
HashCache: Cache Storage for the Next Billion

Anirudh Badam∗, KyoungSoo Park∗,+, Vivek S. Pai∗ and Larry L. Peterson∗
∗Department of Computer Science

Princeton University
+Department of Computer Science

University of Pittsburgh

Abstract

We present HashCache, a configurable cache storage
engine designed to meet the needs of cache storage
in the developing world. With the advent of cheap
commodity laptops geared for mass deployments, de-
veloping regions are poised to become major users of
the Internet, and given the high cost of bandwidth in
these parts of the world, they stand to gain signifi-
cantly from network caching. However, current Web
proxies are incapable of providing large storage capac-
ities while using small resource footprints, a requirement
for the integrated multi-purpose servers needed to ef-
fectively support developing-world deployments. Hash-
Cache presents a radical departure from the conventional
wisdom in network cache design, and uses 6 to 20 times
less memory than current techniques while still provid-
ing comparable or better performance. As such, Hash-
Cache can be deployed in configurations not attainable
with current approaches, such as having multiple ter-
abytes of external storage cache attached to low-powered
machines. HashCache has been successfully deployed in
two locations in Africa, and further deployments are in
progress.

1 Introduction

Network caching has been used in a variety of contexts
to reduce network latency and bandwidth consumption,
ranging from FTP caching [31], Web caching [15, 4], re-
dundant traffic elimination [20, 28, 29], and content dis-
tribution [1, 10, 26, 41]. All of these cases use local
storage, typically disk-based, to reduce redundant data
fetches over the network. Large enterprises and ISPs
particularly benefit from network caches, since they can
amortize their cost and management over larger user pop-
ulations. Cache storage system design has been shaped
by this class of users, leading to design decisions that fa-
vor first-world usage scenarios. For example, RAM con-
sumption is proportional to disk size due to in-memory

indexing of on-disk data, which was developed when
disk storage was relatively more expensive than it is now.
However, because disk size has been growing faster than
RAM sizes, it is now much cheaper to buy terabytes of
disk than a machine capable of indexing that much stor-
age, since most low-end servers have lower memory lim-
its.

This disk/RAM linkage makes existing cache storage
systems problematic for developing world use, where it
may be very desirable to have terabytes of cheap stor-
age (available for less than US $100/TB) attached to
cheap, low-power machines. However, if indexing a ter-
abyte of storage requires 10 GB of RAM (typical for
current proxy caches), then these deployments will re-
quire server-class machines, with their associated costs
and infrastructure. Worse, this memory is dedicated for
use by a single service, making it difficult to deploy con-
solidated multi-purpose servers. When low-cost laptops
from the One Laptop Per Child project [22] or the Class-
mate from Intel [13] cost only US $200 each, spending
thousands of dollars per server may exceed the cost of
laptops for an entire school.

This situation is especially unfortunate, since band-
width in developing regions is often more expensive,
both in relative and absolute currency, than it is in the
US and Europe. Africa, for example, has poor terrestrial
connectivity, and often uses satellite connectivity, back-
hauled through Europe. One of our partners in Nigeria,
for example, shares a 2 Mbps link, which costs $5000 per
month. Even the recently-planned “Google Satellite,” the
O3b, is expected to drop the cost to only $500/Mbps per
month by 2010 [21]. With efficient cache storage, one
can reduce the network connectivity expenses.

The goal of this project is to develop network cache
stores designed for developing-world usage. In this pa-
per, we present HashCache, a configurable storage sys-
tem that implements flexible indexing policies, all of
which are dramatically more efficient than traditional
cache designs. The most radical policy uses no main

memory for indexing, and obtains performance compa-
rable to traditional software solutions such as the Squid
Web proxy cache. The highest performance policy per-
forms equally with commercial cache appliances while
using main-memory indexes that are only one-tenth their
size. Between these policies are a range of distinct poli-
cies that trade memory consumption for performance
suitable for a range of workloads in developing regions.

1.1 Rationale For a New Cache Store
HashCache is designed to serve the needs of developing-
world environments, starting with classrooms but work-
ing toward backbone networks. In addition to good per-
formance with low resource consumption, HashCache
provides a number of additional benefits suitable for
developing-world usage: (a) many HashCache policies
can be tailored to use main memory in proportion to sys-
tem activity, instead of cache size; (b) unlike commer-
cial caching appliances, HashCache does not need to be
the sole application running on the machine; (c) by sim-
ply choosing the appropriate indexing scheme, the same
cache software can be configured as a low-resource end-
user cache appropriate for small classrooms, as well as
a high-performance backbone cache for higher levels of
the network; (d) in its lowest-memory configurations,
HashCache can run on laptop-class hardware attached to
external multi-terabyte storage (via USB, for example), a
scenario not even possible with existing designs; and (e)
HashCache provides a flexible caching layer, allowing it
to be used not only for Web proxies, but also for other
cache-oriented storage systems.

A previous analysis of Web traffic in developing re-
gions shows great potential for improving Web perfor-
mance [8]. According to the study, kiosks in Ghana and
Cambodia, with 10 to 15 users per day, have downloaded
over 100 GB of data within a few months, involving 12
to 14 million URLs. The authors argue for the need
for applications that can perform HTTP caching, chunk
caching for large downloads and other forms of caching
techniques to improve the Web performance. With the
introduction of personal laptops into these areas, it is rea-
sonable to expect even higher network traffic volumes.

Since HashCache can be shared by many applications
and is not HTTP-specific, it avoids the problem of dimin-
ishing returns seen with large HTTP-only caches. Hash-
Cache can be used by both a Web proxy and a WAN ac-
celerator, which stores pieces of network traffic to pro-
vide protocol-independent network compression. This
combination allows the Web cache to store static Web
content, and then use the WAN accelerator to reduce
redundancy in dynamically-generated content, such as
news sites, Wikipedia, or even locally-generated content,
all of which may be marked uncacheable, but which tend
to only change slowly over time. While modern Web

pages may be large, they tend to be composed of many
small objects, such as dozens of small embedded images.
These objects, along with tiny fragments of cached net-
work traffic from a WAN accelerator, put pressure on tra-
ditional caching approaches using in-memory indexing.

A Web proxy running on a terabyte-sized HashCache
can provide a large HTTP store, allowing us to not only
cache a wide range of traffic, but also speculatively pre-
load content during off-peak hours. Furthermore, this
kind of system can be driven from a typical OLPC-class
laptop, with only 256MB of total RAM. One such lap-
top can act as a cache server for the rest of the laptops in
the deployment, eliminating the need for separate server-
class hardware. In comparison, using current Web prox-
ies, these laptops could only index 30GB of disk space.

The rest of this paper is structured as follows. Sec-
tion 2 explains the current state of the art in network
storage design. Section 3 explains the problem, explores
a range of HashCache policies, and analyzes them. Sec-
tion 4 describes our implementation of policies and the
HashCache Web proxy. Section 5 presents the perfor-
mance evaluation of the HashCache Web Proxy and com-
pares it with Squid and a modern high-performance sys-
tem with optimized indexing mechanisms. Section 6 de-
scribes the related work, Section 7 describes our current
deployments, and Section 8 concludes with our future
work.

2 Current State-of-the-Art

While typical Web proxies implement a number of fea-
tures, such as HTTP protocol handling, connection man-
agement, DNS and in-memory object caching, their per-
formance is generally dominated by their filesystem or-
ganization. As such, we focus on the filesystem com-
ponent because it determines the overall performance
of a proxy in terms of the peak request rate and object
cacheability. With regard to filesystems, the two main
optimizations employed by proxy servers are hashing
and indexing objects by their URLs, and using raw disk
to bypass filesystem inefficiencies. We discuss both of
these aspects below.

