
process may express a higher affinity value for a GPU than an x86
processor, so that when both are available one will be chosenover

SelectSatelliteKernel(){ if platform affinity {find max affinity platform with at least 1 kernelkeep only kernels equal to max platform affinityif number of kernels is 1 return kernel}if positive affinity {for each remaining kernelsum positive affinity of each servicekeep only kernels with max positive affinityif number of kernels is 1 return kernel}if negative affinity {for each remaining kernelsum negative affinity of each servicekeep only kernels with min negative affinityif number of kernels is 1 return kernel}return kernel with lowest CPU utilization}
Figure 3: Process placement pseudocode

the other. Helios uses positive platform affinity values to cull the
list of possible satellite kernels that are eligible to hosta particular
process.

Negative affinity allows a process to express a policy of non-
interference with another process. Negative affinity is often used as
a means of avoiding resource contention. For example, two CPU
bound processes might want to maximize performance by ensur-
ing they do not execute on the same satellite kernel. Alternatively,
a process might want to ensure it does not suffer from hardware
interrupts serviced by a particular driver.

By itself, negative affinity provides no guidance other thanto
attempt to avoid certain satellite kernels. Therefore, negative affin-
ity may be combined with a positive platform affinity to guarantee
a performance threshold. For example, a process with a negative
affinity for another process with which it communicates and apos-
itive affinity for any satellite kernel executing on an out-of-order
x86 CPU ensures that it will execute in isolation from the other
process only if there are other satellite kernels executingon high
throughput x86 processors. Otherwise, the two processes will ex-
ecute on the same satellite kernel. This policy prevents a process
from being offloaded onto a CPU that is orders of magnitude slower
than the developer intended.

There is a second use of negative affinity calledself-reference
affinity. If a process can scale-out its performance by running mul-
tiple copies of itself on different devices or NUMA domains,it
can reference its own service and place a negative affinity onthe
communication channel it advertises in the namespace. Whenad-
ditional copies are invoked, Helios will ensure they run indepen-
dently on different satellite kernels.

3.7.3 Turning Policies into Actions
Helios processes the affinity values within a manifest to choose

a satellite kernel where a process will start. Affinity values are
prioritized first by platform affinities, then by other positive affini-

ties, and finally by negative affinities. CPU utilization acts as a tie
breaker if more than one kernel meets the criteria expressedin the
manifest.

Helios uses a three-pass iterative algorithm, shown in Figure 3,
when making a placement decision. Helios begins by processing
affinity values to kernel control channels, which each represent a
particular platform. We assume these channels will be standard-
ized by convention and will therefore be easily identifiable. If
preferences for platforms exist, then Helios starts with the platform
with the highest affinity value and searches for satellite kernels with
matching platforms advertised in the namespace. If none exist, than
it moves to the next preferred platform. If only one kernel isavail-
able for a particular platform, then the process is completeand the
process is started. If platforms are preferred and no kernels are
available, then Helios returns an error. However, if no platform is
preferred, then all satellite kernels are kept. If multiplesatellite ker-
nels for the preferred platform are available, then only those kernels
are used in the second step of the algorithm.

In the second step, a tally of the total positive affinity is kept on
behalf of each remaining satellite kernel. The total positive affinity
for each satellite kernel is calculated by summing the affinity values
for each service, specified by the manifest, which is executing on
that satellite kernel. Helios then selects the satellite kernel(s) with
the maximum affinity sum. If a single satellite kernel remains after
this step, then the kernel is returned. If multiple satellite kernels
remain, either because there were multiple kernels with thesame
maximum sum or because positive affinity was not specified, then
negative affinity values are processed. The same algorithm is ap-
plied to negative affinity values as was used with positive affinity
values. If after processing negative affinity values there are multi-
ple satellite kernels available, then Helios selects the satellite kernel
with the lowest total CPU load.

As can be seen, the algorithm prioritizes positive affinity over
negative affinity by processing positive affinity values first. Al-
ternatively, positive and negative affinities could be summed. We
chose to use a priority approach because we found it easier torea-
son about where a process would run given different topologies.
For example, we knew that a platform preference would alwaysbe
honored no matter what other affinity values were present.

Affinity provides a simple mechanism for placing processes on
satellite kernels. One could imagine more complex mechanisms for
determining where a process should execute. For example, inaddi-
tion to affinities, application manifests could specify CPUresource
requirements, so that the placement mechanism could try to opti-
mally allocate CPU time among applications. However, determin-
ing resource requirements ahead of time is more difficult forappli-
cation developers than specifying affinities, and if the requirements
are known exactly, the placement problem is a bin-packing prob-
lem, which is NP-hard. Alternatively, the system could dynami-
cally measure CPU and channel usage, and use the measurements
to influence placement policy. While such dynamic placementis
common on homogeneous systems, it is much more difficult to im-
plement on heterogeneous systems where processes cannot easily
migrate between processors. For heterogeneous systems, affinity
strikes a practical balance between simplicity and optimality.

