
Crowdsourcing General Computation

Haoqi Zhang∗, Eric Horvitz†, Rob C. Miller‡, and David C. Parkes∗
∗Harvard SEAS †Microsoft Research ‡MIT CSAIL

Cambridge, MA 02138, USA Redmond, WA 98052, USA Cambridge, MA 02139, USA
{hq, parkes}@eecs.harvard.edu horvitz@microsoft.edu rcm@mit.edu

ABSTRACT
We present a direction of research on principles and methods
that can enable general problem solving via human compu-
tation systems. A key challenge in human computation is
the effective and efficient coordination of problem solving.
While simple tasks may be easy to partition across individ-
uals, more complex tasks highlight challenges and oppor-
tunities for more sophisticated coordination and optimiza-
tion, leveraging such core notions as problem decomposi-
tion, subproblem routing and solution, and the recomposi-
tion of solved subproblems into solutions. We discuss the in-
terplay between algorithmic paradigms and human abilities,
and illustrate through examples how members of a crowd
can play diverse roles in an organized problem-solving pro-
cess, serving not only as ‘data oracles’ at the endpoints of
computation, but also as modules for decomposing prob-
lems, controlling the algorithmic progression, and perform-
ing human program synthesis.

Author Keywords
General computation, crowdsourcing, human program syn-
thesis, task routing, task decomposition, control, design

ACM Classification Keywords
H.5 Information Interfaces and Presentation: Theory and
Methods; F.0 Theory of Computation: General

General Terms
Algorithm, Design, Human Factors

INTRODUCTION
In recent years, games with a purpose like the ESP game [6]
and task markets like Amazon Mechanical Turk (mturk.com)
have become successful crowd-based systems that attract a
crowd to perform a variety of tasks that are difficult for com-
puters, yet solvable by humans. The ability to attract a crowd
allows for massive parallel processes across many “human
computers,” leading to high throughput on tasks like im-
age labeling, audio transcription, and product categorization.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05...$10.00.

With the growth of online task markets, such parallel solving
is becoming increasingly available to anyone with a task in
mind, and the willingness to pay for its completion.

Although such systems allow a variety of tasks to be com-
pleted by humans, the tasks posed for solution are typically
simple, and thus easy to divide and distribute across indi-
viduals. While the crowd can provide tremendous value for
such applications, we would also like to leverage a crowd
for classes of tasks that are inherently more complex and
less easily partitioned into sets of tasks that can be separately
solved, e.g., writing, planning, and coding, to name some ex-
amples. Systems like Wikipedia provide evidence that it is
possible to coordinate a crowd for such complex tasks (at the
same scale), but we are only scratching the surface on how a
crowd can contribute to the solution of a complex problem.

As we move from parallelization based on simple partition-
ing and distribution to more sophisticated problem-solving
procedures, we find it useful to view the coordination of a
crowd’s problem-solving as programming, and also, as or-
ganization design. Little et al. [3] developed Turkit, a toolkit
that enables requesters to write programs executed by human
workers on Mechanical Turk, showing how basic program-
ming constructs can be applied to human computation. We
are exploring opportunities to generalize the basic program-
ming ideas explored to date, such as iterative refinement, to
a wider range of algorithmic concepts and procedures de-
veloped in computer science for solving different kinds of
problems. Attempts to implement a wider range of algorith-
mic concepts derived from computational problem solving
quickly bring into focus opportunities for organization de-
sign, as people within a crowd may perform different roles
based on their interests and expertise. As in traditional orga-
nizations, individual roles need not be limited to ‘doing the
work’, but may include defining and communicating sub-
goals, evaluating the value of current solutions, and routing
tasks to appropriate individuals.

Taking this perspective that coordinating a crowd can be
thought of as programming and organization design, we are
investigating the interplay between algorithmic paradigms
and human abilities and interests for the purposes of crowd-
sourcing general computation that enables the solution of
new classes of tasks via human computation. One direction
of work in this realm is the development of task environ-
ments that enable members of the crowd to be organized (or
self-organized) effectively to compose a solution to a prob-
lem. We consider well-known algorithmic methods such as

1

Figure 1. Diagram depicting the ‘decompose, solve, and recompose’
structure of divide-and-conquer algorithms, with reasoning about costs
and tradeoffs associated with different phases of the problem solving
process (from [1]).

divide and conquer and local search, and illustrate through
examples different patterns of interaction in which members
of a crowd can play diverse roles in an organized problem-
solving process—where people not only serve as ‘data ora-
cles’ at the endpoints of computation, but also as modules
for decomposing problems, controlling the algorithmic pro-
gression, and even performing human program synthesis.

