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ABSTRACT 1. INTRODUCTION
Helios is an operating system designed to simplify the tdski- Operating systems are designed for homogeneous hardware ar
ing, deploying, and tuning applications for heterogenguaatorms. chitectures. Within a r_nachlne, CPUs are treate_d as mthm_a
Helios introducesatellite kernelswhich export a single, uniform  able parts. Each CPU is assumed to provide equivalent furalti
set of OS abstractions across CPUs of disparate archiésctund ity, instruction throughput, and cache-coherent accesseimory.

performance characteristics. Access to 1/0 services sadilea At most, an operating system must contend with a cache-eoher
systems are made transparent via remote message passiag, wh hon-uniform memory architecture (NUMA), which results ary-

extends a standard microkernel message-passing alstracta ing access times to different portions of main memory.

satellite kernel infrastructure. Helios retargets aglans to avail- However, computing environments are no longer homogeneous
able ISAs by compiling from an intermediate language. Tqusiiy Programmable devices, such as GPUs and NICs, fragmentthe tr
deploying and tuning application performance, Helios agsoan ditional model of computing by introducing “islands of couta-
affinity metric to developers. Affinity provides a hint to thperat- ~ tion” where developers can run arbitrary code to take adwpnof

ing system about whether a process would benefit from exgguti  device-specific features. For example, GPUs often provige-h

on the same platform as a service it depends upon. performance vector processing, while a programmable NI pr

We developed satellite kernels for an XScale programma@le | Vvides the opportunity to compute “close to the source” witho
card and for cache-coherent NUMA architectures. We offldade wasting time communicating over a bus to a general purposé CP
several applications and operating system componentsq dfy These devices are not cache-coherent with respect to ¢gnera
changing only a single line of metadata. We show up to a 28% Pose CPUs, are programmed with unique instruction setsoftel
performance improvement by offloading tasks to the XScale I/ have dramatically different performance characteristics
card. On a mail-server benchmark, we show a 39% improvement Operating systems effectively ignore programmable devine
in performance by automatically splitting the applicatiamong treating them no differently than traditional, non-pragraable
multiple NUMA domains. 1/O devices. Therefore device drivers are the only avadlatethod

of communicating with a programmable device. Unfortunatile
device driver interface was designed for pushing bits badkfarth

Categories and Subject Descriptors over a bus, rather than acting as an interface through wigiph-a
D.4.4 [Operating System§: Communications Management; D.4.7 cations coordinate and execute. As a r.esult, there oﬂexpsdjdle
[Operating System$: Organization and Design; D.4.®perating or no support on a programmable device for once straighgfmtw
System$: Performance tasks such as accessing other 1/O devices (e.g., writingkd, dle-

bugging, or getting user input. A secondary problem is thaeds,
which execute in a privileged space within the kernel, bezesrer
General Terms more complicated as they take on new tasks such as execpting a
Design, Management, Performance plic_ation frameworks. For example, the NVIDIA graphicsvéri
which supports the CUDA runtime for programming GPUs, con-
tains an entire JIT compiler.
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Satellite kernels are microkernels. Each satellite keisiebm-

We discuss the design goals for Helios in the next section and

posed of a scheduler, a memory manager, a namespace managewe describe the implementation in Section 3. Section 4 atedu

and code to coordinate communication between other kerAdls
other traditional operating system drivers and services,(a file
system) execute as individual processes. The first satkdlinel to
boot, called thecoordinator kernel discovers programmable de-
vices and launches additional satellite kernels. Heliawides
transparent access to services executing on satellitelkdoy ex-
tending a traditional message-passing interface to irectechote
message passingVhen applications or services communicate with
each other on the same satellite kernel a fast, zero-copmsage-
passing interface is used. However, if communication ccter
tween two different satellite kernels, then remote messags-
ing automatically marshals messages between the kernisilio
tate communication. Since applications are written for asage-
passing interface, no changes are required when an aphdat
run on a programmable device.

In a heterogeneous environment, the placement of apmitati
can have a drastic impact on performance. Therefore, Hsiins
plifies application deployment by exporting affinity metricthat is
expressed over message-passing channels. A positiveyaffior
vides a hint to the operating system that two componentderiie-
fit from fast message passing, and should execute on the saefe s
lite kernel. A negative affinity suggests that the two cormgia
should execute on different satellite kernels. Helios wfénity
values to automatically make placement decisions wherepsas
are started. For example, the Helios networking stack sspse
a positive affinity for the channels used to communicate with
network device driver. When a programmable network ad&pter
present, the positive affinity between the networking staul the
driver executing on the adapter causes Helios to autonfigtifa
fload the entire networking stack to the adapter. Offloadmy t
networking stack does not require any changes to its sowde. ¢
Affinity values are expressed as part of an application’s Xitta-
data file, and can easily be changed by developers or systaim-ad
istrators to tune application performance or adapt an egitin to
a new operating environment.

Helios uses a two-phase compilation strategy to contend wit
the many different configurations of programmable devidest t
may be available on a machine. Developers compile appicsti
from source to an intermediate language. Once an applicéio
installed, it is compiled down to the instruction set of eashil-
able processor architecture. An additional benefit of aerine-
diate language is that it can encapsulate multiple impleatiems
of a particular feature tuned to different architectureer &am-
ple, theInterlocked.CompareExchange function requires the
use of processor-specific assembly language instructiomspro-
cess that uses the function has all supported versionseshipghe
intermediate language; the appropriate version is thed wéen
compiling the application to each available architecture.

We built Helios by modifying the Singularity [13] operatisgs-
tem to support satellite kernels, remote message passid@ftn-
ity. We implemented support for satellite kernels on twded#nt
hardware platforms: an Intel XScale programmable PCI Esgre
1/0O card and cache-coherent NUMA architectures. We offldade
several operating system components, including a complete
working stack, a file system, and several applications tXtheale
programmable device by adjusting the affinity values witpli-
cation metadata. We improved the performance of two differe
applications by up to 28% through offloading. On a mail-serve
benchmark, we show a 39% improvement in performance by split
ting the application among multiple NUMA domains.

Helios, Section 5 discusses related work, and then we coaclu

2. DESIGN GOALS

We followed four design goals when we created an operating
system for heterogeneous platforms. First, the operatystes
should efficiently export a single OS abstraction acrostemint
programmable devices. Second, inter-process commuurictiat
spans two different programmable devices should functmdif
ferently than IPC on a single device. Third, the operatingteay
should provide mechanisms to simplify deploying and turapg
plications. Fourth, it should provide a means to encapstula
disparate architectures of multiple programmable devices

2.1 Many Kernels: One Set of Abstractions

Exporting a single set of abstractions across many plag@im-
plifies writing applications for different programmablevaees. Fur-
ther, these abstractions must be exporéitientlyto be useful.
Therefore, when determining the composition of a satdtttmel,
the following guidelines were followed:

e Avoid unnecessary remote communicatidrdesign that re-
quires frequent communication to remote programmable de-
vices or NUMA domains (e.g., forwarding requests to a gen-
eral purpose CPU) would impose a high performance penalty.
Therefore, such communication should be invoked only when
a request cannot be serviced locally.

e Require minimal hardware primitiveslf a programmable
device requires a feature-set that is too constrained, @ng.
MMU), then few devices will be able to run Helios. On the
other hand, requiring too few primitives might force Helios
to communicate with other devices to implement basic fea-
tures (such as interrupts), which violates the previoudeyui
line. Therefore, Helios should require a minimal set of hard
ware primitives while preserving the desire to do as much
work as possible locally.

e Require minimal hardware resourceBrogrammable devices
that provide slower CPUs and far less RAM than general pur-
pose CPUs should not be prevented from running Helios.

e Avoid unnecessary local IPCocal message-passing is slower
than a system call. Therefore, resources private to a psoces
(e.g., memory) should be managed by a satellite kernel and
accessed via a system call. However, if a resource is shared
(e.g., a NIC), than it should be controlled by a process that
is accessible via message-passing, and therefore agsitabl
processes executing on other satellite kernels.

Satellite kernels, which form the basic primitive for maimag
programmable devices, were designed with each of thesiarit
in mind. First, satellite kernels minimize remote commaticn
by initiating it only when communicating with the namespace
when transferring messages between kernels to implemertee
message passing. All other communication is provided eitizea
system call, or through local message-passing.