3.7.4 A Multi-Process Example
As an example of a multi-process application that takes advan-

tage of affinity, consider the Helios mail server application that is
composed of an SMTP front-end application, an antivirus service,
and a storage service. The SMTP server has message-passing chan-
nels to the TCP service, the antivirus service, and the storage ser-
vice. The storage service has additional channels to an instance of

the FAT32 file system. All of the components of the application are
multithreaded, and each process also has message-passing channels
to stdin and stdout. The SMTP server processes incoming SMTP
commands; when a mail message is sent through the server, it is
sent to the storage service. The storage service sends the email to
the antivirus service to be scanned. If the antivirus service finds
the email is clean, than the storage service writes the emailinto an
appropriate mailbox. The antivirus process is CPU and memory
bound, since it checks messages against an in-memory database of
virus signatures. The SMTP server is I/O-bound to the network,
and the storage service is I/O-bound to disk. Therefore, thean-
tivirus service expresses a negative affinity with the mailstore, so
that it has a maximum number of CPU cycles available to it, and
is not interrupted by hardware interrupts either from the disk or
the network. On the other hand, the mail service expresses a pos-
itive affinity with the file system, and the SMTP service expresses
no preference with regards to the networking stack. Thus, while
many components are involved in the mail server application, there
are few affinity values that must be expressed to maximize perfor-
mance. The mail server benchmark results are covered in detail in
Section 4.5.2.

4. EVALUATION
Our evaluation sets out to answer the following questions:

• Does Helios make it easier to use programmable devices?

• Can offloading with satellite kernels improve performance?

• Does kernel isolation improve performance on NUMA archi-
tectures?

• Does Helios benefit applications executing on NUMA archi-
tectures?

4.1 Methodology
We evaluated Helios on two different platforms. The first plat-

form is an Intel Core2 Duo processor running at 2.66 GHz with 2
GB of RAM. The programmable device is a hardware RAID de-
velopment board based on Intel XScale IOP348 processor running
at 1.2GHz with 256 MB of RAM, and featuring an onboard In-
tel Gb Ethernet adapter. The development board is attached to the
host by an 8-lane PCI Express interface. The second platformis a
dual dual-core (2 chips, 2 cores per chip) motherboard whereeach
core is a 2 GHz Opteron processor. Each chip runs within its own
NUMA domain, and each NUMA domain has 1 GB of RAM, for a
total of 2 GB. The machine runs with an Intel Gb PCI Ethernet card
and a 200 GB hard drive. When we run networking experiments,
machines are connected with a gigabit Ethernet switch. Perfor-
mance was measured by using the total number of CPU cycles that
elapsed during an experiment; the cycle-count was then converted
into standard units of time.

When we run experiments evaluating the benefits of satelliteker-
nels on NUMA architectures we run in two configurations. First, a
configuration that uses a non-NUMA aware version of Helios with
BIOS interleaved-memory turned on, which interleaves memory on
4 KB page boundaries. This version runs a single satellite kernel
across all processors. Second, a NUMA-aware version of Helios
(no interleaved memory) that runs the coordinator kernel inNUMA
domain 0, and a satellite kernel in NUMA domain 1. Each kernel
executes on the two processors native to its NUMA domain. We
measured the raw memory latency of each type of memory and
found that L2 cache misses to remote memory were 38% slower
than local memory, and accesses to interleaved memory were on
average 19% slower than accesses to local memory.

Name LOC LOC changed LOM changed

Networking stack 9600 0 1
FAT32 file system 14200 0 1
TCP test harness 300 5 1
Disk indexing tool 900 0 1
Network driver 1700 0 0
Mail benchmark 2700 0 3
Web Server 1850 0 1

This table shows several example applications and services that
were run both on an x86 host and an XScale (ARM) programmable
device. All applications had lines within their manifests (LOM) mod-
ified to add affinity settings to channels. All applications were writ-
ten originally for Singularity, without programmable devices in mind.
Most worked without modification using satellite kernels.

Figure 4: Changes required to offload applications and services

4.2 Using Affinity to set Placement Policies
To see how well satellite kernels, remote channels, affinityand

our 2-stage compilation strategy worked, we took a number ofap-
plications originally written for Singularity (i.e., withno thought
towards offloading to another architecture) and added affinity val-
ues to each application’s manifest. Once we arranged for ourbuild
system to compile to both ISAs, all of our examples ran without
modification except for one: our TCP testing harness used floating
point code to calculate throughput numbers. Our programmable de-
vice does not have a floating point unit, and we had not yet added
floating point emulation code to the kernel. As a stop-gap measure
we changed the way floating-point code was calculated. Later, we
added floating-point emulation code to the satellite kernelto ensure
other applications could run unmodified.

We had the same networking chip set on both the programmable
device and on a non-programmable networking card. The network-
ing driver for this chip, which was written for Singularity,worked
without modification once compiled to ARM byte-code. Further,
our networking stack, which supports TCP, IP, UDP, DHCP, and
ARP protocols, worked without modification on the programmable
device by adding a positive affinity value between it and the net-
working driver.

4.3 Message-passing Microbenchmark
Our next benchmark measured the cost of remote (RMP) and lo-

cal (LMP) message passing on the two platforms that support satel-
lite kernels. We ran SingBench, which was originally designed to
benchmark the performance of Singularity message passing,using
local message passing and remote message passing both to a satel-
lite kernel on a NUMA domain and a satellite kernel on the XScale
I/O card. The benchmark forks a child process and then it measures
the time to send and receive a message of a certain size.

