HashCache: Cache Storage for the Next Billion

Anirudh Badam, KyoungSoo Park®, Vivek S. Paf and Larry L. Peterson
*Department of Computer Science
Princeton University
+Department of Computer Science
University of Pittsburgh

Abstract indexing of on-disk data, which was developed when

. disk storage was relatively more expensive than it is now.
We present HashCache, a configurable cache storaggoyever, because disk size has been growing faster than

engine designed to meet the needs of cache storaggawm sizes, it is now much cheaper to buy terabytes of
in the developing world. With the advent of cheap isk than a machine capable of indexing that much stor-

commodity laptops geared for mass deployments, dezge, since most low-end servers have lower memory lim-
veloping regions are poised to become major users a5

the Internet, and given the high cost of ban_dwit;ith.i.n This disk/RAM linkage makes existing cache storage
these parts of the worId,_ they stand to gain S'gn”c"systems problematic for developing world use, where it
cantl_y from _network cachlng._ _However, current Web may be very desirable to have terabytes of cheap stor-
proxies are incapable of providing large storage Capacége (available for less than US $100/TB) attached to
ities while using small resource footprints, a requirement'cheap low-power machines. However, if indexing a ter-
for Fhe integrated muIti—purpose servers needed to efébyte of storage requires 10 GB of RAM (typical for
fectively support deve_loplng—world deployments. H""f‘:’h'current proxy caches), then these deployments will re-
C_ache presents a radical depgrture from the convenponaluire server-class machines, with their associated costs
wisdom in network cache deS|gn_, and Uses 6 tp 20 t'meand infrastructure. Worse, this memory is dedicated for
!ess memory than current techniques while still provid- .o by a single service, making it difficult to deploy con-
ing comparable or better performance. As such, Hashg,jjaeq multi-purpose servers. When low-cost laptops

Cache can be deployed in configurations not attainablff:-rom the One Laptop Per Child project [22] o the Class-

with current approaches, such as having multiple terate from Intel [13] cost only US $200 each, spending
abytes of external storage cache attached to low-power ousands of dollars per server may exceed the cost of
machines. HashCache has been successfully deployedli&ptops for an entire school

two locations in Africa, and further deployments are in This situation is especially unfortunate, since band-

progress. .) .) . .
width in developing regions is often more expensive,
both in relative and absolute currency, than it is in the
US and Europe. Africa, for example, has poor terrestrial
Network caching has been used in a variety of contextgonnectivity, and often uses satellite connectivity, back
to reduce network latency and bandwidth consumptionpauled through Europe. One of our partners in Nigeria,
ranging from FTP caching [31], Web caching [15, 4], re- for example, shares a 2 Mbps link, which costs $5000 per
dundant traffic elimination [20, 28, 29], and content dis- month. Even the recently-planned “Google Satellite,” the
tribution [1, 10, 26, 41]. All of these cases use local O3b, is expected to drop the cost to only $500/Mbps per
storage, typically disk-based, to reduce redundant datgnonth by 2010 [21]. With efficient cache storage, one
fetches over the network. Large enterprises and ISPgsan reduce the network connectivity expenses.
particularly benefit from network caches, since they can The goal of this project is to develop network cache
amortize their cost and management over larger user pogstores designed for developing-world usage. In this pa-
ulations. Cache storage system design has been shappeér, we present HashCache, a configurable storage sys-
by this class of users, leading to design decisions that fatem that implements flexible indexing policies, all of
vor first-world usage scenarios. For example, RAM con-which are dramatically more efficient than traditional
sumption is proportional to disk size due to in-memorycache designs. The most radical policy uses no main

1 Introduction

memory for indexing, and obtains performance compapages may be large, they tend to be composed of many
rable to traditional software solutions such as the Squidmall objects, such as dozens of small embedded images.
Web proxy cache. The highest performance policy per-These objects, along with tiny fragments of cached net-
forms equally with commercial cache appliances whilework traffic from a WAN accelerator, put pressure on tra-
using main-memory indexes that are only one-tenth theiditional caching approaches using in-memory indexing.
size. Between these policies are a range of distinct poli- A Web proxy running on a terabyte-sized HashCache
cies that trade memory consumption for performancecan provide a large HTTP store, allowing us to not only
suitable for a range of workloads in developing regions. cache a wide range of traffic, but also speculatively pre-
load content during off-peak hours. Furthermore, this
1.1 Rationale For a New Cache Store kind of system can be driven from a typical OLPC-class