Second, in addition to CPU and DRAM, satellite kernels regjui
three basic hardware primitives: a timer, an interrupt cier, and
the ability to catch an exception (i.e., trap). Without ghgsimi-
tives, Helios could not implement basic services, such hsdd-
ing, directly on the programmable device. We believe these r
quirements are quite reasonable; although the currentrasore



of GPUs do not provide timers or interrupt controllers, I'staext
generation GPU (the Larrabee [29]) will provide all threedveare
primitives required to run a satellite kernel. We expecséhthree
primitives will appear on more programmable devices in thark,
providing new platforms upon which to run Helios.

Third, satellite kernels have minimal hardware resourgeire-
ments. Helios runs with as little as 128 MB of RAM on a T| OMAP
CPU running at 600 MHz. We believe Helios could run on alittl
as 32 MB of RAM and a few hundred MHz CPU with additional
tuning. However, we have not yet tested Helios on a prograstena
device that was so resource constrained. A small resouoterfot
allows Helios to “scale-down” while still providing the befits of
local resource management and a single set of OS abstmction

Finally, satellite kernels are designed to manage a verjlsma
number of private resources: memory and CPU cycles. Satelli

available to it. For example, the satellite kernel that exes on

the XScale I/0O card uses an ADMA (asynchronous direct memory
transfer) controller to implement RMP, while a satelliteried that
executes on a NUMA domain usgemcpy instead.

One might think that routing among many kernels would be com-
plex. In fact, routing is quite simple since there are no ihip
routing paths between satellite kernels. When the cooralirier-
nel starts a satellite kernel it establishes a point-to¥padnnection
with all other kernels in the system. This approach has wbviell
for a small number of satellite kernels, but if in the futuraahines
have a very large number of programmable devices or NUMA do-
mains, an alternative network topology may be required.

The namespace and RMP allow applications that depend upon
sharing an 1/0O service to continue to function as if the serwere
executing on the same satellite kernel as the processesitighor

kernels expose APIls for memory management, process manageexample, two processes that share state through a file system

ment, and thread management. Satellite kernels also cocidie
to bootstrap communication with the namespace, but allrahe
erating system services, including device drivers, exeastpro-
cesses and use message passing for communication.

As a result of following these guidelines, satellite kesngto-
vide a small and efficient platform for using programmableickss.
Satellite kernels simplify developing applications for etdroge-
neous platform by making the abstractions that are availabla
general purpose CPU also available on a programmable device
NUMA domain.

2.2 Transparent IPC

Our second design goal was to provide transparent, unifted-in
process communication, independent of where a processwicee
executes. Two problems must be solved to meet this design goa
First, an application must be able to name another appicati OS
service that is executing somewhere on a machine. Secopli, ap
cations written to work when executing on the same kernelilsho
continue to work if the two ends of a message-passing chamael
executing on two different satellite kernels.

Helios meets the first requirement of this design goal by #xpo
ing a single, unifiednamespace The namespace serves multiple
purposes. Drivers use it to advertise the availability afdiaare
on a machine and satellite kernels advertise their platftye,
presence, and any available kernel services (such as penfice
counters) that are available via message passing. OSe(eg.,

a file system) and arbitrary processes use the namespaceoseex
their own functionality. For the sake of brevity, we refeatwy pro-
cess that advertises itself in the namespace as a serviedidlios
namespace allows an application to depend upon a servibhewtit
knowing ahead of time where the service will execute.

Helios meets the second requirement of this design goal by im
plementing both local message passing (LMP) and remoteagess
passing (RMP) channels beneath the same inter-processwamm
cation abstraction. If a service is local, then the fastpz=mpy,
message-passing mechanism from Singularity [6] is usedwv-Ho
ever, if the service is located remotely, Helios transpdyemar-
shals messages between an application and the remoteeseFgic
the application, execution proceeds as if the service weteaated
on the same satellite kernel.

continue to do so, since an incoming connection to a file ayste
looks the same whether RMP or LMP is used.

2.3 Simplify Deployment and Tuning

The third design goal for Helios is to simplify applicatioe-d
ployment and tuning on heterogeneous platforms. A hetemne
platform adds three new constraints that make tuning psopges
formance more difficult and therefore makes the task of deter
ing where a procesiitially executes important. First, heteroge-
neous architectures make moving processes between deuites
difficult; therefore the most practical strategy is to chmaglevice,
put a process on it, and leave it alone. Second, the lack dfecac
coherence results in remote as well as local message paHsing
application is written expecting fast, local message passind is
executed on a device where its communication to other pseses
is remote, then performance could suffer dramatically.afmnan
application mighprefera device with certain performance charac-
teristics if it is available.

Helios meets this design goal by allowing processes to f§peci
their affinity for other processes. An affinity value is written in the
metadata of a process, and is expressed as a positive oiveegat
integer on a message-passing channel. When a processsogres
apositive affinityvalue it represents a preference to execute on the
same satellite kernel as another currently executing peocBos-
itive affinity hints that two processes will benefit from cormnmi
cating over a fast, zero-copy message-passing channetesdes
may also use positive affinity to expresglatform preferencéoy
listing a positive affinity value for a satellite kernel exéiag on a
particular programmable device.

When a process expresseaagative affinityalue it represents
a preference to execute on a different satellite kernel &mather
currently executing process. Negative affinity hints thed pro-
cesses will benefit from non-interference and is therefareeans
of avoiding resource contention. Processes may alseelfeefer-
ence affinitywhere a process expresses negative affinity for itself,
to ensure multiple instances of a process execute indepgyde

Since affinity is expressed via metadata, it is very easy e tu
the performance of a set of processes by changing affinityegal
Developers can readily experiment with different placetmpati-
cies, and system administrators or users can add or chaage- pl

Remote message passing allows an application to execute on a ment policies to adapt to environments not considered bgldev

arbitrary platform while still communicating with otherrsees
upon which it may depend. The “network” of memory and PCI
buses that connect satellite kernels is very robust cordparea-
ditional LAN or WAN networks. Therefore traditional didttited
systems protocols (e.g., TCP) are not required. Insteath, stel-
lite kernel implements RMP using the communication priveii

opers (e.g., new devices). In our experiments, we use ffioit
quickly determine policies that maximize performance.

Helios does not strive to optimally map an arbitrary graph of
processes to a graph of active processors on a system.dnktea
lios attempts to strike a balance between practicality gotitnality
by choosing the satellite kernel where a process will exebased
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Figure 1: Helios architecture

upon the affinity values a process expresses and the loazttoe
other processes with which it wishes to communicate. We thaite
affinity does not prevent a process from harming its own perfo
mance. The values are only hints, and we assume that thénéict t
they are easily modified will allow poorly designed affinitgylizies

to be easily remedied.

2.4 Encapsulate Disparate Architectures

The last design goal for Helios is to efficiently encapsulate
process that may run on multiple platforms while presentimg
opportunity to exploit platform-specific features. Helashieves
this design goal by using a two-phase compilation stratagypli-
cations are first compiled into the common intermediate Uagg
(CIL), which is the byte-code of the .NET platform. We expapt
plications to ship as CIL binaries. The second compilatibase
translates the intermediate language into the ISA of a qudati
processor. Currently, all Helios applications are writterSing#,
compiled into CIL, and then compiled again into differenfEus-
ing a derivative of the Marmot [7] compiler called Bartok.

As an alternative, one could ship fat binaries, which wowld-c
tain a version of the application for each available platfdrsup-
ports. Packaging an application using CIL has two advastager
fat binaries. First, a developer that uses fat binaries miusbse
ahead of time which platforms to support and fat binariesgudw
in size as the number of ISAs supported by an applicatiorasas.
Second, CIL already contains infrastructure for efficigstipport-
ing multiple versions of a method. This feature allows anliapp
tion to take advantage of device-specific features if theypagsent,
while still functioning if these features are missing. Frample,
an application could have one process that executes largerdm
of vector math. If a GPU were present, the calculations waeld
accelerated, but if it were not, the process would still fiorcus-
ing a general purpose CPU. Helios already uses this furalitgn
in libraries that support applications, such as code to émgint
InterLocked.CompareExchange and code that implements an
Atomic primitive. The two-phase compilation strategy also means
that an older application could run on a new programmablécdev
without modification, as long as a compiler exists to tratesieom
CIL to the new instruction set.