The Harvest cache [4] introduced the design of stor-
ing objects by a hash of their URLs, and keeping an in-
memory index of objects stored on disk. Typically, two
levels of subdirectories were created, with the fan-out of
each level configurable. The high-order bits of the hash
were used to select the appropriate directories, and the
file was ultimately named by the hash value. This ap-
proach not only provided a simple file organization, but
it also allowed most queries for the presence of objects to
be served from memory, instead of requiring disk access.
The older CERN [15] proxy, by contrast, stored objects
by creating directories that matched the components of
the URL. By hashing the URL, Harvest was able to con-

System Naming Storage Memory
Management Management

CERN URL Regular Filesystem
Filesystem Data Structures

Harvest Hash Regular LRU, Filesystem
Filesystem Data Structures

Squid Hash Regular LRU & others
Filesystem

Commercial Hash Log LRU

Table 1: System Entities for Web Caches

trol both the depth and fan-out of the directories used
to store objects. The CERN proxy, Harvest, and its de-
scendant, Squid, all used the filesystems provided by the
operating system, simplifying the proxy and eliminating
the need for controlling the on-disk layout.

The next step in the evolution of proxy design was us-
ing raw disk and custom filesystems to eliminate multiple
levels of directory traversals and disk head seeks associ-
ated with them. The in-memory index now stored the
location on disk where the object was stored, eliminating
the need for multiple seeks to find the start of the object.1

The first block of the on-disk file typically includes
extra metadata that is too big to be held in memory, such
as the complete URL, full response headers, and location
of subsequent parts of the object, if any, and is followed
by the content fetched from the origin server. In order to
fully utilize the disk writing throughput, those blocks are
often maintained consecutively, using a technique simi-
lar to log-structured filesystem(LFS) [30]. Unlike LFS,
which is expected to retain files until deleted by the user,
cache filesystems can often perform disk cache replace-
ment in LIFO order, even if other approaches are used
for main memory cache replacement. Table 1 summa-
rizes the object lookup and storage management of vari-
ous proxy implementations that have been used to build
Web caches.

The upper bound on the number of cacheable objects
per proxy is a function of available disk cache and phys-
ical memory size. Attempting to use more memory than
the machine’s physical memory can be catastrophic for
caches, since unpredictable page faults in the applica-
tion can degrade performance to the point of unusabil-
ity. When these applications run as a service at network
access points, which is typically the case, all users then
suffer extra latency when page faults occur.

The components of the in-memory index vary from
system to system, but a representative configuration for
a high-performance proxy is given in Table 2. Each
entry has some object-specific information, such as its
hash value and object size. It also has some disk-related

1This information was previously available on the iMimic Network-
ing Web site and the Volera Cache Web site, but both have disappeared.
No citable references appear to exist

Entity Memory per
Object (Bytes)

Hash 4 - 20
LFS Offset 4
Size in Blocks 2
Log Generation 1
Disk Number 1
Bin Pointers 4
Chaining Pointers 8
LRU List Pointers 8
Total 32 - 48

Table 2: High Performance Cache - Memory Usage

information, such as the location on disk, which disk,
and which generation of log, to avoid problems with log
wrapping. The entries typically are stored in a chain per
hash bin, and a doubly-linked LRU list across all index
entries. Finally, to shorten hash bin traversals (and the
associated TLB pressure), the number of hash bins is typ-
ically set to roughly the number of entries.

Using these fields and their sizes, the total consump-
tion per index entry can be as low as 32 bytes per object,
but given that the average Web object is roughly 8KB
(where a page may have tens of objects), even 32 bytes
per object represents an in-memory index storage that is
1/256 the size of the on-disk storage. With a more re-
alistic index structure, which can include a larger hash
value, expiration time, and other fields, the index entry
can be well over 80 bytes (as in the case of Squid), caus-
ing the in-memory index to exceed 1% of the on-disk
storage size. With a single 1TB drive, the in-memory in-
dex alone would be over 10GB. Increasing performance
by using multiple disks would then require tens of giga-
bytes of RAM.

Reducing the RAM needed for indexing is desirable
for several scenarios. Since the growth in disk capaci-
ties has been exceeding the growth of RAM capacity for
some time, this trend will lead to systems where the disk
cannot be fully indexed due to a lack of RAM. Dedicated
RAM also effectively limits the degree of multiprogram-
ming of the system, so as processors get faster relative
to network speeds, one may wish to consolidate multi-
ple functions on a single server. WAN accelerators, for
example, cache network data [5, 29, 34], so having very
large storage can reduce bandwidth consumption more
than HTTP proxies alone. Similarly, even in HTTP prox-
ies, RAM may be more useful as a hot object cache than
as an index, as is the case in reverse proxies (server ac-
celerators) and content distribution networks. One goal
in designing HashCache is to determine how much index
memory is really necessary.

Hash 4

Hash 8

Hash 7

Hash 6

Hash 5

Hash 1

Hash 2

Hash 3

Table of Blocks

Log

Figure 1: HashCache-Basic: objects with hash value i go
to the ith bin for the first block of a file. Later blocks are
in the circular log.

3 Design

In this section, we present the design of HashCache
and show how performance can be scaled with avail-
able memory. We begin by showing how to eliminate the
in-memory index while still obtaining reasonable perfor-
mance, and then we show how selective use of minimal
indexing can improve performance. A summary of poli-
cies is shown in Table 3.

3.1 Removing the In-Memory Index
We start by removing the in-memory index entirely, and
incrementally introducing minimal metadata to system-
atically improve performance. To remove the in-memory
index, we have to address the two functions the in-
memory index serves: indicating the existence of an ob-
ject and specifying its location on disk. Using filesys-
tem directories to store objects by hash has its own per-
formance problems, so we seek an alternative solution –
treating the disk as a simple hashtable.

HashCache-Basic, the simplest design option in the
HashCache family, treats part of the disk as a fixed-size,
non-chained hash table, with one object stored in each
bin. This portion is called the Disk Table. It hashes the
object name (a URL in the case of a Web cache) and then
calculates the hash value modulo the number of bins to
determine the location of the corresponding file on disk.
To avoid false positives from hash collisions, each stored
object contains metadata, including the original object
name, which is compared with the requested object name
to confirm an actual match. New objects for a bin are
simply written over any previous object.

Since objects may be larger than the fixed-size bins
in the Disk Table, we introduce a circular log that con-
tains the remaining portion of large objects. The object
metadata stored in each Disk Table bin also includes the
location in the log, the object size, and the log generation
number, and is illustrated in Figure 1.

The performance impact of these decisions is as
follows: in comparison to high-performance caches,

Hash 1

Hash 2

Hash 3

Hash 4

Hash 8

Hash 7

Hash 6

Hash 5

Log

Table of Sets

Figure 2: HashCache-Set: Objects with hash value i

search through thei
N

th
set for the first block of a file.

Later blocks are in the circular log. Some arrows are
shown crossed to illustrate that objects that map on to a
set can be placed anywhere in the set.

HashCache-Basic will have an increase in hash collisions
(reducing cache hit rates), and will require a disk access
on every request, even cache misses. Storing objects will
require one seek per object (due to the hash randomiz-
ing the location), and possibly an additional write to the
circular log.

3.2 Collision Control Mechanism
While in-memory indexes can use hash chaining to elim-
inate the problem of hash values mapped to the same bin,
doing so for an on-disk index would require many ran-
dom disk seeks to walk a hash bin, so we devise a sim-
pler and more efficient approach while retaining most of
the benefits.