We identify three interrelated subareas of study, each fo-
cused on a particular way that the crowd can be harnessed
in more general problem solving:

• Opportunities and challenges with applying known com-
putational procedures to human problem solvers, recog-
nizing the potential and need for designing algorithms whose
subroutines are tailored to the crowd’s abilities and inter-
ests.

• Studies of the crowd’s ability to guide the control flow of
an algorithm, taking advantage of the ability of people to
make decisions on whether to solve the problem now or
further decompose the problem, when to backtrack or to
continue in a search process, and what subgoals to com-
municate in organizing the efforts of other contributors.

• Exploration into using a crowd as a general problem solver,
where given a problem statement as input (a goal), the
crowd synthesizes a solution to the problem by defining
the problem-solving process and executing the plan.

These areas of study promise to enable new classes of appli-
cations for human computation, by providing mechanisms
for involving the crowd in formulating and optimizing problem-
solving plans and executing the solutions.

To highlight opportunities within the first two subareas, we
shall focus on examples drawn from classic computational
problems studied in algorithms and AI, which, by being well-
defined and well-studied, help to illustrate methods for en-
gaging a crowd to perform more general computational so-
lution procedures. For the third subarea, we describe an ex-
ample of how humans can help break down a goal into a plan
of execution.

Figure 2. Snapshot of TurkSort, showing a pivot task [left], the Me-
chanical Turk page listing the sorting subroutines available to workers
[right], and a (mostly correct) sorted list of tiles by grayscale [bottom].

ALGORITHM INSPIRED, CROWD-TAILORED
To enable effective and efficient coordination among human
problem solvers, we draw on algorithmic paradigms such
as divide-and-conquer for decomposing a problem into sub-
problems (which may be further decomposed), and for com-
posing solutions of subproblems into solutions. Divide-and-
conquer algorithms are intended for parallel processing, and
are thus ideal candidates for human computation. Figure 1
provides a structural view of divide-and-conquer algorithms,
wherein one can reason about the relative costs and tradeoffs
associated with different phases of problem solving when
deciding on a particular solution strategy.

We will focus on the familiar problem of sorting as an exam-
ple. We consider how we can couple computational insights
about sorting with our understanding of human abilities and
interests, to design a crowd sorting task. Sorting tasks are
commonplace, and include as examples, ordering favorite
pictures from a family reunion, ranking restaurants in a city,
and ranking the relevance of search results. Drawing on al-
gorithmic knowledge, we may wish to use Quicksort as our
sorting algorithm. Quicksort employs a divide-and-conquer
procedure, where pivotal elements are selected that partition
a list into elements that are ranked higher or lower than the
pivot, and recursive calls are made to Quicksort on these sub-
lists. While the subroutines are all related to ranking items,
they are different from the perspective of a human computer:
picking a good pivot requires finding a middle ranked item,
finding a partition requires identifying everything less than
a reference element, and sorting requires putting things in
order. As different people may have different interests and
abilities in performing theses subtasks, it may make sense to
give people a choice as to which subroutine to perform, so as
to allow for an effective division of labor. In ongoing work,
we are studying a system called ‘TurkSort’ (see Figure 2),
which crowdsources sorting tasks to workers on Mechanical
Turk who contribute to the group sorting effort by finding
pivots, partitioning, halving (find the smaller half), or sort-
ing, at their choosing.

Depending on the particular sorting task, different subrou-
tines can have different costs from the perspective of a hu-
man computer. For example, we may find that Quicksort per-
forms poorly when sorting restaurants, because humans find
it difficult to find good pivots that capture the ‘median restau-
rant.’ But subroutines of other sorting algorithms may be rel-
atively simpler, and such differences can guide the choice of

2

Figure 3. An iterative step in the n-puzzle game, where each Turker can
make only one move. This particular Turker moved the 7 and identified
a helpful sequence of moves, which was then passed down to the next
worker.

the best algorithm to use. For a particular class of tasks, we
might measure the crowd’s performance on a number of sub-
routines (e.g., based on interest, accuracy, and rate of work),
and use such observations to inform, or even optimize, the
design of a sorting algorithm tailored to the crowd’s abilities.
Previous work on automatic task design [2] provide insights
and methods for transforming learnings about people’s per-
formance on different tasks to designs that optimize the dis-
tribution of work in parallel workflows, and such methods
can be similarly adapted for divide-and-conquer schemes.