IMPLEMENTATION

Figure 1 provides an overview of Helios running on a general
purpose CPU and an XScale programmable device. Each kernel
runs its own scheduler and memory manager, while the coatiain
kernel also manages the namespace, which is availablegatalt
lite kernels via remote message passing. In the examplg@i a
cation has a local message-passing channel to the file systeha
remote message-passing channel to the networking staat vgh
executing on a programmable NIC. The numbers above each chan
nel describe the affinity the application or service hasgaesl to
the channel. Since the file system and networking stack hase p
itive affinities with their device drivers, they have beenlgoated
with each driver in a separate kernel. The application hpeessed
positive affinity to the file system and no preference to thevaek-
ing stack, therefore the application runs on the same kaséte
file system.

3.1 Singularity Background

Helios was built by modifying the Singularity RDK [22] to sup
port satellite kernels, remote message passing, and wffiklie
begin by providing a brief overview of Singularity.

Singularity is an operating system written almost entiialthe
Sing# [6] derivative of the C# programming language. Apgplic
tions in Singularity are composed of one or more processes) e
of which is composed of one or more threads. Threads share a si
gle address space, while processes are isolated from deeateoid
can only communicate via message passing. Applicatiortsewri
for Singularity are type and memory safe. The operatingesyse-
lies on software isolation to protect processes from eacératnd
therefore all processes run in the same address space ajltlesth
privilege level (ring 0 on an x86 architecture).

Singularity supports a threading model similar to POSIXeveh
threads have contexts that are visible to and scheduledebgph
erating system. Further, threads have access to all thé ssaua
chronization primitives available in C#. Since all pro@sgxe-
cute in the same address space and rely on software isglation
text switches between processes are no more costly thaextont
switches between threads. Further, Singularity does mjiine an
MMU or a virtual address space. Virtual memory is, howevar; c
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rently used as a convenient method of catching a null podessf-
erence by trapping on accesses to page 0.

The kernel exports a system-call interface called the k&xBé
It exposes calls to manage memory, processes, threadsartte n
space, message passing, and calls for drivers to gain docgss-
cial hardware resources such as I/O ports. All other OS cesvi

Programmable devices are not cache coherent with respect to
other programmable devices or general purpose CPUs. The He-
lios programming model makes the boundaries between device
explicit by disallowing a process from spanning multiplerieds.

However, on a NUMA machine, NUMA domains are cache co-
herent with other NUMA domains on a system. Most operating

execute as processes and are accessed via message passing. Fsystems allow processes to span multiple NUMA domains; this
ther, theonly method of inter-process communication available to functionality comes at the cost of complexity within the ogieng

a process is message passing; Singularity does not suaoeds

system and complexity in the programming model for applbcest

memory, signals, pipes, FIFOs, System V shared memory,yor an In a NUMA architecture processors have access to memory that

other traditional inter-process communication mechanisiside

is local and memory that is remote. Local memory accesses are

of message passing. Processes can communicate througk-1/0O d much faster than accessing memory in other NUMA domains. In

vices (e.g., a file system), but there is no explicit suppartstich
communication.

Message passing in Singularity is designed to be fast. When a

message is sent, only a pointer to the message metadatsedpas
to the receiving process. When the message is received ea
used immediately (i.e., without making a copy) by the reicgiv
process.

Zero-copy message passing is implemented using the Siog# pr
gramming language, compiler, and runtime. Sing# is usedite w

our tests, we have found local memory have access lateraées t
are 38% lower than remote memory.

In a monolithic operating system, the OS and applicationstmu
be carefully tuned to touch local rather than remote memeuy-
ther, as the number of CPUs increases, locks can quicklynbeco
bottlenecks and must be refactored to improve performahize.
lios takes an alternative approach by treating NUMA domaisis
high-speed programmable devices; it therefore executagetite
kernel in each NUMA domain. Processes are not allowed to span

contracts which describe what data will be passed across the two NUMA domains. In return for this restriction, memory acesare

ends (endpoints) of a message-passing channel. The Sing# co
piler then uses the contracts to generate code that implsrtien

always local and as the number of available processorsasese
the kernel does not become a bottleneck because multiphelker

machinery to send and receive data on the channel. The cbntra run in parallel. However, limiting processes to a single N&M

ultimately defines a state machine, and the legal sequefhoesss
sages that can be sent or received within any given statecdre
tract also determines which party can send or receive a ge$sa
response) at any given point in the state space.

domain could hamper large, multi-threaded processes thatat
easily decomposed into separate processes. Such procestes
scale-out across NUMA domains if Helios supported a program
ming model similar to Hive [4], which allows threads to usel3P

Each Singularity process has two heaps. One heap is the .NETand access memory located on remote NUMA domains.

garbage collected heap, and the other heap, called the rgeha
heap, is used for passing messages and data over chanmalg. Si
uses compile-time analysis to guarantee that processamifiave
dangling pointers, race conditions, or memory leaks rdl&ieex-
change heap data. Sing# also guarantees that only one thesad
write to an endpoint at any time, thus preventing any racealieon
tions on the use of endpoints.

Finally, each process, service, and driver has a separatiéasia
that describes the libraries, channels, and parameteusgreddor
execution. Helios also uses the manifest to express affinitgies.

3.2 Helios Programming Model

Singularity provides fast message passing and contextiswg
to promote a modular programming model; an application is-co

3.3 XScale Satellite Kernel

The first platform to support satellite kernels is an IOP348IR
development board. The board communicates with the host ove
an 8-lane PCI-Express interface and features a 1.2 GHz ¥Scal
(ARM V5TE) processor with its own chip interrupt controllero-
grammable timer, and clock. It also has a gigabit Ethernat co
troller, a PCI-X slot, a SAS controller, and 256 MB of DRAM.

To implement the satellite kernel, we wrote our own boottyad
that initializes the card and then presents itself on the BX@iress
bus of the host PC. The bootloader first waits for the cootdma
kernel to load on the host PC. The coordinator kernel theectiet
the device and loads a driver, which copies the satelliteetem-

posed of one or more processes that communicate via messagage to the card and allows it to start executing. The satddétnel

passing. Singularity is designed for a homogeneous, syriamet
computing environment. Any process (or thread) can run gn an
CPU, and all CPUs are assumed to be equivalent.

Helios builds upon this model by running additional sateker-

is aware that it is not the coordinator kernel, and checkiwihe
code ensure it does not, for example, start its own namespate
attempt to export it to other satellite kernels. The satekiernel
then requests any drivers that it needs from the file systenthe

nels on programmable devices and NUMA domains. Since mes- hamespace.

sage passing is the only means for two processes to comneinica

The satellite kernel runs the identical C# code-base asdahe k

support for remote message passing ensures that processes w nel on a general purpose CPU (but compiled to an ARM v5 vs. an

ten for Singularity continue to operate even if they are atiag
on different satellite kernels. Each satellite kernel nggsaits re-
sources independently; resources from one kernel (e.4,a@€les
or memory) are not available to processes executing on s#tel
lite kernels. Further, a process cannot exist on more tharsatel-
lite kernel and therefore the threads within a process muske-
cute on the same satellite kernel. However, since appicatare
composed of one or more processes, applications do spaipl@ult
satellite kernels. A satellite kernel is fully multi-prasor capable,

x86 ISA). Code that was written in assembly (e.g., code tmat i
plements a context switch) must be ported to the native dsgem
language of the programmable device. The XScale sateklite k
nel contains about 3,000 lines of ARM assembly language aand
additional 13,000 lines of ARM assembly is contained in thei@
time library.