In HashCache-Set, we expand the Disk Table to be-
come an N-way set-associative hash table, where each
bin can store N elements. Each element still contains
metadata with the full object name, size, and location in
the circular log of any remaining part of the object. Since
these locations are contiguous on disk, and since short
reads have much lower latency than seeks, reading all of
the members of the set takes only marginally more time
than reading just one element. This approach is shown in
Figure 2, and reduces the impact of popular objects map-
ping to the same hash bin, while only slightly increasing
the time to access an object.

While HashCache-Set eliminates problems stemming
from collisions in the hash bins, it still has several prob-
lems: it requires disk access for cache misses, and lacks
an efficient mechanism for cache replacement within the
set. Implementing something like LRU within the set us-
ing the on-disk mechanism would require a potential disk
write on every cache hit, reducing performance.

3.3 Avoiding Seeks for Cache Misses
Requiring a disk seek to determine a cache miss is a ma-
jor issue for workloads with low cache hit rates, since an

Bits Per RAM GB per Read Write Miss
Policy Object Disk TB Seeks Seeks Seeks Comments
Squid 576-832 9 - 13 ∼ 6 ∼ 6 0 Harvest descendant
Commercial 256-544 4 - 8.5 < 1 ∼ 0 0 custom filesystem
HC-Basic 0 0 1 1 1 high collision rate
HC-Set 0 0 1 1 1 adds N-way sets to reduce collisions
HC-SetMem 11 0.17 1 1 0 small in-mem hash eliminates miss seeks
HC-SetMemLRU < 11 < 0.17 1 1 < 1 only some sets kept in memory
HC-Log 47 0.73 1 ∼ 0 0 writes to log, log position added to entry
HC-LogLRU 15-47 0.23 - 0.67 1 + ǫ ∼ 0 0 log position for only some entries in set
HC-LogLRU+ Prefetch 23-55 0.36 - 0.86 < 1 ∼ 0 0 reads related objects together
HC-Log+ Prefetch 55 0.86 < 1 ∼ 0 0 reads related objects together

Table 3: Summary of HashCache policies, with Squid and commercial entries included for comparison.
Main memory consumption values assume an average object size of 8KB. Squid memory data appears in
http://www.comfsm.fm/computing/squid/FAQ-8.html

index-less cache would spend most of its disk time con-
firming cache misses. This behavior would add extra la-
tency for the end-user, and provide no benefit. To address
the problem of requiring seeks for cache misses, we in-
troduce the first HashCache policy with any in-memory
index, but employ several optimizations to keep the in-
dex much smaller than traditional approaches.

As a starting point, we consider storing in main mem-
ory an H-bit hash values for each cached object. These
hash values can be stored in a two-dimensional array
which corresponds to the Disk Table, with one row for
each bin, and N columns corresponding to the N-way
associativity. An LRU cache replacement policy would
need forward and reverse pointers per object to maintain
the LRU list, bringing the per-object RAM cost to (H +
64) bits assuming 32-bit pointers. However, we can re-
duce this storage as follows.

First, we note that all the entries in an N-entry set share
the same modulo hash value (%S) where S is the number
of sets in the Disk Table. We can drop the lowest log(S)
bits from each hash value with no loss, reducing the hash
storage to only H - log(S) bits per object.

Secondly, we note that cache replacement policies
only need to be implemented within the N-entry set, so
LRU can be implemented by simply ranking the entries
from 0 to N-1, thereby using only log(N) bits per entry.

We can further choose to keep in-memory indexes for
only some sets, not all sets, so we can restrict the number
of in-memory entries based on request rate, rather than
cache size. This approach keeps sets in an LRU fashion,
and fetches the in-memory index for a set from disk on
demand. By keeping only partial sets, we need to also
keep a bin number with each set, LRU pointers per set,
and a hash table to find a given set in memory.

Deciding when to use a complete two-dimensional ar-
ray versus partial sets with bin numbers and LRU point-
ers depends on the size of the hash value and the set as-
sociativity. Assuming 8-way associativity and the 8 most

significant hash bits per object, the break-even point is
around 50% – once more than half the sets will be stored
in memory, it is cheaper to remove the LRU pointers and
bin number, and just keep all of the sets. A discussion of
how to select values for these parameters is provided in
Section 4.

If the full array is kept in memory, we call it
HashCache-SetMem, and if only a subset are kept in
memory, we call it HashCache-SetMemLRU. With a
low hash collision rate, HashCache-SetMem can deter-
mine most cache misses without accessing disk, whereas
HashCache-SetMemLRU, with its tunable memory con-
sumption, will need disk accesses for some fraction of
the misses. However, once a set is in memory, per-
forming intra-set cache replacement decisions requires
no disk access for policy maintenance. Writing objects
to disk will still require disk access.

3.4 Optimizing Cache Writes
With the previous optimizations, cache hits require one
seek for small files, and cache misses require no seeks
(excluding false positives from hash collisions) if the as-
sociated set’s metadata is in memory. Cache writes still
require seeks, since object locations are dictated by their
hash values, leaving HashCache at a performance dis-
advantage to high-performance caches that can write all
content to a circular log. This performance problem is
not an issue for caches with low request rates, but will
become a problem for higher request rate workloads.

To address this problem, we introduce a new pol-
icy, HashCache-Log, that eliminates the Disk Table and
treats the disk as a log, similar to the high-performance
caches. For some or all objects, we store an additional
offset (32 or 64 bits) specifying the location on disk. We
retain the N-way set associativity and per-set LRU re-
placement because they eliminate disk seeks for cache
misses with compact implementation. While this ap-
proach significantly increases memory consumption, it

can also yield a large performance advantage, so this
tradeoff is useful in many situations. However, even
when adding the log location, the in-memory index is
still much smaller than traditional caches. For exam-
ple, for 8-way set associativity, per-set LRU requires 3
bits per entry, and 8 bits per entry can minimize hash
collisions within the set. Adding a 32-bit log position
increases the per-entry size from 11 bits to 43 bits, but
virtually eliminates the impact of write traffic, since all
writes can now be accumulated and written in one disk
seek. Additionally, we need a few bits (assume 4) to
record the log generation number, driving the total to 47
bits. Even at 47 bits per entry, HashCache-Log still uses
indexes that are a factor of 6-12 times smaller than cur-
rent high-performance proxies.

We can reduce this overhead even further if we ex-
ploit Web object popularity, where half of the objects are
rarely, if ever, re-referenced [8]. In this case, we can
drop half of the log positions from the in-memory index,
and just store them on disk, reducing the average per-
entry size to only 31 bits, for a small loss in performance.
HashCache-LogLRU allows the number of log position
entries per set to be configured, typically usingN

2
log

positions per N-object set. The remaining log offsets in
the set are stored on the disk as a small contiguous file.
Keeping this file and the in-memory index in sync re-
quires a few writes reducing the performance by a small
amount. The in-memory index size, in this case, is 9-20
times smaller than traditional high-performance systems.

3.5 Prefetching Cache Reads
With all of the previous optimizations, caching storage
can require as little as 1 seek per object read for small
objects, with no penalty for cache misses, and virtually
no cost for cache writes that are batched together and
written to the end of the circular log. However, even
this performance can be further improved, by noting that
prefetching multiple objects per read can amortize the
read cost per object.

Correlated access can arise in situations like Web
pages, where multiple small objects may be embedded
in the HTML of a page, resulting in many objects being
accessed together during a small time period. Grouping
these objects together on disk would reduce disk seeks
for reading and writing. The remaining blocks for these
pages can all be coalesced together in the log and written
together so that reading them can be faster, ideally with
one seek.