HashCache is designed to serve the needs of developintgptop, with only 256MB of total RAM. One such lap-
world environments, starting with classrooms but work-top can act as a cache server for the rest of the laptops in
ing toward backbone networks. In addition to good per-the deployment, eliminating the need for separate server-
formance with low resource consumption, HashCachélass hardware. In comparison, using current Web prox-
provides a number of additional benefits suitable fories, these laptops could only index 30GB of disk space.
developing-world usage: (a) many HashCache policies The rest of this paper is structured as follows. Sec-
can be tailored to use main memory in proportion to sys-tion 2 explains the current state of the art in network
tem activity, instead of cache size; (b) unlike commer-storage design. Section 3 explains the problem, explores
cial caching appliances, HashCache does not need to tserange of HashCache policies, and analyzes them. Sec-
the sole application running on the machine; (c) by sim-tion 4 describes our implementation of policies and the
ply choosing the appropriate indexing scheme, the samblashCache Web proxy. Section 5 presents the perfor-
cache software can be configured as a low-resource en#Rance evaluation of the HashCache Web Proxy and com-
user cache appropriate for small classrooms, as well agares it with Squid and a modern high-performance sys-
a high-performance backbone cache for higher levels ofem with optimized indexing mechanisms. Section 6 de-
the network; (d) in its lowest-memory configurations, scribes the related work, Section 7 describes our current
HashCache can run on laptop-class hardware attached @gployments, and Section 8 concludes with our future
external multi-terabyte storage (via USB, for example), awork.
scenario not even possible with existing designs; and (e
HashCache provides a flexible caching layer, allowing ité Current State-of-the-Art
to be used not only for Web proxies, but also for otherwhile typical Web proxies implement a number of fea-
cache-oriented storage systems. tures, such as HTTP protocol handling, connection man-
A previous analysis of Web traffic in developing re- agement, DNS and in-memory object caching, their per-
gions shows great potential for improving Web perfor-formance is generally dominated by their filesystem or-
mance [8]. According to the study, kiosks in Ghana andganization. As such, we focus on the filesystem com-
Cambodia, with 10 to 15 users per day, have downloade@onent because it determines the overall performance
over 100 GB of data within a few months, involving 12 of a proxy in terms of the peak request rate and object
to 14 million URLs. The authors argue for the need cacheability. With regard to filesystems, the two main
for applications that can perform HTTP caching, chunkoptimizations employed by proxy servers are hashing
caching for large downloads and other forms of cachingand indexing objects by their URLs, and using raw disk
techniques to improve the Web performance. With theto bypass filesystem inefficiencies. We discuss both of
introduction of personal laptops into these areas, it is reathese aspects below.
sonable to expect even higher network traffic volumes. The Harvest cache [4] introduced the design of stor-
Since HashCache can be shared by many applicatioriag objects by a hash of their URLS, and keeping an in-
and is not HTTP-specific, it avoids the problem of dimin- memory index of objects stored on disk. Typically, two
ishing returns seen with large HTTP-only caches. Hashlevels of subdirectories were created, with the fan-out of
Cache can be used by both a Web proxy and a WAN aceach level configurable. The high-order bits of the hash
celerator, which stores pieces of network traffic to pro-were used to select the appropriate directories, and the
vide protocol-independent network compression. Thisfile was ultimately named by the hash value. This ap-
combination allows the Web cache to store static Welproach not only provided a simple file organization, but
content, and then use the WAN accelerator to reducé also allowed most queries for the presence of objects to
redundancy in dynamically-generated content, such abe served from memory, instead of requiring disk access.
news sites, Wikipedia, or even locally-generated contentThe older CERN [15] proxy, by contrast, stored objects
all of which may be marked uncacheable, but which tendby creating directories that matched the components of
to only change slowly over time. While modern Web the URL. By hashing the URL, Harvest was able to con-

System Naming Storage Memory Entity Memory per
Management| Management Object (Bytes)

CERN URL Regular Filesystem Hash 4-20
Filesystem | Data Structures LFS Offset 4

Harvest Hash Regular | LRU, Filesystem Size in Blocks 2
Filesystem | Data Structures Log Generation 1