Once the XScale I/0 card completes booting, it starts a obhetr
process and registers itself in the namespace of the cadodiker-
nel. This registration process is the mechanism that altbeso-

and if a programmable device or NUMA domain is composed of ordinator kernel to launch applications on the XScale l/@ica

more than one CPU, then multiple threads will run conculyent



3.4 NUMA Satellite Kernel

NUMA machines comprise the second platform to support satel
lite kernels. We have implemented satellite kernels on &sleket
AMD hyper-transport architecture. Each socket has its owivid
domain, and each socket is populated with a dual-core psoces
Each processor has an on-chip programmable interrupt timaer
it can use for scheduling and also has access to shared @eck r
sources. Device interrupts are received by 1/O interruptrodiers
(I/O APICS) that are configured to steer all device intersuptthe
processors running the coordinator kernel. This avoidsshiee
of sharing access to the 1/0 APICS between NUMA domains. Al-
though routing device interrupts to the coordinator kerestricts
the location of device drivers, it does not limit the locatiof the

The coordinator kernel manages the namespace, and it serves
three different roles for applications. First, regiswatiallows an
application to create an entry in the namespace, which téesr o
applications know a service is running and awaiting corioest
During registration, the coordinator kernel checks to make that
the entry in the namespace is available; the coordinatorekénen
sets up a message passing connection between the namespace e
try and the service awaiting connections. Second, bindilogva
a process to request that a message passing channel beshsthbl
with a service advertised in the namespace. When a bind seque
is received, the coordinator kernel forwards the messatfeeteer-
vice, which then establishes a new message passing charnnel d
rectly with the process that requested a connection. Fireltries

services that use them. For example, we have run a mounted FATIN the namespace are removed either when the service aitvgrti

file system on a satellite kernel while the disk driver is exig
on the coordinator kernel. We rely on the safety propertfeS#
to prevent wild writes and cross-domain accesses, and th@nye
manager of each satellite kernel is aware of only the RAMIloza
its domain.

When Helios boots, its bootloader first examines the ACP sys
tem resource affinity table (SRAT) to see whether or not the ma
chine has a NUMA architecture. If a NUMA architecture exists
the Helios boot loader enumerates the different NUMA domain
recording the physical addresses of the memory local todbat
main and the processor identifiers associated with each idoma
The bootloader then loads the coordinator kernel in theNitd1A
domain.

Once the coordinator kernel has booted all of its procegbers
CPU with the lowest processor identifier in the next domain en
ters the bootloader and is passed the address range of itocain
memory. Helios makes a copy of the page table and other logl-le
boot data structures into the local memory of the domain hed t
boots the satellite kernel image. Finally, as part of thelémgn-
tation of remote channels, the boot loader takes a smalbpéne
address space of each satellite kernel and marks it as aaaiéa
able for passing messages. Once a satellite kernel withid A
domain completes its boot process it registers itself inrme-
space and waits for work.

3.5 Namespace

Services are made available through a namespace, sinmsiairin
to the namespace provided by the Plan9 [25] operating sysSem
vices register in the namespace so that applications cathfamd.

in the namespace requests it, or when the message passimgtha
into the namespace channel is closed.

The namespace is the only component of Helios that relies on
centralized control. This was done for the sake of simplieind
because communication with the namespace occurs only when a
process is started and when it establishes connectionfi¢o sér-
vices. However, the centralized namespace does mean tlsat me
sages sometimes travel further than they need to whenlliyitis-
tablishing a connection between a process and a serviceexFor
ample, if a process attempts to establish a connection tovicse
that is executing on the same satellite kernel it will firsttawt the
namespace remotely. The namespace will forward the requi@st
second remote message-passing channel, back to the s&iea
the service receives a request for a connection, the remegsage-
passing runtime recognizes the service and requestinggsare
executing on the same satellite kernel, and the connectionon-
verted to a local message-passing channel. Thereforeisipain-
ticular case, two remote message passing channels aresgdve
in order to establish a local message passing channel hetwee
processes that are executing together on the same saetlitel.

3.6 Remote Message Passing

Implementing message passing across remote Singulagty ch
nels is more challenging than implementing message paasings
local Singularity channels. As described in section 3.1 pro-
cesses communicating over a local channel share the samesadd
space, exchange heap, and thread scheduler, so that tle sand
write pointers directly into the receiver’s endpoint with@opying
the pointed-to data. A remote channel, on the other handhexis

A process passes one end of a pair of endpoints to the service processes running on different satellite kernels, wheth satellite

which uses the received endpoint for communication. Whers:m
sage passing channel is established, the kernel connextterd
of a message passing channel into the address space ofvlue ser
and of the process that initiated the connection.

Services may execute on any satellite kernel, and Helios o
put any restrictions on the number or types of services trestige.
For example, the boot file system is available at “/fs,” wihitker
file systems may be advertised at other locations in the rzewes
A service need not be tied explicitly to a hardware device. €6
ample, Helios provides a service that decompresses PNGesnag
the application registers itself in the namespace, andswsannec-
tions from applications wishing to use the service. Tradii /O
devices (i.e., those that cannot support a satellite Kgraved repre-
sented by a single driver that communicates with one or mpre a
plications or services. For example, each non-programenisbC
has a single driver, registered as ‘NICx,’ where x is a moniotly
increasing number, and the networking stack has multiphepms
nents (ARP, UDP, TCP, routing) that communicate with eac@ NI
driver.

kernel has its own exchange heap, its own thread schedoteitsa
own address space. Therefore, the remote channel implatizent
must copy data between the different exchange heaps, artdisgus
non-local data transfer and signaling mechanisms.

To manage this copying and signaling while preserving tigg or
inal Singularity channel programming interface, Heliosates two
shadow endpointB’ and A for each remote channel between or-
dinary endpoints A and B. Endpoint Bvhich resides on the same
satellite kernel as endpoint A, shadows the state of the teeprad-
point B. (Similarly, endpoint Ashadows the state of endpoint A.)
When a sender wants to send a message from endpoint A to end-
point B, it first sends the message locally to the shadow antipo
B’. Endpoint B then encapsulates the message type and pointer
information into a message metadata structure and plag@s ia
FIFO queue connected to the receiver’s satellite kerneterAhe
receiver dequeues this message metadata structure frariR@e
the receiver pulls the updated state from endpointoBendpoint

B and copies the exchange heap data pointed to by the message

metadata structure, allocating memory to hold the exchegp



data as necessary. Note that the exchange heap data is oapied
once, directly from the sender’s exchange heap into thevexte
exchange heap.

The lower-level details of the message passing depend drethe
erogeneous system’s underlying communication mechanioms
NUMA kernel, each kernel's page table maps all memory alkgla
to the NUMA machine (although the memory manager is aware of
only the memory available locally within its own NUMA domain

The inbound and outbound message FIFOs are shared between do

mains, with one kernel pushing onto a FIFO and the otherrmlli
from it. A dedicated thread in each kernel polls for inbounesm

sages and handles the message reception process. Since & NUM

satellite kernel can translate the addresses provided iessage
from another NUMA satellite kernel into addresses mapptdlita
address space, it can directly copy the data from a remoteitdiom
into its own.

On the XScale, our initial implementation used shared mgmor
to pass message metadata structuresmendpy to pass message

data between the PC host and the XScale card. However, direct

memory accesses across the PCI-E bus stall the initiatid, CP
and we therefore found that up to 50% of CPU time was spent

<?xml version="1.0" encoding="utf-8"?>
<application name="TcpTest" runtime="Full">
<endpoints>
<inputPipe id="0" affinity="0"
contractName="PipeContract“/>

<endpoint id="2" affinity="-1"
contractName="TcpContract“/>
</endpoints>

Figure 2: Example process manifest with affinity

to the stdin process. The second message-passing chateelifi
the example is a connection to the Helios TCP service. Theess
lists an affinity value of -1, which means the process exgess
wish to execute on a satellite kernel that differs from thenkke
that is servicing TCP packets and sockets. The placemeteof t
application is changed simply by changing the affinity exstrin
the manifest.

in memcpy routines. To reduce direct shared memory access and 3.7.2 Types of Affinity

to allow overlap between I/O and computation, we used the XS-
cale’s asynchronous DMA (ADMA) engine to transfer metadata

and data. This reduced the number of CPU cycles used during a

data transfer by an order of magnitude. Since the data gaisf
asynchronous, we needed to determine when the transfele@sp
without resorting to polling. We therefore programmed tHaMA
controller so that, after transferring the data to the remeit ini-
tiates a DMA from the memory of the XScale to a registethe
XScale's own messaging unithis DMA triggers an interrupt to
the x86 when the transfer is complete, which notifies thellgate
kernel on the x86 that it is safe to free the memory associatid
the transferred data.

We further improved performance by adding a new allocator
method that is DMA-aware. Normally, the allocator zeroes ou
pages to prevent information written by other processes feak-
ing. Since pages are immediately overwritten during a DM#, t
DMA-aware allocator skips the step that zeroes out pageshwh
saves CPU cycles.