The only change necessary to support this policy is
to keep a content length (in blocks) for all of the re-
lated content written at the same time, so that it can be
read together in one seek. When multiple related objects
are read together, the system will perform reads at less
than one seek per read on average. This approach can

Policy Throughput
HC-Basic rr = t

1+ 1

rel
+(1−chr)·cbr

HC-Set rr = t

1+ 1

rel
+(1−chr)·cbr

HC-SetMem rr = t

chr·(1+ 1

rel
)+(1−chr)·cbr

HC-LogN rr = t
2·chr+(1−chr)·cbr

HC-LogLRU rr = t·rel

2·chr+(1−chr)·cbr

HC-Log rr = t·rel

2·chr+(1−chr)·cbr

Commercial rr = t·rel
2·chr+(1−chr)·cbr

Table 4: Throughputs for techniques,rr = peak request
rate,chr = cache hit rate,cbr = cacheability rate,rel =
average number of related objects,t = peak disk seek rate
– all calculations include read prefetching, so the results
for Log and Grouped are the same. To exclude the effects
of read prefetching, simply setrel to one.

be applied to many of the previously described Hash-
Cache policies, and only requires that the application us-
ing HashCache provide some information about which
objects are related. Assuming prefetch lengths of no
more than 256 blocks, this policy only requires 8 bits
per index entry being read. In the case of HashCache-
LogLRU, only the entries with in-memory log position
information need the additional length information. Oth-
erwise, this length can also be stored on disk. As a result,
adding this prefetching to HashCache-LogLRU only in-
creases the in-memory index size to 35 bits per object,
assuming half the entries of each set contain a log posi-
tion and prefetch length.

For the rest of this paper, we assume all the policies to
have this optimization except HashCache-LogN which is
the HashCache-Log policy without any prefetching.

3.6 Expected Throughput
To understand the throughput implications of the vari-
ous HashCache schemes, we analyze their expected per-
formance under various conditions using the parameters
shown in Table 4.

The maximum request rate(rr) is a function of the
disk seek rate, the hit rate, the miss rate, and the write
rate. The write rate is required because not all objects
that are fetched due to cache misses are cacheable. Ta-
ble 4 presents throughputs for each system as a function
of these parameters. The cache hit rate(chr) is simply a
number between 0 and 1, as is the cacheability rate (cbr).
Since the miss rate is (1 -chr), the write rate can be rep-
resented as (1 -chr) · cbr. The peak disk seek rate(t)
is a measured quantity that is hardware-dependent, and
the average number of related objects(rel) is always a
positive number. Due to space constraints, we omit the
derivations for these calculations. These throughputs are

conservative estimates because we do not take into ac-
count the in-memory hot object cache, where some por-
tion of the main memory is used as a cache for frequently
used objects, which can further improve throughput.

4 HashCache Implementation

We implement a common HashCache filesystem I/O
layer so that we can easily use the same interface with
different applications. We expose this interface via
POSIX-like calls, such as open(), read(), write(), close(),
seek(), etc., to operate on files being cached. Rather than
operate directly on raw disk, HashCache uses a large file
in the standard Linux ext2/ext3 filesystem, which does
not require root privilege. Creating this zero-filled large
file on a fresh ext2/ext3 filesystem typically creates a
mostly contiguous on-disk layout. It creates large files
on each physical disk and multiplexes them for perfor-
mance. The HashCache filesystem is used by the Hash-
Cache Web proxy cache as well as other applications we
are developing.

4.1 External Indexing Interface
HashCache provides a simple indexing interface to sup-
port other applications. Given a key as input, the inter-
face returns a data structure containing the file descrip-
tors for the Disk Table file and the contiguous log file
(if required), the location of the requested content, and
metadata such as the length of the contiguous blocks be-
longing to the item, etc. We implement the interface for
each indexing policy we have described in the previous
section. Using the data returned from the interface one
can utilize the POSIX calls to handle data transfers to
and from the disk. Calls to the interface can block if disk
access is needed, but multiple calls can be in flight at the
same time. The interface consists of roughly 600 lines of
code, compared to 21000 lines for the HashCache Web
Proxy.

4.2 HashCache Proxy
The HashCache Web Proxy is implemented as an
event-driven main process with cooperating helper pro-
cesses/threads handling all blocking operations, such as
DNS lookups and disk I/Os, similar to the design of
Flash [25]. When the main event loop receives a URL re-
quest from a client, it searches the in-memory hot-object
cache to see if the requested content is already in mem-
ory. In case of a cache miss, it looks up the URL us-
ing one of the HashCache indexing policies. Disk I/O
helper processes use the HashCache filesystem I/O inter-
face to read the object blocks into memory or to write
the fetched object to disk. To minimize inter-process
communication (IPC) between the main process and the
helpers, only beacons are exchanged on IPC channels
and the actual data transfer is done via shared memory.

4.3 Flexible Memory Management
HTTP workloads will often have a small set of objects
that are very popular, which can be cached in main mem-
ory to serve multiple requests, thus saving disk I/O. Gen-
erally, the larger the in-memory cache, the better the
proxy’s performance. HashCache proxies can be config-
ured to use all the free memory on a system without un-
duly harming other applications. To achieve this goal, we
implement the hot object cache via anonymousmmap()
calls so that the operating system can evict pages as
memory pressure dictates. Before the HashCache proxy
uses the hot object cache, it checks the memory residency
of the page via themincore() system call, and sim-
ply treats any missing page as a miss in the hot object
cache. The hot object cache is managed as an LRU list
and unwanted objects or pages no longer in main mem-
ory can be unmapped. This approach allows the Hash-
Cache proxy to use the entire main memory when no
other applications need it, and to seamlessly reduce its
memory consumption when there is memory pressure in
the system.

In order to maximize the disk writing throughput, the
HashCache proxy buffers recently-downloaded objects
so that many objects can be written in one batch (often
to a circular log). These dirty objects can be served from
memory while waiting to be written to disk. This dirty
object cache reduces redundant downloads during flash
crowds because many popular HTTP objects are usually
requested by multiple clients.

HashCache also provides for grouping related objects
to disk so that they can be read together later, providing
the benefits of prefetching. The HashCache proxy uses
this feature to amortize disk seeks over multiple objects,
thereby obtaining higher read performance. One com-
mercial system parses HTML to explicitly find embed-
ded objects [7], but we use a simpler approach – simply
grouping downloads by the same client that occur within
a small time window and that have the same HTTP Re-
ferrer field. We have found that this approach works well
in practice, with much less implementation complexity.

4.4 Parameter Selection
For the implementation, we choose some design param-
eters such as the block size, the set size, and the hash
size. Choosing the block size is a tradeoff between space
usage and the number of seeks necessary to read small
objects. In Table 5, we show an analysis of object sizes
from a live, widely-used Web cache called CoDeeN [41].
We see that nearly 75% of objects are less than 8KB,
while 87.2% are less than 16KB. Choosing an 8KB block
would yield better disk usage, but would require multiple
seeks for 25% of all objects. Choosing the larger block
size wastes some space, but may increase performance.

Since the choice of block size influences the set size,

Size (KB) % of objects< size
8 74.8
16 87.2
32 93.8
64 97.1
128 98.8
256 99.5

Table 5: CDF of Web object sizes

we make the decisions based on the performance of cur-
rent disks. Table 6 shows the average number of seeks
per second of three recent SATA disks (18, 60 and 150
GB each). We notice the sharp degradation beyond
64KB, so we use that as the set size. Since 64KB can
hold 4 blocks of 16KB each or 8 blocks of 8KB each, we
opt for an 8KB block size to achieve 8-way set associa-
tivity. With 8 objects per set, we choose to keep 8 bits
of hash value per object for the in-memory indexes, to
reduce the chance of collisions. This kind of an analy-
sis can be automatically performed during initial system
configuration, and are the only parameters needed once
the specific HashCache policy is chosen.