The results are presented in Figure 5. The x-axis shows the
amount of data sent one-way during the test, and the y-axis shows
the time in microseconds to send and receive a single message.
Since no copies are made during LMP, the time is constant as the
size of the message grows. RMP on NUMA grows with the size of
the message, while RMP on XScale is bound mainly by the time
to program the ADMA controller. Therefore, once messages are
greater than 32 KB in size, message passing over the PCI-E busis
more efficient than message passing between two NUMA domains.

4.4 Benefits of XScale Offloading
We next examined the benefits of offloading different compo-

nents of Helios onto the XScale I/O card.

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

Message size (bytes)

0

50

100

150

T
im

e
(M

ic
ro

se
co

nd
s)

LMP
RMP XScale
RMP NUMA

This graph shows the difference in time to communicate over a local
message passing channel and a remote message passing channel
to the XScale I/O card and a NUMA domain. Results are the mean
of 20 runs. Note the x-axis is a log scale.

Figure 5: Message passing microbenchmark

4.4.1 Netstack Subsystem Offload
We were interested to see whether we could improve the per-

formance of an application by offloading a dependent operating
system component onto the XScale I/O card. We took an exist-
ing Singularity service that decompresses PNG images and made
it available via a TCP/IP connection. We then ran two versions of
it, one where everything ran on a single x86 CPU, and one where
the NIC driver and networking stack (ARP, DHCP, IP, TCP) were
offloaded onto the XScale programmable device.

We then ran the PNG decompression service and connected 8
clients (chosen by the number required to saturate the x86 CPU)
over the network and then sent PNGs of varying sizes as fast as
possible to be decompressed. The results are shown in Figure6.
The first column shows the size of the PNG sent over the network.
Larger PNGs took longer to decompress, and therefore sloweddown
overall performance. The second and third columns show the av-
erage uploads per second processed by the PNG decompression
service when the netstack and NIC driver ran on the x86 CPU, and
when they were offloaded to the XScale I/O card. In general, the
benefits of offloading tracked the amount of CPU freed up by of-
floading the networking stack and NIC driver, which can be seen in
the average speedup in the fourth column. Finally, the fifth column
shows the reduction in interrupts to the x86 processor when the net-
stack and NIC driver were offloaded. The reduction occurred be-
cause the XScale CPU absorbed all of the interrupts generated by
the NIC. Since the x86 processor took fewer interrupts, the PNG
decompression service operated more efficiently and therefore its
performance improved.

4.4.2 Storage Subsystem Offload
Since the XScale I/O card had a PCI-X slot, we decided to em-

ulate a programmable disk by inserting a PCI SATA card to test
the benefits of offloading portions of the Helios storage subsystem.
Unlike the netstack offloading benchmark, where the partitioning
of work was straightforward, we were unsure which portions of the
storage subsystem should be offloaded to improve performance.

We therefore used the PostMark benchmark [17], which emu-
lates the small file workload of a mail/news server. We ported
PostMark to Singularity and enhanced it to run with a configurable
number of driver threads to increase the load on the system. We
also added code to synchronize the filesystem at configurableinter-

PNG Size x86 + XScale Speedup % cswi

28 KB 161 171 106% 54%
92 KB 55 61 112% 68%

150 KB 35 38 110% 65%
290 KB 19 21 110% 53%

This benchmark shows the performance, in uploads per second,
the average speedup, and the reduction in the number of con-
text switches (cswi) by offloading the networking stack to a pro-
grammable device when running a networked PNG decompression
service. All results were the mean of 6 trials and 95% confidence
intervals were within 1% of the mean.

Figure 6: Netstack offload benchmark

PostMark FatFS IdeDriver C1 (S) C2 (S)

x86 x86 x86 26.2 4.1
x86 x86 XScale 15.5 8.0
x86 XScale XScale 47.4 41.7
XScale XScale XScale 34.4 29.4

This table shows the time, in Seconds, to execute the PostMark file
system benchmark. Each row depicts a different distribution of pro-
cesses between the x86 and XScale CPU. The two times (C1 and
C2) represent two different configurations of the IDE PCI card.

Figure 7: PostMark offload benchmark

vals, since this functionality would be typically used in a mail/news
server. We synchronized the file system once per PostMark trans-
action to exercise the file system and IDE driver continuously.

We used affinity to quickly change and test four different policies
for offloading portions of the storage subsystem. We incrementally
offloaded the IDE driver, then the file system, then the PostMark
driver process. We used the same IDE controller (Silicon Image
3114) attached to the XScale I/O card and the PC host, and the
same physical disk drive in all experiments. The results areshown
in Figure 7.

Our first set of runs, shown under the column C1, demonstrated
that offloading the IDE driver to the XScale I/O card improvedper-
formance by 70%. Upon further investigation, we discoveredthat
the PCI card overloaded a configuration register (initiallyused to
define the cacheline size of the CPU) to define a low-water mark
that determined when the card should fill its hardware queue with
operations destined for the disk. Since the cacheline size was used
for the water mark, which differed between each architecture, the
low-water mark was set too high and was not set uniformly. After
reconfiguring the card, the performance of executing all processes
on the x86 was roughly 2x faster than offloading the IDE driverto
the XScale I/O card.