3.7 Affinity

3.7.1 Expressing Affinity Policies

Affinity policies are expressed in a manifest that accomgmni
a process executable. The manifest is an XML file that is auto-
matically generated when a process is compiled into CIL, iand
contains a list of message-passing channels the processidiep
upon. Message-passing channels are expressed as the nfames
Sing# contracts, which were used to generate the code tkat ex
cutes the details of message passing within each procesmugh
the initial manifest is generated by the Sing# compiler, XihéL
file is designed to be human readable and edited without saces
ily making any changes to the binary that accompanies ita¢t, f
since affinity has no impact on a process once it begins execut
processes that are not developed with affinity in mind wititaaue
to operate correctly even if affinity values are added to aifesin
by a third party without any changes to the program binary.

Figure 2 shows a portion of a manifest from the Helios TCP test
suite. Every process has at least two message-passingethiann
stdin and stdout, connected to it by default. In Figure 2insisl
represented in the manifest and has an affinity value of Octwhi
means that the process does not care where it executestiomela

Affinity is either a positive or negative value. A positivdiaf
ity value denotes that a process prefers local messagenpassil
therefore it will benefit from a traditional, zero-copy, reage-
passing channel. A negative affinity value expresses amestte
in non-interference. A process using negative affinity wihe-
fit from executing in isolation from other processes with ebhit
communicates. The default affinity value, which is zerojdates
no placement preference for the application.

Affinity could be expressed as two different values. Howgver
since preferences for local message passing and nonerercde
are mutually exclusive, Helios uses a single integer vauepre-
sent one preference over the other. Beyond its simplicffinity
allows developers to express the dependencies that aretanpo
to maximize the performance of an application without hg\any
knowledge of the topology of a particular machine.

Positive affinity is generally used to describe two differgpes
of dependencies. First, positive affinity represents a tighipling
between two processes. These tightly-coupled relatipsshie
sometimes between a driver and a process that uses it. Fopexa
a NIC driver and a networking stack are tightly coupled. Reng
packets and demultiplexing them is a performance-seasiéisk.
Therefore the Helios networking stack expresses posifieits
with networking drivers to ensure that the networking staic#t the
driver will always execute on the same device. In this examnpl
the driver exists on a device because the hardware reqtiasci
therefore the networking stack wanted to express the pafiay
twherever a NIC driver executes, the networking stack sthewk-
cute as well.” Positive affinity is not limited to drivers, e used
to express a preference for fast message passing betwedwany
processes that wish to communicate with each other.

The second use of positive affinity captures a platform prefe
ence. Platform preferences do not require any additionahae
nism. Instead, they are expressed as preferences for treagees
passing channels to other satellite kernels, which aretadadnch
processes remotely. The name of the service describesifenh.
For example, a satellite kernel on a GPU may advertise itself
a “Vector CPU” while a typical x86 processor is advertisechas
“Out-of-order x86.” A process with a preference for a partic set
of platforms can express a range of affinity values. For exenap
process may express a higher affinity value for a GPU than &n x8
processor, so that when both are available one will be chogen



SelectSatelliteKernel()

{
if platform affinity {
find max affinity platform with at least 1 kernel
keep only kernels equal to max platform affinity
if number of kernels is 1 return kernel

}

if positive affinity {
for each remaining kernel
sum positive affinity of each service

keep only kernels with max positive affinity
if number of kernels is 1 return kernel

}

if negative affinity {
for each remaining kernel
sum negative affinity of each service

keep only kernels with min negative affinity
if number of kernels is 1 return kernel

}

return kernel with lowest CPU utilization

Figure 3: Process placement pseudocode

the other. Helios uses positive platform affinity values wdl the
list of possible satellite kernels that are eligible to hegarticular
process.

Negative affinity allows a process to express a policy of non-
interference with another process. Negative affinity isfised as
a means of avoiding resource contention. For example, twd CP
bound processes might want to maximize performance by ensur
ing they do not execute on the same satellite kernel. Alteelg,

a process might want to ensure it does not suffer from hamlwar
interrupts serviced by a particular driver.

By itself, negative affinity provides no guidance other than
attempt to avoid certain satellite kernels. Thereforeatieg affin-
ity may be combined with a positive platform affinity to guatiee
a performance threshold. For example, a process with ainegat
affinity for another process with which it communicates ammbs-
itive affinity for any satellite kernel executing on an odtevder
x86 CPU ensures that it will execute in isolation from theeoth
process only if there are other satellite kernels executimdpigh
throughput x86 processors. Otherwise, the two procesdeexwi
ecute on the same satellite kernel. This policy preventoegss
from being offloaded onto a CPU that is orders of magnitudeesio
than the developer intended.

There is a second use of negative affinity caltedf-reference
affinity. If a process can scale-out its performance by running mul-
tiple copies of itself on different devices or NUMA domairis,
can reference its own service and place a negative affinitthen
communication channel it advertises in the namespace. \&tien
ditional copies are invoked, Helios will ensure they runepen-
dently on different satellite kernels.

3.7.3 Turning Policies into Actions

Helios processes the affinity values within a manifest taoskeo
a satellite kernel where a process will start. Affinity valuere
prioritized first by platform affinities, then by other pagd affini-

ties, and finally by negative affinities. CPU utilizationses a tie
breaker if more than one kernel meets the criteria expressig
manifest.

Helios uses a three-pass iterative algorithm, shown inrEigu
when making a placement decision. Helios begins by praogssi
affinity values to kernel control channels, which each repn¢ a
particular platform. We assume these channels will be staid
ized by convention and will therefore be easily identifiabl
preferences for platforms exist, then Helios starts withglatform
with the highest affinity value and searches for satellita&ks with
matching platforms advertised in the namespace. If norst,dékian
it moves to the next preferred platform. If only one kernedvsil-
able for a particular platform, then the process is com@etbthe
process is started. If platforms are preferred and no keraed
available, then Helios returns an error. However, if nofptat is
preferred, then all satellite kernels are kept. If multigdeellite ker-
nels for the preferred platform are available, then onlg#ilkernels
are used in the second step of the algorithm.

In the second step, a tally of the total positive affinity ipken
behalf of each remaining satellite kernel. The total pesiéffinity
for each satellite kernel is calculated by summing the ajfivalues
for each service, specified by the manifest, which is exagubin
that satellite kernel. Helios then selects the satellitaddés) with
the maximum affinity sum. If a single satellite kernel rensafiter
this step, then the kernel is returned. If multiple saelkernels
remain, either because there were multiple kernels witrstime
maximum sum or because positive affinity was not specifiegh th
negative affinity values are processed. The same algorshep-i
plied to negative affinity values as was used with positifaniaf
values. If after processing negative affinity values theeeraulti-
ple satellite kernels available, then Helios selects ttadlga kernel
with the lowest total CPU load.

As can be seen, the algorithm prioritizes positive affinitygo
negative affinity by processing positive affinity valuestfir\l-
ternatively, positive and negative affinities could be siedmWe
chose to use a priority approach because we found it easieato
son about where a process would run given different topefogi
For example, we knew that a platform preference would alvieys
honored no matter what other affinity values were present.

Affinity provides a simple mechanism for placing processes o
satellite kernels. One could imagine more complex mechafsr
determining where a process should execute. For exampedin
tion to affinities, application manifests could specify CRidource
requirements, so that the placement mechanism could trptie o
mally allocate CPU time among applications. However, deter
ing resource requirements ahead of time is more difficultifipli-
cation developers than specifying affinities, and if theursgments
are known exactly, the placement problem is a bin-packirmdppr
lem, which is NP-hard. Alternatively, the system could dyia
cally measure CPU and channel usage, and use the measwement
to influence placement policy. While such dynamic placenment
common on homogeneous systems, it is much more difficult to im
plement on heterogeneous systems where processes casifypt ea
migrate between processors. For heterogeneous systdimgy af
strikes a practical balance between simplicity and opiimal

3.7.4 A Multi-Process Example

As an example of a multi-process application that takesmadva
tage of affinity, consider the Helios mail server applicatibat is
composed of an SMTP front-end application, an antivirusiser
and a storage service. The SMTP server has message-passing ¢
nels to the TCP service, the antivirus service, and the gtosar-
vice. The storage service has additional channels to aanostof



the FAT32 file system. All of the components of the applicatoe
multithreaded, and each process also has message-pasaimpls

to stdin and stdout. The SMTP server processes incoming SMTP
commands; when a mail message is sent through the server, it i
sent to the storage service. The storage service sends #iktem
the antivirus service to be scanned. If the antivirus servilcds

the email is clean, than the storage service writes the éntaian
appropriate mailbox. The antivirus process is CPU and mgmor
bound, since it checks messages against an in-memory databa
virus signatures. The SMTP server is I/O-bound to the ne¢wor
and the storage service is 1/0O-bound to disk. Therefore athe
tivirus service expresses a negative affinity with the naits so
that it has a maximum number of CPU cycles available to it, and
is not interrupted by hardware interrupts either from thekdir

the network. On the other hand, the mail service expresses-a p
itive affinity with the file system, and the SMTP service exgses

no preference with regards to the networking stack. Thuslewh
many components are involved in the mail server applicattoere

are few affinity values that must be expressed to maximizieoper
mance. The mail server benchmark results are covered iil iteta
Section 4.5.2.