5 Performance Evaluation

In this section, we present experimental results that com-
pare the performance of different indexing mechanisms
presented in Section 3. Furthermore, we present a
comparison between the HashCache Web Proxy Cache,
Squid, and a high-performance commercial proxy called
Tiger, using various configurations. Tiger implements
the best practices outlined in Section 2 and is currently
used in commercial service [6]. We also present the im-
pact of the optimizations that we included in the Hash-
Cache Web Proxy Cache. For fair comparison, we use
the same basic code base for all the HashCache variants,
with differences only in the indexing mechanisms.

5.1 Workload
To evaluate these systems, we use the Web Poly-
graph [37] benchmarking tool, thede facto industry stan-
dard for testing the performance of HTTP intermediaries
such as content filters and caching proxies. We use the
Polymix [38] environment models, which models many
key Web traffic characteristics, including: multiple con-
tent types, diurnal load spikes, URLs with transient pop-
ularity, a global URL set, flash crowd behavior, an un-
limited number of objects, DNS names in URLs, object
life-cycles (expiration and last-modification times), per-
sistent connections, network packet loss, reply size vari-
ations, object popularity (recurrence), request rates and
inter-arrival times, embedded objects and browser behav-
ior, and cache validation (If-Modified-Since requests and
reloads).

Read Size (KB) Seeks/sec Latency/seek (ms)
1 78 12.5
4 76 12.9
8 76 13.1
16 74 13.3
32 72 13.7
64 70 14.1
128 53 19.2

Table 6: Disk performance statistics

We use the latest standard workload, Polymix-4 [38],
which was used at the Fourth Cache-off event [39] to
benchmark many proxies. The Polygraph test harness
uses several machines for emulating HTTP clients and
others to act as Web servers. This workload offers a
cache hit ratio (CHR) of 60% and a byte hit ratio (BHR)
of 40% meaning that at most 60% of the objects are
cache hits while 40% of bytes are cache hits. The aver-
age download latency is 2.5 seconds (including RTT). A
large number of objects are smaller than 8.5 KB. HTML
pages contain 10 to 20 embedded (related) objects, with
an average size of 5 to 10 KB. A small number (0.1 %)
of large downloads (300 KB or more) have higher cache
hit rates. These numbers are very similar to the charac-
teristics of traffic in developing regions [8].

We test three environments, reflecting the kinds of
caches we expect to deploy. These are the low-end sys-
tems that reflect the proxy powered by a laptop or simi-
lar system, large-disk systems where a larger school can
purchase external storage to pre-load content, and high-
performance systems for ISPs and network backbones.

5.2 Low-End System Experiments
Our first test server for the proxy is designed to mimic
a low-memory laptop, such as the OLPC XO Laptop, or
a shared low-powered machine like an OLPC XS server.
Its configuration includes a 1.4 GHz CPU with 512 KB
of L2 cache, 256 MB RAM, two 60GB 7200 RPM SATA
drives, and the Fedora 8 Linux OS. This machine is far
from the standard commercial Web cache appliance, and
is likely to be a candidate machine for the developing
world [23].

Our tests for this machine configuration run at 40-275
requests per second, per disk, using either one or two
disks. Figure 3 shows the results for single disk perfor-
mance of the Web proxy using HashCache-Basic (HC-
B), HashCache-Set (HC-S), HashCache-SetMem (HC-
SM), HashCache-Log without object prefetching (HC-
LN), HashCache-Log with object prefetching (HC-L),
Tiger and Squid. The HashCache tests use 60 GB caches.
However, Tiger and Squid were unable to index this
amount of storage and still run acceptably, so were lim-
ited to using 18 GB caches. This smaller cache is still
sufficient to hold the working set of the test, so Tiger and

 0

 50

 100

 150

 200

 250

 300

HC-B HC-S Squid HC-SM HC-LN Tiger HC-L

P
ea

k
R

eq
ue

st
 R

at
e

(r
eq

/s
ec

)

System

Figure 3: Peak Request Rates for Different policies for
low end SATA disk.

policy SATA SCSI SCSI
7200 10000 15000

HC-Basic 40 50 85
HC-Set 40 50 85
HC-SetMem 66 85 140
HC-LogN 132 170 280
HC-LogLRU 264 340 560
HC-Log 264 340 560
Commercial 264 340 560

Table 7: Expected throughputs (reqs/sec) for policies
for different disk speeds– all calculations include read
prefetching

Squid do not suffer in performance as a result. Table 7
gives the analytical lowerbounds for performance of each
of these policies for this workload and the disk perfor-
mance. The tests for HashCache-Basic and HashCache-
Set achieve only 45 reqs/sec. The tests for HashCache-
SetMem achieve 75 reqs/sec. Squid scales better than
HashCache-Basic and HashCache-Set and achieves 60
reqs/sec. HashCache-Log (with prefetch), in compari-
son, achieves 275 reqs/sec. The Tiger proxy, with its
optimized indexing mechanism, achieves 250 reqs/sec.
This is less than HashCache-Log because Tiger’s larger
index size reduces the amount of hot object cache avail-
able, reducing its prefetching effectiveness.

Figure 4 shows the results from tests conducted
on HashCache-SetMem and two configurations of
HashCache-SetMemLRU using 2 disks. The perfor-
mance of the HashCache-SetMem system scales to 160
reqs/sec, which is slightly more than double its perfor-
mance with a single disk. The reason for this difference
is that the second disk does not have the overhead of han-
dling all access logging for the entire system. The two
other graphs in the figure, labeled HC-SML30 and HC-
SML40, are the 2 versions of HashCache-SetMemLRU
where only 30% and 40% of all the set headers are
cached in main memory. As mentioned earlier, the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 120 130 140 150 160

A
ve

ra
ge

 H
it

T
im

e
(s

ec
)

Request Rate

HC-SM
HC-SML30
HC-SML40

Figure 4: Peak Request Rates for Different SetMemLRU
policies on low end SATA disks.

 0

 20

 40

 60

 80

 100

Memory Usr CPU Sys CPU Disk

%
 U

sa
ge

Resource

HashCache-Basic
HashCache-Set

HashCache-SetMem
HashCache-Log

Squid
Tiger

Figure 5: Resource Usage for Different Systems

hash table and the LRU list overhead of HashCache-
SetMemLRU is such that when 50% of set headers are
cached, it takes about the same amount of memory when
using HashCache-SetMem. These experiments serve to
show that HashCache-SetMemLRU can provide further
savings when working set sizes are small and one does
not need all the set headers in main memory at all times
to perform reasonably well.

These experiments also demonstrate HashCache’s
small systems footprint. Those measurements are shown
in Figure 5 for the single-disk experiment. In all cases,
the disk is the ultimate performance bottleneck, with
nearly 100% utilization. The user and system CPU re-
main relatively low, with the higher system CPU lev-
els tied to configurations with higher request rates.
The most surprising metric, however, is Squid’s high
memory usage rate. Given that its storage size was
only one-third that used by HashCache, it still exceeds
HashCache’s memory usage in HashCache’s highest-
performance configuration. In comparison, the lowest-
performance HashCache configurations, which have per-
formance comparable to Squid, barely register in terms
of memory usage.