The sorting example highlights how algorithmic insights for
computer algorithms can guide the design of crowdsourcing
algorithms, and the need to consider human abilities in per-
forming various subroutines—potentially learned through ex-
perimentation. The crowdsourced algorithm’s efficiency can
be judged with respect to the availability and cost of hu-
man oracles of varying complexity [4], and optimized with
respect to such measures. These observations point to an
opportunity to provide methods and principles for custom-
tailoring known algorithms for the design of particular hu-
man solution processes of interest.

HUMANS AS CONTROLLERS
In addition to harnessing the crowd’s problem solving abili-
ties within predefined modules of an algorithm, we can also
leverage the crowd to guide the control flow of an algorithm.
Below we describe several promising directions.

Decompose versus solve
In TurkSort, workers can choose whether to sort the current
list or to decompose the list further, either within the same
interface or as different tasks in the market. The base case of
the recursion is defined implicitly by a decision to sort a list.
More generally, providing a crowd with the options to solve
a problem completely or to first decompose the problem fur-
ther can be useful for a spectrum of tasks where the quality
and difficulty of subtasks may be hard to determine a priori.

Transmitting solution context and subgoals
Some computational methods track and pass parameters on
local and global states and on measures of progress as part
of problem solving. Human computation may face simi-
lar challenges with sharing context among workers about

problem-solving strategy and state, particularly when the com-
putation is divided into small pieces performed by many
workers. Unless a decomposition is defined and that context
is shared, it may be hard for people to contribute effectively.
For example, imagine the problem of writing code or writ-
ing an article, where we wish to enable a crowd to contribute
iteratively, with each worker expected to make only a small
contribution. A worker would have to know enough about
what it is they should work on to work effectively on a sub-
goal at hand, and to know how the subgoal may fit within
the overall aim. But if the cost of understanding the context
dominates the time that the worker is willing to contribute,
then this kind of collaboration becomes costly, ineffective,
or impossible.

In ongoing work, we are studying such challenges with the
8-puzzle, where the goal is to slide tiles on a board until the
numbers on the tiles are in order. Instead of having one per-
son solve the puzzle, we wish to understand how workers
may deal with limited problem-solving context by allowing
each worker to make just one move. With limited context,
workers may get stuck on difficult board positions, where
thrashing can occur with states being revisited by succes-
sive contributors. We seek to understand whether it is pos-
sible to pass along a small amount of context from worker
to worker—with no formal agreements on subgoals—while
still making progress towards the goal. In particular, we are
exploring a version of the game in which a worker is pro-
vided with the last person’s move and their short explana-
tion for making the move. We are finding that communica-
tion can be very useful in some cases. Note Figure 3, where
a Turker noticed a particular path forward and pointed this
out. Had he not contributed that action and highlighted the
path, the problem would not have been as easily solved and
many more steps would have been taken. More importantly,
the ability to pass on context allows the next player to better
know what to do, raising the probability that progress will
be made toward the solution.

Controlling search processes
In local search problems like the 8-puzzle, the ability to
guide the search process towards good neighborhoods and
to backtrack when necessary are important components of
an effective search method. With a human computation ap-
proach to these problems, people can assess the current so-
lution state, decide what neighborhood to search in, and to
backtrack when further improvements from the current state
are unlikely.

TOWARDS HUMAN PROGRAM SYNTHESIS
As the crowd engages in algorithmic control, human com-
puters are no longer limited to providing data output for pre-
defined modules, but can fill in parameters of the algorithm
itself and make evaluative decisions, defining the best paths
through a solution space. An interesting question is whether
a crowd can go beyond algorithm control, towards the notion
of synthesis. In machine computation, program synthesis
considers the use of appropriate design tactics to systemati-
cally derive a program based on a problem specification. For
example, the synthesis of a divide-and-conquer algorithm [5]

3

Figure 4. A goal is decomposed into a list of actionable steps, produced
iteratively by a group of Turkers.

may involve the derivation of a tree of specifications, where
leaves in the tree represent subproblems for which solutions
can be readily provided, and instructions for recomposition
are also derived. Taking the analogy to the crowd, we seek to
enlist a crowd in both program synthesis and program execu-
tion by considering the types of problems that can be solved
by the crowd, and engaging the crowd in the process of con-
structing an overall plan for the problem-solving process and
for executing the plan. Such plans can include decomposing
a problem into subproblems, solving the subproblems, and
then recomposing the solved subproblems into solutions.