Our experience with configuring the PCI card was not unusual;
in heterogeneous systems, small configuration changes often lead
to large performance changes, and these performance changes may
require changing the placement of processes. Using affinitysim-
plifies performance tuning by allowing us to quickly cycle through
different placement policies.

4.4.3 Indexing Application Offload
Our next experiment measures the benefits of offloading general

work to the XScale I/O card. One of our colleagues had writtenan
indexing tool for Singularity. The indexer builds a word-based in-
verted index on a set of documents by using a sort-based inversion
algorithm with n-way external merge sort. The indexer is computa-
tionally intensive, but also interacts with the file system to read files
and output its results. We decided to model a common problem:an

0

50

100

150

200

250

T
im

e
(S

ec
on

ds
)

No satellite kernel
Satellite kernel

This figure shows the time to run a SAT solver while running a disk
indexer. The left hand bar shows the time when both programs are
run on the same CPU. The right hand bar shows the time when the
indexer is offloaded automatically to a satellite kernel running on the
XScale programmable device. The results are the mean of 5 tests.
Error bars represent 90% confidence intervals.

Figure 8: Indexing offloading benchmark

OS indexer running in the background and impacting computation
of foreground processes. We ran the indexer at the same time we
ran a SAT solver on a reasonably sized problem.

We ran the indexer with two different affinity values with the
message-passing channel to the file system. A value of 0, which
expressed no preference with respect to the file system, and avalue
of -1, which hinted that it might benefit from isolation. By chang-
ing the affinity value, Helios offloaded the indexer to the XScale
I/O card. Figure 8 shows the results. By automatically offloading
the indexer, the SAT solver runs 28% faster than when sharingthe
CPU with the indexing tool. The benefits of Helios were apparent
when running the experiments, no recompilation or code editing
was required. The author of the indexing tool did not need to be in-
volved to create an offloaded version, since it only requiredadding
an affinity value to the application’s manifest.

4.5 Benefits of Performance Isolation

4.5.1 Scheduling Microbenchmark
Our next benchmark tested the utility of kernel isolation onour

two-node NUMA machine. Many operating systems have had much
work put into them to eliminate locking bottlenecks as the number
of cores increases. We hypothesized that executing satellite kernels
would be a simple way to scale around locking serialization prob-
lems. We ran a Singularity scheduling stress-test, which measures
the time it takes 16 threads to callthreadyield one million times.
Helios uses the Singularity MinScheduler, which is a round-robin
scheduler without priorities. The MinScheduler favors threads that
have recently become unblocked and tries to avoid or minimize
reading the clock, resetting the timer, and holding the dispatcher
lock. The scheduler also does simple load-balancing by assigning
work to idle processors through an IPI interrupt. The scheduler has
known scaling problems, mainly because a single lock protects the
dispatching mechanism.

The results of the scheduling benchmark can be seen in Figure9.
The version labeled “No satellite kernel” ran all 16 threadson a ver-
sion of Helios that is not NUMA-aware. The right hand bar graph
shows a NUMA-aware version of Helios that runs two kernels. The
version with two kernels scales around the serialization bottleneck
and must run only 8 threads per kernel; it is 68% faster than the
single-kernel version of Helios. The greater than 2x improvement
in performance over a single kernel is caused by the load-balancing
algorithm, which issues expensive IPI interrupts and harmsperfor-
mance as the number of cores grows.

0

5

10

15

20

25

T
im

e
(S

ec
on

ds
)

No satellite kernel
Satellite kernel

This figure shows a scheduler microbenchmark that measures the
time to spawn 16 threads hat each call threadyield 1 million times.
The left hand bar shows a single-kernel version of Helios across two
NUMA domains. The right hand bar shows Helios with two kernels,
one in each domain. The results are the mean of 5 tests. Error bars
represent 90% confidence intervals.

Figure 9: Scheduling NUMA benchmark

We are certain that the scheduler could be optimized to remove
these serialization bottlenecks and improve single-kernel perfor-
mance. Yet there would undoubtedly be other bottlenecks as the
number of cores grows. Helios provides a simple mechanism around
scaling problems: by growing the number of kernels, lock con-
tention is decreased.

4.5.2 Mail Server Macrobenchmark
We were interested to see how Helios could improve perfor-

mance of a more involved benchmark on a NUMA machine. We
therefore ran a mail server benchmark and measured application
throughput. The application, which is describe in Section 3.7.4, is
composed of an SMTP server, an antivirus scanner, and a storage
service. Since Singularity had no antivirus agent, we wroteour own
and used the virus definitions for the popular ClamAV antivirus ap-
plication. We attempted to make the antivirus agent as efficient
as possible, but it is the bottleneck in the system since the SMTP
server waits for emails to be scanned and written to disk before
confirming an email’s receipt. We hypothesized that the antivirus
scanner, which is memory and CPU bound, would benefit from ker-
nel isolation. Its negative affinity with the storage service causes it
to run in isolation when two satellite kernels are present.