Request Rate Throughput Hit Time All Time Miss Time CHR % BHR %
per sec Mb/s msec msec msec

HashCache-Log 2200 116.98 77 1147 2508 56.91 41.06
Tiger 2300 121.40 98 1150 2512 56.49 41.40
Squid 400 21.38 63 1109 2509 57.25 41.22

Table 8: Performance on a high end system

 0

 10

 20

 30

 40

 50

 60

 70

HC-B HC-S HC-SM Squid HC-LN Tiger HC-L

H
it

R
at

e

Policy

CHR
BHR

Figure 6: Low End Systems Hit Ratios

Figure 6 shows the cache hit ratio (by object) and the
byte hit ratios (bandwidth savings) for the HashCache
policies at their peak request rate. Almost all configu-
rations achieve the maximum offered hit ratios, with the
exception of HashCache-Basic, which suffers from hash
collision effects.

While the different policies offer different tradeoffs,
one might observe that the performance jump between
HashCache-SetMem and HashCache-Log is substantial.
To bridge this gap one can use multiple small disks in-
stead of one large disk to increase performance while
still using the same amount of main memory. These
experiments further demonstrate that for low-end ma-
chines, HashCache can not only utilize more disk stor-
age than commercial cache designs, but can also achieve
comparable performance while using less memory. The
larger storage size should translate into greater network
savings, and the low resource footprint ensures that the
proxy machine need not be dedicated to just a single
task. The HashCache-SetMem configuration can be used
when one wants to index larger disks on a low-end ma-
chine with a relatively low traffic demand. The lowest-
footprint configurations, which use no main-memory in-
dexing, HashCache-Basic and HashCache-Set, would
even be appropriate for caching in wireless routers or
other embedded devices.

5.3 High-End System Experiments
For our high-end system experiments, we choose hard-
ware that would be more appropriate in a datacenter.
The processor is a dual-core 2GHz Xeon, with 2MB of
L2 cache. The server has 3.5GB of main memory, and

 0

 20

 40

 60

 80

 100

Memory Usr CPU Sys CPU Disk

%
 U

sa
ge

Resource

HashCache-Log
Tiger

Squid

Figure 7: High End System Performance Statistics

five 10K RPM Ultra2 SCSI disks, of 18GB each. These
disks perform 90 to 95 random seeks/sec. Using our an-
alytical models, we expect a performance of at least 320
reqs/sec/disk with HashCache-Log. On this machine we
run HashCache-Log, Tiger and Squid. From the Hash-
Cache configurations, we chose only HashCache-Log
because the ample main memory of this machine would
dictate that it can be used for better performance rather
than maximum cache size.

Figure 7 shows the resource utilization of the three
systems at their peak request rates. HashCache-Log con-
sumes just enough memory for hot object caching, write
buffers and also the index, still leaving about 65% of the
memory unused. At the maximum request rate, the work-
load becomes completely disk bound. Since the working
set size is substantially larger than the main memory size,
expanding the hot object cache size produces diminish-
ing returns. Squid fails to reach 100% disk throughput
simultaneously on all disks. Dynamic load imbalance
among its disks causes one disk to be the system bottle-
neck, even though the other four disks are underutilized.
The load imbalance prevents it from achieving higher re-
quest rates or higher average disk utilization.

The performance results from this test are shown in
Table 8, and they confirm the expectations from the ana-
lytical models. HashCache-Log and Tiger perform com-
parably well at 2200-2300 reqs/sec, while Squid reaches
only 400 reqs/sec. Even at these rates, HashCache-Log
is purely disk-bound, while the CPU and memory con-
sumption has ample room for growth. The per-disk per-
formance of HashCache-Log of 440 reqs/sec/disk is in

1TB Configuration Request Rate Throughput Hit Time All Time Miss Time CHR % BHR %
per sec Mb/s msec msec msec

HashCache-SetMem 75 3.96 27 1142 2508 57.12 40.11
HashCache-Log 300 16.02 48 1139 2507 57.88 40.21
HashCache-LogLRU 300 16.07 68 1158 2510 57.15 40.08

2TB Configuration Request Rate Throughput Hit Time All Time Miss Time CHR % BHR %
per sec Mb/s msec msec msec

HashCache-SetMem 150 7.98 32 1149 2511 57.89 40.89
HashCache-Log 600 32.46 56 1163 2504 57.01 40.07
HashCache-LogLRU 600 31.78 82 1171 2507 57.67 40.82

Table 9: Performance on large disks

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Squid Tiger HC-L HC-SM

D
is

k
S

iz
e

(G
B

)

System

Figure 8: Sizes of disks that can be indexed by 2GB
memory

line with the best commercial showings – the highest-
performing system at the Fourth Cacheoff achieved less
than an average of 340 reqs/sec/disk on 10K RPM
SCSI disks. The absolute best throughput that we find
from the Fourth Cacheoff results is 625 reqs/sec/disk
on two 15K RPM SCSI disks, and on the same
speed disks HashCache-Log and Tiger both achieve 700
reqs/sec/disk, confirming the comparable performance.

These tests demonstrate that the same HashCache
code base can provide good performance on low-
memory machines while matching or exceeding the per-
formance of high-end systems designed for cache ap-
pliances. Furthermore, this performance comes with a
significant savings in memory, allowing room for larger
storage or higher performance.

5.4 Large Disk Experiments
Our final set of experiments involves using HashCache
configurations with large external storage systems. For
this test, we use two 1 TB external hard drives attached to
the server via USB. These drives perform 67-70 random
seeks per second. Using our analytical models, we would
expect a performance of 250 reqs/sec with HashCache-
Log. In other respects, the server is configured compara-
bly to our low-end machine experiment, but the memory
is increased from 256MB to 2GB to accommodate some

 0

 20

 40

 60

 80

 100

Memory Usr CPU Sys CPU Disk

%
 U

sa
ge

Resource

HashCache-SetMem 1TB
HashCache-LogLRU 1TB

HashCache-Log 1TB
HashCache-SetMem 2TB
HashCache-LogLRU 2TB

HashCache-Log 2TB

Figure 9: Large Disk System Performance Statistics

of the configurations that have larger index requirements,
representative of low-end servers being deployed [24].

We compare the performance of HashCache-SetMem,
HashCache-Log and HashCache-LogLRU with one or
two external drives. Since the offered cache hit rate for
the workload is 60%, we cache 6 out of the 8 log off-
sets in main memory for HashCache-LogLRU. For these
experiments, the Disk Table is stored on a disk separate
from the ones keeping the circular log. Also, since filling
the 1TB hard drives at 300 reqs/second would take exces-
sively long, we randomly place 50GB of data across each
drive to simulate seek-limited behavior.

Unfortunately, even with 2GB of main memory, Tiger
and Squid are unable to index these drives, so we were
unable to test them in any meaningful way. Figure 8
shows the size of the largest disk that each of the sys-
tems can index with 2 GB of memory. In the figure, HC-
SM and HC-L are HashCache-SetMem and HashCache-
Log, respectively. The other HashCache configurations,
Basic and Set have no practical limit on the amount of
externally-attached storage.

The Polygraph results for these configurations are
shown in Table 9, and the resource usage details are in
Figure 9. With 2TB of external storage, both HashCache-
Log and HashCache-LogLRU are able to perform 600
reqs/sec. In this configuration, HashCache-Log uses

slightly more than 60% of the system’s memory, while
HashCache-LogLRU uses slightly less. The hit time for
HashCache-LogLRU is a little higher than HashCache-
Log because in some cases it requires 2 seeks (one for the
position, and one for the content) in order to perform a
read. The slightly higher cache hit rates exhibited on this
test versus the high-end systems test are due the Poly-
graph environment – without filling the cache, it has a
smaller set of objects to reference, yielding a higher of-
fered hit ratio.