This problem is intriguing from a design perspective, and
can also lead to novel applications. To be concrete, let us
consider the problem of constructing a crowd-based advice
system that takes as input a goal in natural language and pro-
vides a solution that helps to accomplish that goal. The goal
itself can be anything, e.g., ‘to plan a weekend in Seattle for
a family with a dog from New York,’ or, ‘to help someone
to understand what to do to best assist a loved one who has
just been diagnosed with Lou Gehrig’s disease.’ To guide
the crowd synthesis process, we consider a top-down ap-
proach in which workers are asked to define subgoals, which
can then be acted upon or further decomposed. In on-going
work, we initiate the first step in this process by request-
ing Turkers to each provide one action step towards helping
someone with the goal. Turkers are shown the list of sug-
gestions provided so far, and are asked to explain why their
suggested step is helpful for the goal. Figure 4 shows the
steps generated by Turkers for the goal of helping a loved
one with Lou Gehrig’s disease. We see a diverse set of
suggestions, some of which are highly relevant (e.g., ‘read
Tuesday with Morrie’) and specific enough to be directly
acted upon by the person who had originally requested the
advice. Other steps, e.g., ‘research the disease’, are more
involved and should be decomposed into more specific ac-
tionable steps. Leveraging the notion that the crowd can
control the problem-solving process by making decompose
vs. solve decisions, we can ask workers for each step re-
turned whether a step is actionable as is (by a Turker or the
original requester) or requires further decomposition. As we
decompose further and subproblems become solvable, (e.g.,
finding articles from particular trustworthy sources, drawing
summaries, and so on), workers can then provide solutions
for these problems. We can imagine crowdsourcing the re-
composition process as well, which may need to be broken
down into subproblems itself, depending on complexity.

In this example, the design of the algorithmic structure (e.g.,
how steps are requested iteratively, how decompose vs solve
is used) frames the solution process, based on which workers
provide the actual decomposition that defines the strategy for
solving the particular problem. Although the approach may
require refinement for particular applications, it provides an
overall sketch for a potentially useful, crowd-powered sys-
tem.1 Understanding how to design effective patterns of in-
teractions for controlling the synthesis process is an impor-
tant area for future work, and should draw on understanding
of peoples abilities to perform synthesis-related actions such
as suggesting subgoals and collating ideas.

ON EXPERTISE
As we move toward crowdsourcing general computation, the
notion of expertise becomes more prominent as roles people
play are more diverse and specialized. The ability to iden-
tify expertise, and to reward individuals for providing meta-
expertise (e.g., controlling the algorithmic process, routing
to others who are experts), can allow us to solve problems
we otherwise would not be able to solve with a crowd. As
such, making use of expertise serves as a complementary
agenda for the study of crowdsourcing general computation.

CONCLUSION
We presented ongoing research and a larger research agenda
moving forward for harnessing human computation in gen-
eral problem solving. We introduced three subareas of study
that focus on particular ways that a crowd can be harnessed
for general problem solving. We see great opportunities for
leveraging algorithmic paradigms in the design of human-
computation systems, and much research ahead on princi-
ples and methods that can enable new classes of application.

ACKNOWLEDGMENTS
We thank Edith Law for many helpful discussions, and Paul
Koch for development support on the TurkSort system.

REFERENCES
1. Horvitz, E. J. Problem-solving design: Reasoning about

computational value, tradeoffs, and resources. In Proc.
NASA Artificial Intelligence Forum (1987).

2. Huang, E., Zhang, H., Parkes, D. C., Gajos, K. Z., and
Chen, Y. Toward automatic task design: a progress
report. In Proc. HCOMP ’10 (2010).

3. Little, G., Chilton, L. B., Goldman, M., and Miller, R. C.
Turkit: tools for iterative tasks on mechanical turk. In
KDD-HCOMP ’09 (2009).

4. Shahaf, D., and Amir, E. Towards a theory of ai
completeness. In Proc. Commonsense’07 (2007).

5. Smith, D. R. Top-down synthesis of divide-and-conquer
algorithms. Artificial Intelligence 27,1 (1985), 43–96.

6. von Ahn, L., and Dabbish, L. Labeling images with a
computer game. In CHI ’04 (2004).

1A simple yet interesting human synthesis system is ‘ifWeRanThe-
World’ (www.ifwerantheworld.com), in which people post goals
they would like to accomplish and friends and like-minded people
suggest and perform microactions toward achieving the goal.

4