We randomly selected 1,000 emails from the Enron email cor-
pus [19] and had a single client send the emails as fast as possi-
ble. The results are in Figure 10. The left hand graph shows the
emails-per-second processed by the email server (which includes
a blocking scan to the virus scanner). Using satellite kernels im-
proves throughput by 39%. Since satellite kernels isolate remote
vs local memory, every application component benefits from faster
memory accesses on L2 cache misses. Further, satellite kernels en-
sure that processes always use local memory when accessing kernel
code and data structures.

The right hand graph of Figure 10 shows the instructions-per-
cycle (IPC) of the anti-virus scanner. We captured this metric us-
ing the performance counters available on AMD processors. The
graph shows that the antivirus scanner improves its IPC by 20%
when running on a satellite kernel. By running on its own kernel,
other applications never have the opportunity to pollute the anti-
virus scanner’s L1 or L2 cache, improving its cache-hit rateand
therefore improving its IPC

We were interested to see how performance changed when mul-
tiple applications were executing at the same time. We therefore
created a second configuration of the benchmark that ran boththe
email server application and the indexer. In addition, we changed

0

20

40

60

80

E
m

ai
ls

 p
er

 s
ec

on
d

0.0

0.2

0.4

0.6

0.8

1.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le
 (

IP
C

)

No sat. kernel
Sat. kernel

These graphs show the performance of an email server application
that processes 1,000 emails from a single connected client. Each
email is first scanned by an antivirus agent before being written to
disk. The results are the mean of 10 trials, the error bars are 90%
confidence intervals.

Figure 10: Mail server NUMA benchmark

the affinity values in the email server so that the antivirus scan-
ner used self-reference affinity. Figure 11 shows the time topro-
cess 1,000 emails sent from two clients when running either one
or two copies of the antivirus scanner. Each entry below an ap-
plication lists the NUMA domain chosen by Helios to launch each
process. When the antivirus scanner first launches, the affinity algo-
rithm falls back on CPU utilization. Since the indexer creates CPU
contention in domain 0, Helios launches the first antivirus scanner
in domain 1. When the second antivirus scanner is launched, self-
reference affinity causes Helios to choose domain 0. Since domain
0 is already executing many other processes (including the net-
working stack and the indexer), performance is improved by only
10% by adding an additional antivirus scanner. However, affinity
made it simple to run multiple copies of the antivirus scanner in
different satellite kernels without any knowledge of the topology
of the machine.

5. RELATED WORK
To the best of our knowledge, Helios is the first operating system

to provide a seamless, single image operating system abstraction
across heterogeneous programmable devices.

Helios treats programmable devices as part of a “distributed sys-
tem in the small,” and is inspired by distributed operating systems
such as LOCUS [33], Emerald [16, 31], and Quicksilver [27].

Helios is derived from the Singularity operating system [13] and
extends Singularity’s message-passing interface [6] to work trans-
parently between different satellite kernels. A pre-cursor to this
approach is found in the Mach microkernel [1], which provided an
IPC abstraction that worked identically for processes within a sin-
gle system, and for processes on remote systems over a local or
wide area network.

Programmable devices and runtimes.Programmable devices
have a long history in computer systems, and many prior operat-
ing systems have found ways to offload work to them. The IBM
709 [14] usedchannel processorsto remove the burden of I/O
from the main CPU and to allow I/O transfers to complete asyn-
chronously. Subsequent systems such as the IBM System/360 and
System/370 [15] and Control Data CDC6600 [32] continued this
trend with increased numbers of channel processors. However,
the range of operations supported by channel processors appears
to have been limited to basic data transfer and signaling. The Bus
Master DMA devices found on commodity PCs today are the logi-
cal descendants of channel processors.

SMTP Server Indexer AV1 AV2 Time (S)

D0 D0 D1 N/A 20.7
D0 D0 D1 D0 17.7

This benchmark shows a multi-program benchmark which measures
the time to process 1,000 emails as fast as possible with 1 or 2 an-
tivirus scanners while a file indexer is run concurrently. The entries
in the second and third row describe which NUMA domain Helios
chose for each process. Standard deviations were within 2% of the
mean.

Figure 11: Self-reference affinity benchmark

Auspex Systems [12], which designed network file servers, ran a
UNIX kernel on one CPU and dedicated other CPUs to the network
driver, the storage system, and the file system. The offloadedpro-
cesses were linked against a compact runtime that supportedmem-
ory allocation, message passing, timers, and interrupt servicing.
The process offloading avoided the costs associated with UNIX for
time critical components.

Keeton et al. [18] proposedintelligent disks, adding relatively
powerful embedded processors to disks together with additional
memory to improve the performance of database applications. The
Active Disk project [26] has validated this approach empirically,
and the Smart Disk project [5] has validated this approach theoret-
ically for a range of database workloads.

Network adapters have also been a focus of offloading. SPINE
was a custom runtime for programmable network adapters built by
Fiuczynscki et al. [9, 8]. The SPINE runtime provided a type safe
programming environment for code on the network adapter and
included abortable per packet computation to guarantee forward
progress and to prevent interference with real-time packetprocess-
ing tasks, such as network video playback.