4. EVALUATION

Our evaluation sets out to answer the following questions:
e Does Helios make it easier to use programmable devices?
e Can offloading with satellite kernels improve performance?

e Does kernel isolation improve performance on NUMA archi-
tectures?

e Does Helios benefit applications executing on NUMA archi-
tectures?

4.1 Methodology

We evaluated Helios on two different platforms. The firstpla
form is an Intel Core2 Duo processor running at 2.66 GHz with 2
GB of RAM. The programmable device is a hardware RAID de-
velopment board based on Intel XScale IOP348 processomginn
at 1.2GHz with 256 MB of RAM, and featuring an onboard In-
tel Gb Ethernet adapter. The development board is attachbt
host by an 8-lane PCI Express interface. The second plaifoan
dual dual-core (2 chips, 2 cores per chip) motherboard wbach
core is a 2 GHz Opteron processor. Each chip runs within its ow
NUMA domain, and each NUMA domain has 1 GB of RAM, for a
total of 2 GB. The machine runs with an Intel Gb PCI Etherned ca
and a 200 GB hard drive. When we run networking experiments,
machines are connected with a gigabit Ethernet switch. oRerf
mance was measured by using the total number of CPU cycles tha
elapsed during an experiment; the cycle-count was thenecta/
into standard units of time.

When we run experiments evaluating the benefits of satkdite
nels on NUMA architectures we run in two configurations. Fias
configuration that uses a non-NUMA aware version of Heliakhwi
BIOS interleaved-memory turned on, which interleaves nrgron
4 KB page boundaries. This version runs a single satellitedte
across all processors. Second, a NUMA-aware version obbleli
(no interleaved memory) that runs the coordinator kernsIUtVIA
domain O, and a satellite kernel in NUMA domain 1. Each kernel
executes on the two processors native to its NUMA domain. We
measured the raw memory latency of each type of memory and
found that L2 cache misses to remote memory were 38% slower
than local memory, and accesses to interleaved memory were o
average 19% slower than accesses to local memory.

[ Name | LOC [ LOC changed] LOM changed|
Networking stack | 9600 | O 1
FAT32 file system| 14200 | 0 1
TCP test harness | 300 5 1
Disk indexing tool| 900 0 1
Network driver 1700 | O 0
Mail benchmark | 2700 | O 3
Web Server 1850 | O 1

This table shows several example applications and services that
were run both on an x86 host and an XScale (ARM) programmable
device. All applications had lines within their manifests (LOM) mod-
ified to add affinity settings to channels. All applications were writ-
ten originally for Singularity, without programmable devices in mind.
Most worked without modification using satellite kernels.

Figure 4: Changes required to offload applications and senges

4.2 Using Affinity to set Placement Policies

To see how well satellite kernels, remote channels, affiaitg
our 2-stage compilation strategy worked, we took a numbeipef
plications originally written for Singularity (i.e., witho thought
towards offloading to another architecture) and added #ffiril-
ues to each application’s manifest. Once we arranged fobwild
system to compile to both ISAs, all of our examples ran withou
modification except for one: our TCP testing harness usetritpa
point code to calculate throughput numbers. Our progranecs
vice does not have a floating point unit, and we had not yetcdde
floating point emulation code to the kernel. As a stop-gapsuesa
we changed the way floating-point code was calculated. Later
added floating-point emulation code to the satellite ketmehsure
other applications could run unmodified.

We had the same networking chip set on both the programmable
device and on a non-programmable networking card. The mktwo
ing driver for this chip, which was written for Singularityorked
without modification once compiled to ARM byte-code. Furthe
our networking stack, which supports TCP, IP, UDP, DHCP, and
ARP protocols, worked without modification on the prograrbtea
device by adding a positive affinity value between it and tee n
working driver.

4.3 Message-passing Microbenchmark

Our next benchmark measured the cost of remote (RMP) and lo-
cal (LMP) message passing on the two platforms that supptet-s
lite kernels. We ran SingBench, which was originally desitjto
benchmark the performance of Singularity message passsing
local message passing and remote message passing bothéb a sa
lite kernel on a NUMA domain and a satellite kernel on the X8ca
I/O card. The benchmark forks a child process and then it ureas
the time to send and receive a message of a certain size.

The results are presented in Figure 5. The x-axis shows the
amount of data sent one-way during the test, and the y-agigsh
the time in microseconds to send and receive a single message
Since no copies are made during LMP, the time is constanteas th
size of the message grows. RMP on NUMA grows with the size of
the message, while RMP on XScale is bound mainly by the time
to program the ADMA controller. Therefore, once messages ar
greater than 32 KB in size, message passing over the PCI-E bus
more efficient than message passing between two NUMA domains

4.4 Benefits of XScale Offloading

We next examined the benefits of offloading different compo-
nents of Helios onto the XScale I/O card.
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This graph shows the difference in time to communicate over a local
message passing channel and a remote message passing channel
to the XScale 1/0 card and a NUMA domain. Results are the mean
of 20 runs. Note the x-axis is a log scale.

Figure 5: Message passing microbenchmark

4.4.1 Netstack Subsystem Offload

We were interested to see whether we could improve the per-
formance of an application by offloading a dependent opeyati
system component onto the XScale I/O card. We took an exist-
ing Singularity service that decompresses PNG images anig ma
it available via a TCP/IP connection. We then ran two versioh

| PNG Size| x86 | + XScale| Speedup| % cswi |

28 KB | 161 171 106% 54%
92KB | 55 61 112% 68%
150KB | 35 38 110% 65%
290KB | 19 21 110% 53%

This benchmark shows the performance, in uploads per second,
the average speedup, and the reduction in the number of con-
text switches (cswi) by offloading the networking stack to a pro-
grammable device when running a networked PNG decompression
service. All results were the mean of 6 trials and 95% confidence
intervals were within 1% of the mean.

Figure 6: Netstack offload benchmark

| PostMark]| FatFS | IdeDriver | C1(S)] C2(S)]

Xx86 Xx86 Xx86 26.2 4.1
x86 x86 XScale 15.5 8.0
x86 XScale | XScale 47.4 41.7
XScale XScale | XScale 34.4 29.4

This table shows the time, in Seconds, to execute the PostMark file
system benchmark. Each row depicts a different distribution of pro-
cesses between the x86 and XScale CPU. The two times (C1 and
C2) represent two different configurations of the IDE PCI card.

Figure 7: PostMark offload benchmark

vals, since this functionality would be typically used in ailimews
server. We synchronized the file system once per PostMank-tra

it, one where everything ran on a single x86 CPU, and one where action to exercise the file system and IDE driver continupusl

the NIC driver and networking stack (ARP, DHCP, IP, TCP) were
offloaded onto the XScale programmable device.

We used affinity to quickly change and test four differenigieb
for offloading portions of the storage subsystem. We increaily

We then ran the PNG decompression service and connected 8offloaded the IDE driver, then the file system, then the PogtMa

clients (chosen by the number required to saturate the x86) CP

driver process. We used the same IDE controller (Silicongena

over the network and then sent PNGs of varying sizes as fast as3114) attached to the XScale 1/O card and the PC host, and the

possible to be decompressed. The results are shown in Fégure
The first column shows the size of the PNG sent over the network
Larger PNGs took longer to decompress, and therefore sldawd
overall performance. The second and third columns show\the a

same physical disk drive in all experiments. The resultshosvn
in Figure 7.