The 1TB test achieves half the performance of the 2TB
test, but does so with correspondingly less memory uti-
lization. The HashCache-SetMem configuration actually
uses less than 10% of the 2GB overall in this scenario,
suggesting that it could have run with our original server
configuration of only 256MB.

While the performance results are reassuring, these ex-
periments prove that HashCache can index disks that are
much larger than conventional policies could handle. At
the same time, HashCache performance meets or exceeds
what other caches would produce on much smaller disks.
This scenario is particularly important for the develop-
ing world, because one can use these inexpensive high-
capacity drives to host large amounts of content, such
as a Wikipedia mirror, WAN accelerator chunks, HTTP
cache, and any other content that can be preloaded or
shipped on DVDs later.

6 Related Work

Web caching in its various forms has been studied ex-
tensively in the research and commercial communities.
As mentioned earlier, the Harvest cache [4] and CERN
caches [17] were the early approaches. The Harvest
design persisted, especially with its transformation into
the widely-used Squid Web proxy [35]. Much re-
search has been performed on Squid, typically aimed
at reorganizing the filesystem layout to improve perfor-
mance [16, 18], better caching algorithms [14], or better
use of peer caches [11]. Given the goals of HashCache,
efficiently operating with very little memory and large
storage, we have avoided more complexity in cache re-
placement policies, since they typically use more mem-
ory to make the decisions. In the case of working sets that
dramatically exceed physical memory, cache policies are
also likely to have little real impact. Disk cache replace-
ment policies also become less effective when storage
sizes grow very large. We have also avoided Bloom-
filter approaches [2] that would require periodic rebuilds,
since scanning terabyte-sized disks can sap disk perfor-
mance for long periods. Likewise, approaches that re-
quire examining multiple disjoint locations [19, 32] are
also not appropriate for this environment, since any small
gain in reducing conflict misses would be offset by large
losses in checking multiple locations on each cache miss.

Some information has been published about commer-
cial caches and workloads in the past, including the
design considerations for high-speed environments [3],
proxy cache performance in mixed environments [9],
and workload studies of enterprise user populations [12].
While these approaches have clearly been successful in
the developed world, many of the design techniques have
not typically transitioned to the more price-sensitive por-
tions of the design space. We believe that HashCache
demonstrates that addressing problems specific to the de-
veloping world can also open interesting research oppor-
tunities that may apply to systems that are not as price-
sensitive or resource-constrained.

In terms of performance optimizations, two previ-
ous systems have used some form of prefetching, in-
cluding one commercial system [7], and one research
project [33]. Based on published metrics, HashCache
performs comparably to the commercial system, despite
using a much similar approach to grouping objects, and
despite using a standard filesystem for storage instead
of raw disk access. Little scalability information is pre-
sented on the research system, since it was tested only
using Apache modproxy at 8 requests per second. Oth-
erwise, very little information is publically available re-
garding how high-performance caches typically oper-
ate from the extremely competitive commercial period
for proxy caches, centered around the year 2000. In
that year, the Third Cache-Off [40] had a record num-
ber of vendors participate, representing a variety of dif-
ferent caching approaches. In terms of performance,
HashCache-Log compares favorably to all of them, even
when normalized for hardware.

Web caches also get used in two other contexts:
server accelerators and content distribution networks
(CDNs) [1, 10, 26, 41]. Server accelerators, also known
as reverse proxies, typically reside in front of a Web
server and offload cacheable content, allowing the Web
server to focus on dynamically-generated content. CDNs
geographically distribute the caches reducing latency to
the client and bandwidth consumption at the server. In
these cases, the proxy typically has a very high hit rate,
and is often configured to serve as much content from
memory as possible. We believe that HashCache is
also well-suited for this approach, because in the Set-
MemLRU configuration, only the index entries for popu-
lar content need to be kept in memory. By freeing the
main memory from storing the entire index, the extra
memory can be used to expand the size of the hot object
cache.

Finally, in terms of context in developing world
projects, HashCache is simply one piece of the infras-
tructure that can help these environments. Advances in
wireless network technologies, such as WiMax [42] or
rural WiFi [27, 36] will help make networking available

to larger numbers of people, and as demand grows, we
believe that the opportunities for caching increase. Given
the low resource usage of HashCache and its suitability
for operation on shared hardware, we believe it is well-
suited to take advantage of networking advancements in
these communities.

7 Deployments
HashCache is currently deployed at two different lo-
cations in Africa, at the Obafemi Awolowo University
(OAU) in Nigeria and at the Kokrobitey Institute (KI)
in Ghana. At OAU, it runs on their university server
which has a 100 GB hard drive, 2 GB memory and a dual
core Xeon processor. For Internet connection, they pay
$5,000 per month for a 2 Mbps satellite link to an ISP in
Europe and the link has a high variance ICMP ping time
from Princeton ranging 500 to 1200 ms. We installed
HashCache-Log on the machine but were asked to limit
resource usage for HashCache to 50 GB disk space and
no more than 300 MB of physical memory. The server
is running other services such as a E-mail service and a
firewall for the department and it is also used for general
computation for the students. Due to privacy issues we
were not able to analyze the logs from this deployment
but the administrator has described the system as useful
and also noticed the significant memory and CPU usage
reduction when compared to Squid.

At KI, HashCache runs on a wireless router for a small
department on a 2 Mbps LAN. The Internet connection
is through a 256 Kbps sub-marine link to Europe and the
link has a ping latency ranging from 200 to 500 ms. The
router has a 30 GB disk and 128 MB of main memory
and we were asked to use 20 GB of disk space and as
little memory as possible. This prompted us to use the
HashCache-Set policy as there are only 25 to 40 people
using the router every day. Logging is disabled on this
machine as well since we were asked not to consume
network bandwidth on transferring the logs.

In both these deployments we have used HashCache
policies to improve the Web performance while consum-
ing minimum amount of resource. Other solutions like
Squid would not have been able to meet these resource
constraints while providing any reasonable service. Peo-
ple at both places told us that the idea of a faster Internet
to popular Web sites seemed like a distant dream until we
discussed the complete capabilities of HashCache. We
are currently working with OLPC to deploy HashCache
at more locations with the OLPC XS servers.

8 Conclusion and Future Work
In this paper we have presented HashCache, a high-
performance configurable cache storage for the devel-
oping regions. HashCache provides a range of config-
urations that scale from using no memory for indexing

to ones that require only one-tenth as much as current
high-performance approaches. It provides this flexibil-
ity without sacrificing performance – its lowest-resource
configuration has performance comparable to free soft-
ware systems, while its high-end performance is compa-
rable to the best commercial systems. These configura-
tions allow memory consumption and performance to be
tailored to application needs, and break the link between
storage size and in-memory index size that has been com-
monly used in caching systems for the past decade. The
benefits of HashCache’s low resource consumption al-
low it to share hardware with other applications, share
the filesystem, and to scale to storage sizes well beyond
what present approaches provide.

On top of the HashCache storage layer, we have built
a Web caching proxy, the HashCache Proxy, which can
run using any of the HashCache configurations. Us-
ing industry-standard benchmarks and a range of hard-
ware configurations, we have shown that HashCache per-
forms competitively with existing systems across a range
of workloads. This approach provides an economy of
scale in HashCache deployments, allowing it to be pow-
ered from laptops, low-resource desktops, and even high-
resource servers. In all cases, HashCache either performs
competitively or outperforms other systems suited to that
class of hardware.