Squid Hash Regular LRU & others Disk Number 1
Filesystem Bin Pointers 4

Commercial| Hash Log LRU Chaining Pointers 8
LRU List Pointers 8

Table 1: System Entities for Web Caches Total 32-48

trol both the depth and fan-out of the directories used Table 2: High Performance Cache - Memory Usage
to store objects. The CERN proxy, Harvest, and its de-
scendant, Squid, all used the filesystems provided by the

operating system, simplifying the proxy and eliminating information, such as the location on disk, which disk
the need for controlling the on-disk layout. ’ ’ ’

. . . and which generation of log, to avoid problems with log
The next step in the evolution of proxy design was us-

. .) L .~ wrapping. The entries typically are stored in a chain per
ing raw disk and custom filesystems to eliminate muItlpIehash bin, and a doubly-linked LRU list across all index

levels of directory traversals and disk head seeks aSSOCk wies. Finally, to shorten hash bin traversals (and the

ated with them. The in-memory index now stored the . o iateq T8 pressure), the number of hash bins is typ-
location on disk where the object was stored, ellmlnatmqCally set to roughly the number of entries

the need for multiple seeks to find the start of the object.

The first block of the on-disk file typically includes ysing these fields and their sizes, the total consump-
extra metadata that is too big to be held in memory, suchion per index entry can be as low as 32 bytes per object,
as the complete URL, full response headers, and locatiogyt given that the average Web object is roughly 8KB
of subsequent parts of the object, if any, and is followedhere a page may have tens of objects), even 32 bytes
by the content fetched from the origin server. In order toper object represents an in-memory index storage that is
fully utilize the disk writing throughput, those blocks are 1/256 the size of the on-disk storage. With a more re-
often maintained consecutively, using a technique simiyjistic index structure, which can include a larger hash
lar to log-structured filesystem(LFS) [30]. Unlike LFS, yalue, expiration time, and other fields, the index entry
which is expected to retain files until deleted by the usercan pe well over 80 bytes (as in the case of Squid), caus-
cache filesystems can often perform disk cache replacgng the in-memory index to exceed 1% of the on-disk
ment in LIFO order, even if other approaches are usedtorage size. With a single 1TB drive, the in-memory in-
for main memory cache replacement. Table 1 summagex alone would be over 10GB. Increasing performance

rizes the object lookup and storage management of varipy ysing multiple disks would then require tens of giga-
ous proxy implementations that have been used to builghytes of RAM.

Web caches.

The upper bound on the number of cacheable objects Reducing the RAM needed for indexing is desirable
per proxy is a function of available disk cache and phys{for several scenarios. Since the growth in disk capaci-
ical memory size. Attempting to use more memory thanties has been exceeding the growth of RAM capacity for
the machine’s physical memory can be catastrophic fosome time, this trend will lead to systems where the disk
caches, since unpredictable page faults in the applicazannot be fully indexed due to a lack of RAM. Dedicated
tion can degrade performance to the point of unusabilRAM also effectively limits the degree of multiprogram-
ity. When these applications run as a service at networkning of the system, so as processors get faster relative
access points, which is typically the case, all users theto network speeds, one may wish to consolidate multi-
suffer extra latency when page faults occur. ple functions on a single server. WAN accelerators, for

The components of the in-memory index vary from example, cache network data [5, 29, 34], so having very
system to system, but a representative configuration folarge storage can reduce bandwidth consumption more
a high-performance proxy is given in Table 2. Eachthan HTTP proxies alone. Similarly, evenin HTTP prox-
entry has some object-specific information, such as itges, RAM may be more useful as a hot object cache than
hash value and object size. It also has some disk-relatess an index, as is the case in reverse proxies (server ac-

1This information was previously available on the iMimic Wetk- f:elera_tors) and content d_lStI‘IbutIOl’] n_etworks. One. goal
ing Web site and the Volera Cache Web site, but both haveptisapd. 1N designing HashCache is to determine how much index
No citable references appear to exist memory is really necessary.