Ouir first set of runs, shown under the column C1, demonstrated
that offloading the IDE driver to the XScale I/O card improye-

erage uploads per second processed by the PNG decompressioformance by 70%. Upon further investigation, we discoveted

service when the netstack and NIC driver ran on the x86 CPd), an
when they were offloaded to the XScale I/O card. In general, th
benefits of offloading tracked the amount of CPU freed up by of-
floading the networking stack and NIC driver, which can basee
the average speedup in the fourth column. Finally, the fiflbron
shows the reduction in interrupts to the x86 processor wienét-
stack and NIC driver were offloaded. The reduction occured b
cause the XScale CPU absorbed all of the interrupts gekbgte
the NIC. Since the x86 processor took fewer interrupts, tR&P
decompression service operated more efficiently and thierdfs
performance improved.

4.4.2 Storage Subsystem Offload

Since the XScale I/0O card had a PCI-X slot, we decided to em-
ulate a programmable disk by inserting a PCI SATA card to test
the benefits of offloading portions of the Helios storage gsitasn.
Unlike the netstack offloading benchmark, where the partitig
of work was straightforward, we were unsure which portiofihe
storage subsystem should be offloaded to improve perforananc

We therefore used the PostMark benchmark [17], which emu-
lates the small file workload of a mail/news server. We ported
PostMark to Singularity and enhanced it to run with a confiple
number of driver threads to increase the load on the system. W
also added code to synchronize the filesystem at configuiratieie

the PCI card overloaded a configuration register (initialed to
define the cacheline size of the CPU) to define a low-water mark
that determined when the card should fill its hardware queitie w
operations destined for the disk. Since the cacheline sizeused
for the water mark, which differed between each architecttire
low-water mark was set too high and was not set uniformlyeAft
reconfiguring the card, the performance of executing alt@sees
on the x86 was roughly 2x faster than offloading the IDE drieer
the XScale 1/O card.

Our experience with configuring the PCI card was not unusual;
in heterogeneous systems, small configuration changes letel
to large performance changes, and these performance chanaye
require changing the placement of processes. Using affsiity
plifies performance tuning by allowing us to quickly cycleahgh
different placement policies.

4.4.3 Indexing Application Offload

Our next experiment measures the benefits of offloading gener
work to the XScale I/O card. One of our colleagues had wristen
indexing tool for Singularity. The indexer builds a wordskd in-
verted index on a set of documents by using a sort-basedsinver
algorithm with n-way external merge sort. The indexer is pata-
tionally intensive, but also interacts with the file systemead files
and output its results. We decided to model a common probdem:
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This figure shows the time to run a SAT solver while running a disk
indexer. The left hand bar shows the time when both programs are
run on the same CPU. The right hand bar shows the time when the
indexer is offloaded automatically to a satellite kernel running on the
XScale programmable device. The results are the mean of 5 tests.
Error bars represent 90% confidence intervals.

Figure 8: Indexing offloading benchmark
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This figure shows a scheduler microbenchmark that measures the
time to spawn 16 threads hat each call threadyield 1 million times.
The left hand bar shows a single-kernel version of Helios across two
NUMA domains. The right hand bar shows Helios with two kernels,
one in each domain. The results are the mean of 5 tests. Error bars
represent 90% confidence intervals.

Figure 9: Scheduling NUMA benchmark

We are certain that the scheduler could be optimized to remov

of foreground processes. We ran the indexer at the same téne w these serialization bottlenecks and improve single-kepaefor-

ran a SAT solver on a reasonably sized problem.

We ran the indexer with two different affinity values with the
message-passing channel to the file system. A value of 0hwhic
expressed no preference with respect to the file system, ealde
of -1, which hinted that it might benefit from isolation. Byarig-
ing the affinity value, Helios offloaded the indexer to the Al®ec
1/0 card. Figure 8 shows the results. By automatically offing
the indexer, the SAT solver runs 28% faster than when shahimg
CPU with the indexing tool. The benefits of Helios were appare
when running the experiments, no recompilation or codaregit
was required. The author of the indexing tool did not needetmb
volved to create an offloaded version, since it only requiréding
an affinity value to the application’s manifest.

4.5 Benefits of Performance Isolation

4.5.1 Scheduling Microbenchmark
Our next benchmark tested the utility of kernel isolationoam

mance. Yet there would undoubtedly be other bottleneckéias t
number of cores grows. Helios provides a simple mechanisomalr
scaling problems: by growing the number of kernels, lock-con
tention is decreased.

4.5.2 Mail Server Macrobenchmark

We were interested to see how Helios could improve perfor-
mance of a more involved benchmark on a NUMA machine. We
therefore ran a mail server benchmark and measured appticat
throughput. The application, which is describe in Sectioh43 is
composed of an SMTP server, an antivirus scanner, and astora
service. Since Singularity had no antivirus agent, we woateown
and used the virus definitions for the popular ClamAV antisiap-
plication. We attempted to make the antivirus agent as efftci
as possible, but it is the bottleneck in the system since M&FRS
server waits for emails to be scanned and written to diskrbefo
confirming an email’s receipt. We hypothesized that thevans
scanner, which is memory and CPU bound, would benefit from ker

two-node NUMA machine. Many operating systems have had muchnel isolation. Its negative affinity with the storage seeviauses it

work put into them to eliminate locking bottlenecks as thenbar
of cores increases. We hypothesized that executing setediinels
would be a simple way to scale around locking serializaticbp
lems. We ran a Singularity scheduling stress-test, whichsmes
the time it takes 16 threads to callreadyield one million times.
Helios uses the Singularity MinScheduler, which is a rouoioin
scheduler without priorities. The MinScheduler favoretuds that
have recently become unblocked and tries to avoid or mi@miz
reading the clock, resetting the timer, and holding the atistper
lock. The scheduler also does simple load-balancing byaisg)
work to idle processors through an IPl interrupt. The scherchas
known scaling problems, mainly because a single lock ptetbe
dispatching mechanism.

The results of the scheduling benchmark can be seen in Figure
The version labeled “No satellite kernel” ran all 16 threads ver-
sion of Helios that is not NUMA-aware. The right hand bar grap
shows a NUMA-aware version of Helios that runs two kernetse T
version with two kernels scales around the serializatictidrzeck
and must run only 8 threads per kernel; it is 68% faster than th
single-kernel version of Helios. The greater than 2x improent
in performance over a single kernel is caused by the loaaRbalg
algorithm, which issues expensive IPI interrupts and haremfor-
mance as the number of cores grows.

to run in isolation when two satellite kernels are present.

We randomly selected 1,000 emails from the Enron email cor-
pus [19] and had a single client send the emails as fast a$ poss
ble. The results are in Figure 10. The left hand graph shows th
emails-per-second processed by the email server (whidhdes
a blocking scan to the virus scanner). Using satellite Kerime-
proves throughput by 39%. Since satellite kernels isolateote
vs local memory, every application component benefits frastefr
memory accesses on L2 cache misses. Further, satellitel&em-
sure that processes always use local memory when accessimej k
code and data structures.

The right hand graph of Figure 10 shows the instructions-per
cycle (IPC) of the anti-virus scanner. We captured this imeis-
ing the performance counters available on AMD processote T
graph shows that the antivirus scanner improves its IPC 19 20
when running on a satellite kernel. By running on its own kgrn
other applications never have the opportunity to pollug dhti-
virus scanner’s L1 or L2 cache, improving its cache-hit rate
therefore improving its IPC

We were interested to see how performance changed when mul-
tiple applications were executing at the same time. We fbmre
created a second configuration of the benchmark that rantbeth
email server application and the indexer. In addition, wancfed



1.0

80 === No sat. kernel

osd == Sat. kernel

60—
0.6

40
0.4

204 0.2

Emails per second
Instructions per cycle (IPC)

0.0-

These graphs show the performance of an email server application
that processes 1,000 emails from a single connected client. Each
email is first scanned by an antivirus agent before being written to
disk. The results are the mean of 10 trials, the error bars are 90%
confidence intervals.

Figure 10: Mail server NUMA benchmark

the affinity values in the email server so that the antivircans
ner used self-reference affinity. Figure 11 shows the timgrde
cess 1,000 emails sent from two clients when running either o
or two copies of the antivirus scanner. Each entry below an ap
plication lists the NUMA domain chosen by Helios to launclklea
process. When the antivirus scanner first launches, théafiigo-
rithm falls back on CPU utilization. Since the indexer cesaCPU
contention in domain 0, Helios launches the first antivicesnser
in domain 1. When the second antivirus scanner is launcledfd, s
reference affinity causes Helios to choose domain 0. Sinc&to

0 is already executing many other processes (including #te n
working stack and the indexer), performance is improved itdy o
10% by adding an additional antivirus scanner. Howevemigffi
made it simple to run multiple copies of the antivirus scarine
different satellite kernels without any knowledge of thpdimgy
of the machine.