More recently, the AsyMOS [23] and Piglet [24] systems ded-
icated a processor in an SMP system to act as a programmable
channel processor. The channel processor ran a lightweightdevice
kernel with a virtual clock packet scheduler to provide quality-of-
service guarantees for network applications. McAuley and Neuge-
bauer [20] leverage virtual machine processor features to createvir-
tual channel processors. The virtual channel processors are used to
sandbox I/O system faults and they run I/O tasks on either theCPU,
or an I/O processor, depending on which performs better.

Helios benefits from this large body of prior work that demon-
strates the benefits of using programmable devices to offloadwork.
Helios builds on this work by focusing on a generalized approach
for developing, deploying and tuning applications for heteroge-
neous systems.

Helios uses satellite kernels to export general OS abstractions to
programmable devices. An alternative approach is to instead create
specialized runtime systems. The Hydra framework developed by
Weinsberg et al. [34] provides a programming model and deploy-
ment algorithm for offloading components onto programmablepe-
ripherals, including network adapters. Hydra assumes components
are able to communicate through a common mechanism, and pro-
vides a modular runtime. Unlike Helios and SPINE, the runtime
environment does not provide safety guarantees.

Heterogeneous architectures. The Hera-JVM [21] manages
heterogeneity by hiding it behind a virtual machine. This additional
layer of abstraction allows developers to exploit heterogeneous re-
sources through code annotation or runtime monitoring, andit al-
lows threads to migrate between general purpose processorsand
powerful floating point units that are part of the Cell architecture.
This approach is closely related to Emerald [31], which allows ob-
jects and threads to migrate between machines of different architec-

tures over a local area network. Helios takes a different approach
by making the differences in heterogeneous architectures explicit
and by compiling multiple versions of a process for each available
architecture.

Multi-kernel systems. Other operating systems have been built
around the premise of running multiple kernels within a single ma-
chine, but prior efforts have focused on a homogeneous CPU archi-
tecture. Hive [4] exported a single instance of the IRIX operating
system while dividing work and resource management among dif-
ferent NUMA domains to improve fault tolerance. Each NUMA
domain ran its own copy of the IRIX kernel. Hive could migrate
threads between NUMA domains, and would share memory be-
tween domains to give threads the illusion of executing on a single
kernel. Hive shared I/O devices by running distributed applications,
such as NFS, in different NUMA domains. Alternatively, Cellular
Disco [11] ran multiple kernels within a single machine by run-
ning multiple virtual machines across NUMA domains to create a
virtual cluster. Chakraborty [3] explored dividing cores between
OS and applications functionality, and reserving certain cores for
specific system calls. Finally, the Corey [2] operating system op-
timized multi-core execution by exposing APIs to applications to
avoid unnecessary sharing of kernel state.

In general, there has been much research into improving the per-
formance of NUMA architectures. For example, the Tornado oper-
ating system [10] and K42 [30] decompose OS services into objects
to try and improve resource locality. In contrast, Helios uses satel-
lite kernels to ensure that resource requests are always local to an
application.

More recently, the Barrelfish [28] operating system strivesto
improve performance by using a mix of online monitoring and
statically defined application resources requirements to make good
placement decisions for applications. Helios and Barrelfish are
complimentary efforts at managing heterogeneity. Barrelfish fo-
cuses on gaining a fine-grained understanding of application re-
quirements when running applications, while the focus of Helios is
to export a single-kernel image across heterogenous coprocessors
to make it easy for applications to take advantage of new hardware
platforms.

6. CONCLUSION AND FUTURE WORK
Helios is an operating system designed for heterogeneous pro-

gramming environments. Helios uses satellite kernels to simplify
program development, and it provides affinity as a way to bet-
ter reason about deploying and performance tuning applications
for unknown hardware topologies. We demonstrated that applica-
tions are easily offloaded to programmable devices, and we demon-
strated that affinity helps to quickly tune application performance.

In the future, we see three main areas of focus. First, although
we have found satellite kernels and affinity to be useful tools, their
deployment has been limited to only one programmable device.
Further, Helios has not yet been ported to the most promisingpro-
grammable device: a GPU. We currently lack a compiler to cre-
ate DirectX textures from CIL, and graphics cards do not provide
timers or interrupt controllers, which are required to run asatellite
kernel. In the future, we want to port Helios to the Intel Larrabee
graphics card and measure the benefits provided by satellitekernels
to applications targeted at GPUs.

Second, while we found workloads that benefit from the strong
kernel isolation provided by Helios, the inability of processes to
span NUMA domains limits the scalability of large, multi-threaded
processes. In the future, we want to allow processes to span NUMA
domains (should they require it) by moving CPUs and memory be-
tween satellite kernels.

Third, Helios is an experimental operating system with a limited
number of applications. In the future, we want to determine how to
create satellite kernels from a commodity operating systemsuch as
Windows, which supports a much larger API. A commodity oper-
ating system provides a much larger set of applications withwhich
we can experiment.