With its operation flexibility and a range of available
performance options, HashCache is well suited to pro-
viding the infrastructure for caching applications in de-
veloping regions. Not only does it provide competitive
performance with the stringent resource constraint , but
also enables new opportunities that were not possible
with existing approaches. We believe that HashCache
can become the basis for a number of network caching
services, and are actively working toward this goal.

9 Acknowledgements

We would like to thank Jim Gettys and John Watling-
ton for their discussions about OLPC’s caching needs,
and Marc Fiuczynski for arranging and coordinating our
deployments in Africa. We also thank our shepherd,
Michael Mitzenmacher as well as anonymous NSDI
reviewers. This research was partially supported by
NSF Awards CNS-0615237, CNS-0519829, and CNS-
0520053. Anirudh Badam was partially supported by
a Technology for Developing Regions Fellowship from
Princeton University.

References

[1] A KAMAI TECHNOLOGIESINC. http://www.akamai.com/.

[2] BLOOM, B. H. Space/time trade-offs in hash coding with allow-
able errors.Communications of the ACM 13 (1970), 422–426.

[3] BREWER, E., GAUTHIER, P., AND MCEVOY, D. Long-term
viability of large-scale caches. InProceedings of the 3rd Interna-
tional WWW Caching Workshop (1998).

[4] CHANKHUNTHOD , A., DANZIG , P. B., NEERDAELS, C.,
SCHWARTZ, M. F., AND WORRELL, K. J. A hierarchical inter-
net object cache. InProceedings of the USENIX Annual Technical
Conference (1996).

[5] CITRIX SYSTEMS. http://www.citrix.com/.

[6] COBLITZ , INC. http://www.coblitz.com/.

[7] COX, A. L., HU, Y. C., PAI , V. S., PAI , V. S., AND

ZWAENEPOEL, W. Storage and retrieval system for WEB cache.
U.S. Patent 7231494, 2000.

[8] DU, B., DEMMER, M., AND BREWER, E. Analysis of WWW
traffic in Cambodia and Ghana. InProceedings of the 15th Inter-
national conference on World Wide Web (WWW) (2006).

[9] FELDMANN , A., CACERES, R., DOUGLIS, F., GLASS, G.,AND

RABINOVICH , M. Performance of web proxy caching in hetero-
geneous bandwidth environments. InProceedings of the 18th
IEEE INFOCOM (1999).

[10] FREEDMAN, M. J., FREUDENTHAL, E., AND MAZIERES, D.
Democratizing content publication with coral. InProceedings of
the USENIX Symposium on Networked Sytems Design and Imple-
mentation (NSDI) (2004).

[11] GADDE, S., CHASE, J.,AND RABINOVICH , M. A taste of crispy
Squid. InWorkshop on Internet Server Performance (1998).

[12] GRIBBLE, S.,AND BREWER, E. A. System design issues for in-
ternet middleware services: Deductions from a large clienttrace.
In Proceedings of the USENIX Symposium on Internet Technolo-
gies and Systems (USITS) (1997).

[13] INTEL. Classmate PC, http://www.classmatepc.com/.

[14] JIN , S.,AND BESTAVROS, A. Popularity-aware greedydual-size
web proxy caching algorithms. InProceedings of the 20th Inter-
national Conference on Distributed Computing Systems (ICDCS)
(2000).

[15] LUOTONEN, A., HENRYK, F., LEE, T. B.
http://info.cern.ch/hypertext/WWW/Daemon/Status.html.

[16] MALTZAHN , C., RICHARDSON, K., AND GRUNWALD , D. Re-
ducing the disk I/O of Web proxy server caches. InProceedings
of the USENIX Annual Technical Conference (1999).

[17] MALTZAHN , C., RICHARDSON, K. J., AND GRUNWALD , D.
Performance issues of enterprise level web proxies. InProceed-
ings of the ACM SIGMETRICS (1997).

[18] MARKATOS, E. P., PNEVMATIKATOS , D. N., FLOURIS, M. D.,
AND KATEVENIS, M. G. Web-conscious storage management
for web proxies. IEEE/ACM Transactions on Networking 10, 6
(2002), 735–748.

[19] M ITZENMACHER, M. The power of two choices in randomized
load balancing.IEEE Transsactions on Parallel and Distributed
Systems 12, 10 (2001), 1094–1104.

[20] MOGUL, J. C., CHAN , Y. M., AND KELLY, T. Design, im-
plementation, and evaluation of duplicate transfer detection in
HTTP. InProceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI) (2004).

[21] O3B NETWORKS. http://www.o3bnetworks.com/.

[22] OLPC. http://www.laptop.org/.

[23] OLPC. http://wiki.laptop.org/go/Hardwarespecification.

[24] OLPC. http://wiki.laptop.org/go/XSRecommendedHardware.

[25] PAI , V. S., DRUSCHEL, P., AND ZWAENEPOEL, W. Flash: An
efficient and portable Web server. InProceedings of the USENIX
Annual Technical Conference (1999).

[26] PARK , K., AND PAI , V. S. Scale and performance in the CoBlitz
large-file distribution service. InProceedings of the 3rd USENIX
Symposium on Networked Systems Design and Implementation
(NSDI) (2006).

[27] PATRA , R., NEDEVSCHI, S., SURANA , S., SHETH, A., SUB-
RAMANIAN , L., AND BREWER, E. WiLDNet: Design and im-
plementation of high performance wifi based long distance net-
works. InProceedings of the 4th Symposium on Networked Sys-
tems Design and Implementation (NSDI) (2007).

[28] RHEA, S., LIANG , K., AND BREWER, E. Value-based web
caching. InIn Proceeding of the 13th International Conference
on World Wide Web (WWW) (2003).

[29] RIVERBED TECHNOLOGY, INC. http://www.riverbed.com/.

[30] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and
implementation of a log-structured file system.ACM Transac-
tions on Computer Systems 10, 1 (1992), 26–52.

[31] RUSSELL, M., AND HOPKINS, T. CFTP: a caching FTP server.
Computer Networks and ISDN Systems 30, 22–23 (1998), 2211–
2222.

[32] SEZNEC, A. A case for two-way skewed-associative caches.
In Proceedings of the 20th International Symposium on Com-
puter Architecture (ISCA) (New York, NY, USA, 1993), ACM,
pp. 169–178.

[33] SHRIVER, E. A. M., GABBER, E., HUANG, L., AND STEIN,
C. A. Storage management for web proxies. InProceedings of
the USENIX Annual Technical Conference (2001).

[34] SILVER PEAK SYSTEMS, INC. http://www.silver-peak.com/.

[35] SQUID. http://www.squid-cache.org/.

[36] SUBRAMANIAN , L., SURANA , S., PATRA , R., NEDEVSCHI, S.,
HO, M., BREWER, E., AND SHETH, A. Rethinking wireless in
the developing world. InProceedings of Hot Topics in Networks
(HotNets-V) (2006).

[37] THE MEASUREMENTFACTORY.
http://www.web-polygraph.org/.

[38] THE MEASUREMENTFACTORY.
http://www.web-polygraph.org/docs/workloads/polymix-4/.

[39] THE MEASUREMENT FACTORY. http://www.measurement-
factory.com/results/public/cacheoff/N04/report.by-alph.html.

[40] THE MEASUREMENT FACTORY. http://www.measurement-
factory.com/results/public/cacheoff/N03/report.by-alph.html.

[41] WANG, L., PARK , K., PANG, R., PAI , V., AND PETERSON,
L. Reliability and security in the CoDeeN content distribution
network. InProceedings of the USENIX Annual Technical Con-
ference (2004).

[42] WIMAX FORUM. http://www.wimaxforum.org/home/.