5. RELATED WORK

To the best of our knowledge, Helios is the first operatingesyis
to provide a seamless, single image operating system atistra
across heterogeneous programmable devices.

Helios treats programmable devices as part of a “distribsys-
tem in the small,” and is inspired by distributed operatigigtems
such as LOCUS [33], Emerald [16, 31], and Quicksilver [27].

Helios is derived from the Singularity operating system] [dr3d
extends Singularity’s message-passing interface [6] tkwrans-
parently between different satellite kernels. A pre-cursothis
approach is found in the Mach microkernel [1], which prodida
IPC abstraction that worked identically for processes withsin-

| SMTP Server| Indexer| AV1 [ AV2 [ Time (S) |

DO DO D1 N/A 20.7
DO DO D1 DO 17.7

This benchmark shows a multi-program benchmark which measures
the time to process 1,000 emails as fast as possible with 1 or 2 an-
tivirus scanners while a file indexer is run concurrently. The entries
in the second and third row describe which NUMA domain Helios
chose for each process. Standard deviations were within 2% of the
mean.

Figure 11: Self-reference affinity benchmark

Auspex Systems [12], which designed network file serversara
UNIX kernel on one CPU and dedicated other CPUs to the network
driver, the storage system, and the file system. The offlopdzd
cesses were linked against a compact runtime that suppoeed
ory allocation, message passing, timers, and interrupicieg.

The process offloading avoided the costs associated wittXBidil
time critical components.

Keeton et al. [18] proposeihtelligent disks adding relatively
powerful embedded processors to disks together with ahaiti
memory to improve the performance of database applicatibins
Active Disk project [26] has validated this approach enwailliy,
and the Smart Disk project [5] has validated this approaebre-
ically for a range of database workloads.

Network adapters have also been a focus of offloading. SPINE
was a custom runtime for programmable network adaptersHtyuil
Fiuczynscki et al. [9, 8]. The SPINE runtime provided a typées
programming environment for code on the network adapter and
included abortable per packet computation to guarantegafor
progress and to prevent interference with real-time pgolatess-
ing tasks, such as network video playback.

More recently, the AsyMOS [23] and Piglet [24] systems ded-
icated a processor in an SMP system to act as a programmable
channel processor. The channel processor ran a lightweéyfite
kernel with a virtual clock packet scheduler to provide gyedf-
service guarantees for network applications. McAuley apddé-
bauer [20] leverage virtual machine processor featuresetateyir-
tual channel processord he virtual channel processors are used to
sandbox I/0 system faults and they run 1/O tasks on eitheCgig,
or an 1/O processor, depending on which performs better.

Helios benefits from this large body of prior work that demon-
strates the benefits of using programmable devices to offioakl.
Helios builds on this work by focusing on a generalized appho
for developing, deploying and tuning applications for hege-
neous systems.

Helios uses satellite kernels to export general OS abiirescto
programmable devices. An alternative approach is to idstesate
specialized runtime systems. The Hydra framework develdyye

gle system, and for processes on remote systems over a local o Weinsberg et al. [34] provides a programming model and geplo

wide area network.

Programmable devices and runtimes.Programmable devices
have a long history in computer systems, and many prior tpera
ing systems have found ways to offload work to them. The IBM
709 [14] usedchannel processorto remove the burden of /O
from the main CPU and to allow I/O transfers to complete asyn-
chronously. Subsequent systems such as the IBM Systemf@60 a
System/370 [15] and Control Data CDC6600 [32] continued thi
trend with increased numbers of channel processors. Haweve
the range of operations supported by channel processoeaepp
to have been limited to basic data transfer and signaling. His
Master DMA devices found on commodity PCs today are the logi-
cal descendants of channel processors.

ment algorithm for offloading components onto programmalkele
ripherals, including network adapters. Hydra assumes ooemts
are able to communicate through a common mechanism, and pro-
vides a modular runtime. Unlike Helios and SPINE, the ruetim
environment does not provide safety guarantees.
Heterogeneous architectures. The Hera-JVM [21] manages
heterogeneity by hiding it behind a virtual machine. Thidiadnal
layer of abstraction allows developers to exploit hetenegels re-
sources through code annotation or runtime monitoring,ieadl
lows threads to migrate between general purpose proceandrs
powerful floating point units that are part of the Cell arebttre.
This approach is closely related to Emerald [31], whichvedl@b-
jects and threads to migrate between machines of differehitac-



tures over a local area network. Helios takes a differentcgmgh
by making the differences in heterogeneous architectuqgkici
and by compiling multiple versions of a process for eachlakbs
architecture.

Multi-kernel systems. Other operating systems have been built
around the premise of running multiple kernels within a Enga-
chine, but prior efforts have focused on a homogeneous Cé&ti-ar
tecture. Hive [4] exported a single instance of the IRIX @pieig
system while dividing work and resource management amdng di
ferent NUMA domains to improve fault tolerance. Each NUMA
domain ran its own copy of the IRIX kernel. Hive could migrate
threads between NUMA domains, and would share memory be-
tween domains to give threads the illusion of executing oingles
kernel. Hive shared I/O devices by running distributed aagions,
such as NFS, in different NUMA domains. Alternatively, Céglr
Disco [11] ran multiple kernels within a single machine by+u
ning multiple virtual machines across NUMA domains to ceemt
virtual cluster. Chakraborty [3] explored dividing corestieen
OS and applications functionality, and reserving certaires for
specific system calls. Finally, the Corey [2] operating eysbp-
timized multi-core execution by exposing APIs to applioat to
avoid unnecessary sharing of kernel state.

In general, there has been much research into improvingethe p
formance of NUMA architectures. For example, the Tornaderop
ating system [10] and K42 [30] decompose OS services intotdj
to try and improve resource locality. In contrast, Heliossusatel-
lite kernels to ensure that resource requests are alwagbttman
application.

More recently, the Barrelfish [28] operating system strit@s
improve performance by using a mix of online monitoring and
statically defined application resources requirementsakengood
placement decisions for applications. Helios and Bartelfise
complimentary efforts at managing heterogeneity. Bastelfb-
cuses on gaining a fine-grained understanding of applicate
quirements when running applications, while the focus dfd$es
to export a single-kernel image across heterogenous cegsors
to make it easy for applications to take advantage of newvenel
platforms.

6. CONCLUSION AND FUTURE WORK

Helios is an operating system designed for heterogeneais pr
gramming environments. Helios uses satellite kernelsrtgplsy
program development, and it provides affinity as a way to bet-
ter reason about deploying and performance tuning apjitat
for unknown hardware topologies. We demonstrated that@ppl
tions are easily offloaded to programmable devices, and wmede
strated that affinity helps to quickly tune application pemiance.

In the future, we see three main areas of focus. First, adinou
we have found satellite kernels and affinity to be usefulgotbleir
deployment has been limited to only one programmable device
Further, Helios has not yet been ported to the most promjziog
grammable device: a GPU. We currently lack a compiler to cre-
ate DirectX textures from CIL, and graphics cards do not jgl@v
timers or interrupt controllers, which are required to rusatellite
kernel. In the future, we want to port Helios to the Intel ledree
graphics card and measure the benefits provided by sakdtitels
to applications targeted at GPUs.

Second, while we found workloads that benefit from the strong
kernel isolation provided by Helios, the inability of preses to
span NUMA domains limits the scalability of large, multr¢laded
processes. In the future, we want to allow processes to spamN
domains (should they require it) by moving CPUs and memory be
tween satellite kernels.

Third, Helios is an experimental operating system with atéoh
number of applications. In the future, we want to determiow to
create satellite kernels from a commodity operating systiech as
Windows, which supports a much larger API. A commodity oper-
ating system provides a much larger set of applications witich
we can experiment.

Ultimately, the hardware on programmable devices has oatpa
the development of software frameworks to manage them.okleli
provides a general framework for developing, deployingl am-
ing applications destined for programmable devices ofiagrar-
chitectures and performance characteristics.
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