Ultimately, the hardware on programmable devices has outpaced
the development of software frameworks to manage them. Helios
provides a general framework for developing, deploying, and tun-
ing applications destined for programmable devices of varying ar-
chitectures and performance characteristics.

7. ACKNOWLEDGEMENTS
We thank our shepherd, Andrea Arpaci-Dusseau, the anonymous

reviewers, Jeremy Condit, John Douceur, Tim Harris, Jon Howell,
Jay Lorch, James Mickens, and Don Porter for comments that im-
proved the quality of this paper. We also thank Jeremy Conditand
Derrick Coetzee for their work in writing applications for Helios.
Aaron Stern’s development efforts, which added ARM instruction
sets to the Bartok compiler, made it possible to target Singularity
code on the XScale I/O board. Manuel Fähndrich provided guid-
ance on the Singularity channel architecture implemented by the
Sing# compiler, and Songtao Xia made changes to the compiler
that facilitate the addition of remote channels to Helios.

We thank Intel Corporation for providing the IOP348 develop-
ment boards. Particular thanks goes to Curt Bruns, Paul Luse,
Doug Foster, Bradley Corrion, and William Haberkorn for their as-
sistance as we developed the XScale satellite kernel.

8. REFERENCES
[1] ACCETTA, M., BARON, R., BOLOSKY, W., GOLUB, D.,

RASHID, R., TEVANIAN , A., AND YOUNG, M. Mach: A
new kernel foundation for UNIX development. InIn
Proceedings of the Usenix Summer ’86 Conference(Atlanta,
GA, June 1986), pp. 93–112.

[2] BOYD-WICKIZER, S., CHEN, H., CHEN, R., MAO, Y.,
KAASHOEK, F., MORRIS, R., PESTEREV, A., STEIN, L.,
WU, M., DAI , Y., ZHANG, Y., AND ZHANG, Z. Corey: An
operating system for many cores. InProceedings of the 8th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 08)(San Diego, CA, December
2008), pp. 43–58.

[3] CHAKRABORTY, K., WELLS, P. M., AND SOHI, G. S.
Computation spreading: employing hardware migration to
specialize CMP cores on-the-fly. InASPLOS-XII:
Proceedings of the 12th international conference on
Architectural support for programming languages and
operating systems(New York, NY, USA, 2006), ACM,
pp. 283–292.

[4] CHAPIN, J., ROSENBLUM, M., DEVINE, S., LAHIRI , T.,
TEODOSIU, D., AND GUPTA, A. Hive: Fault containment
for shared-memory multiprocessors. InProceedings of the
15th ACM Symposium on Operating Systems Principles
(1995), pp. 12–25.

[5] CHIU , S. C., LIAO , W.-K ., CHOUDHARY, A. N., AND

KANDEMIR , M. T. Processor-embedded distributed smart
disks for I/O-intensive workloads: architectures,
performance models and evaluation.J. Parallel Distrib.
Comput. 64, 3 (2004), 427–446.

[6] FÄHNDRICH, M., A IKEN , M., HAWBLITZEL , C.,
HODSON, O., HUNT, G. C., LARUS, J. R., ,AND LEVI , S.
Language support for fast and reliable message-based

communication in Singularity OS. InProceedings of the 1st
Annual European Conference on Computer Systems (Eurosys
’06) (April 2006), pp. 177–190.

[7] FITZGERALD, R., KNOBLOCK, T. B., KNOBLOCK, T. B.,
RUF, E., STEENSGAARD, B., STEENSGAARD, B.,
TARDITI , D., AND TARDITI , D. Marmot: an optimizing
compiler for Java. Tech. rep., 1999.

[8] FIUCZYNSKI , M. E., BERSHAD, B. N., MARTIN , R. P.,
AND CULLER, D. E. Spine: An operating system for
intelligent network adapters. Tech. Rep. UW-CSE-98-08-01,
University of Washington, August 1998.

[9] FIUCZYNSKI , M. E., MARTIN , R. P., OWA , T., AND

BERSHAD, B. N. SPINE - a safe programmable and
integrated network environment. InProceedings of the 8th
ACM SIGOPS European Workshop(1998), pp. 7–12.

[10] GAMSA , B., KRIEGER, O., APPAVOO, J.,AND STUMM ,
M. Tornado: Maximizing locality and concurrency in a
shared memory multiprocessor operating system. In
Proceedings of the 3rd Symposium on Operating Systems
Design and Implementation(1999).

[11] GOVIL , K., TEODOSIU, D., HUANG, Y., AND

ROSENBLUM, M. Cellular disco: resource management
using virtual clusters on shared-memory multiprocessors.In
Proceedings of the 17th ACM Symposium on Operating
Systems Principles(1999).

[12] HITZ , D., HARRIS, G., LAU , J. K., AND SCHWARTZ,
A. M. Using UNIX as One Component of a Lightweight
Distributed Kernel for Microprocessor File Servers. In
Proceedings of the Winter 1990 USENIX Conference(1990),
pp. 285–296.

[13] HUNT, G., AIKEN , M., FÄHNDRICH, M., HAWBLITZEL ,
C., HODSON, O., LARUS, J., LEVI , S., STEENSGAARD,
B., TARDITI , D., AND WOBBER, T. Sealing OS processes
to improve dependability and safety. InProceedings of the
2nd Annual European Conference on Computer Systems
(EuroSys ’07)(March 2007), pp. 341–354.

[14] INTERNATIONAL BUSINESSMACHINES. 709 data
processing system.
http://www-03.ibm.com/ibm/history/exhibits/mainframe/
mainframe_PP709.html, 1957.

[15] INTERNATIONAL BUSINESSMACHINES. IBM System/370
Principles of Operation, 1974. Reference number
GA22-8000-4, S/370-01.

[16] JUL , E., LEVY, H., HUTCHINSON, N., AND BLACK , A.
Fine-grained mobility in the emerald system.ACM Trans.
Comput. Syst. 6, 1 (1988), 109–133.

[17] KATCHER, J. Postmark: a new filesystem benchmark. Tech.
Rep. 3022, Network Appliance, October 1997.

[18] KEETON, K., PATTERSON, D. A., AND HELLERSTEIN,
J. M. A case for intelligent disks (idisks).SIGMOD Rec. 27,
3 (1998), 42–52.

[19] KLIMT , B., AND YANG, Y. Introducing the Enron corpus. In
First Conference on Email and Anti-Spam (CEAS)(July
2004).

[20] MCAULEY, D., AND NEUGEBAUER, R. A case for virtual
channel processors. InNICELI ’03: Proceedings of the ACM
SIGCOMM workshop on Network-I/O convergence(New
York, NY, USA, 2003), ACM, pp. 237–242.

[21] MCILROY, R., AND SVENTEK, J. Hera-JVM: Abstracting
processor heterogeneity behind a virtual machine. InThe
12th Workshop on Hot Topics in Operating Systems (HotOS
2009)(May 2009).

[22] M ICROSOFTCORPORATION. Singularity RDK.
http://www.codeplex.com/singularity, 2008.

[23] MUIR, S.,AND SMITH , J. AsyMOS - an asymmetric
multiprocessor operating system.Open Architectures and
Network Programming, 1998 IEEE(Apr 1998), 25–34.

[24] MUIR, S.,AND SMITH , J. Functional divisions in the Piglet
multiprocessor operating system. InEW 8: Proceedings of
the 8th ACM SIGOPS European workshop on Support for
composing distributed applications(New York, NY, USA,
1998), ACM, pp. 255–260.

[25] PIKE , R., PRESOTTO, D., THOMPSON, K., TRICKEY, H.,
AND WINTERBOTTOM, P. The use of name spaces in Plan 9.
Operating Systems Review 27, 2 (1993), 72–76.

[26] RIEDEL, E., FALOUTSOS, C., GIBSON, G. A., AND

NAGLE, D. Active disks for large-scale data processing.
Computer 34, 6 (2001), 68–74.

[27] SCHMUCK, F., AND WYLIE , J. Experience with
transactions in QuickSilver. InProceedings of the 13th ACM
Symposium on Operating Systems Principles(October
1991), pp. 239–53.

[28] SCHÜPBACH, A., PETER, S., BAUMANN , A., ROSCOE, T.,
BARHAM , P., HARRIS, T., AND ISAACS, R. Embracing
diversity in the Barrelfish manycore operating system. In
Proceedings of the Workshop on Managed Many-Core
Systems(June 2008).

[29] SEILER, L., CARMEAN , D., SPRANGLE, E., FORSYTH, T.,
ABRASH, M., DUBEY, P., JUNKINS, S., LAKE , A.,
SUGERMAN, J., CAVIN , R., ESPASA, R., GROCHOWSKI,
E., JUAN , T., AND HANRAHAN , P. Larrabee: a many-core
x86 architecture for visual computing.ACM Trans. Graph.
27, 3 (2008), 1–15.

[30] SILVA , D. D., KRIEGER, O., WISNIEWSKI, R. W.,
WATERLAND , A., TAM , D., AND BAUMANN , A. K42: an
infrastructure for operating system research.SIGOPS Oper.
Syst. Rev. 40, 2 (2006), 34–42.

[31] STEENSGAARD, B., AND JUL , E. Object and native code
thread mobility among heterogeneous computers. InSOSP
’95: Proceedings of the fifteenth ACM symposium on
Operating systems principles(New York, NY, USA, 1995),
ACM, pp. 68–77.

[32] THORNTON, J.Design of a Computer – The Control Data
6600. Scott, Foreman, and Company, 1970.

[33] WALKER , B., POPEK, G., ENGLISH, R., KLINE , C., AND

THIEL , G. The locus distributed operating system. InSOSP
’83: Proceedings of the ninth ACM symposium on Operating
systems principles(New York, NY, USA, 1983), ACM,
pp. 49–70.

[34] WEINSBERG, Y., DOLEV, D., ANKER, T., BEN-YEHUDA,
M., AND WYCKOFF, P. Tapping into the fountain of cpus:
on operating system support for programmable devices. In
ASPLOS XIII: Proceedings of the 13th international
conference on Architectural support for programming
languages and operating systems(New York, NY, USA,
2008), ACM, pp. 179–188.