Hash 1 e
Hash

Hash2 ——) — —)

Hash 3—=
Hash3 ——

Hash1l —— —

— — Hash4—=| |—>
L | L Lo
Hash4 —— —) LOg —) g

Hash5 — Hash 5—= | L

Hash§ — = | | —= Hash6—= |~ |)
Hash7 ——) Hash —)
I)

Hash 8 —— Hash] L

Table of Blocks Table of Sets

Figure 1: HashCache-Basic: objects with hash value i gd-igure 2: HashCache-Set: Objects with hash value i
to the " bin for the first block of a file. Later blocks are search through th%‘th set for the first block of a file.

in the circular log. Later blocks are in the circular log. Some arrows are

3 Desi shown crossed to illustrate that objects that map on to a
esgn set can be placed anywhere in the set.

In this section, we present the design of |_|aShC""ChﬁashCache-BasicwiII have anincrease in hash collisions

aBId show hovillvpegfor_mgnci can bﬁ sc?leoll_ W_'th ta\;ﬁ'l'(reducing cache hit rates), and will require a disk access
able memory. VVe bégin by showing how 1o €liminate the, , every request, even cache misses. Storing objects will

in-memory index while still obtaining reasonable perfor- equire one seek per object (due to the hash randomiz-

mance, and t_hen we show how selective use of minim ng the location), and possibly an additional write to the
indexing can improve performance. A summary of poli- circular log

cies is shown in Table 3.

3.1 Removing the ln-Memory Index 3.2 Collision Control Mechanism
We start by removing the in-memory index entirely, and While in-memory indexes can use hash chaining to elim-
incrementally introducing minimal metadata to system-inate the problem of hash values mapped to the same bin,
atically improve performance. To remove the in-memorydoing so for an on-disk index would require many ran-
index, we have to address the two functions the in-dom disk seeks to walk a hash bin, so we devise a sim-
memory index serves: indicating the existence of an obpler and more efficient approach while retaining most of
ject and specifying its location on disk. Using filesys- the benefits.
tem directories to store objects by hash has its own per- In HashCache-Set, we expand the Disk Table to be-
formance problems, so we seek an alternative solution €ome an N-way set-associative hash table, where each
treating the disk as a simple hashtable. bin can store N elements. Each element still contains
HashCache-Basic, the simplest design option in thenetadata with the full object name, size, and location in
HashCache family, treats part of the disk as a fixed-sizethe circular log of any remaining part of the object. Since
non-chained hash table, with one object stored in eackhese locations are contiguous on disk, and since short
bin. This portion is called the Disk Table. It hashes thereads have much lower latency than seeks, reading all of
object name (a URL in the case of a Web cache) and thethe members of the set takes only marginally more time
calculates the hash value modulo the number of bins téhan reading just one element. This approachis shown in
determine the location of the corresponding file on disk.Figure 2, and reduces the impact of popular objects map-
To avoid false positives from hash collisions, each storeding to the same hash bin, while only slightly increasing
object contains metadata, including the original objectthe time to access an object.
name, which is compared with the requested object name While HashCache-Set eliminates problems stemming
to confirm an actual match. New objects for a bin arefrom collisions in the hash bins, it still has several prob-
simply written over any previous object. lems: it requires disk access for cache misses, and lacks
Since objects may be larger than the fixed-size binsin efficient mechanism for cache replacement within the
in the Disk Table, we introduce a circular log that con- set. Implementing something like LRU within the set us-
tains the remaining portion of large objects. The objecting the on-disk mechanism would require a potential disk
metadata stored in each Disk Table bin also includes therite on every cache hit, reducing performance.
location in the log, the object size, and the log generation o .
number, and is illustrated in Figure 1. 3.3 Avoiding Seeks for Cache Misses
The performance impact of these decisions is afkequiring a disk seek to determine a cache miss is a ma-
follows: in comparison to high-performance caches,jor issue for workloads with low cache hit rates, since an

Bits Per | RAM GB per | Read| Write | Miss
Policy Object Disk TB | Seeks| Seeks| Seeks| Comments
Squid 576-832 9-13 ~ 6 ~ 6 0 | Harvest descendant
Commercial 256-544 4-85 <1 ~0 0 | custom filesystem
HC-Basic 0 0 1 1 1 | high collision rate
HC-Set 0 0 1 1 1 | adds N-way sets to reduce collisions
HC-SetMem 11 0.17 1 1 0 | small in-mem hash eliminates miss segks
HC-SetMemLRU <11 < 0.17 1 1 < 1 | only some sets kept in memory
HC-Log 47 0.73 1 ~0 0 | writes to log, log position added to entry
HC-LogLRU 15-47 0.23-0.67| 1+¢ ~0 0 | log position for only some entries in set
HC-LogLRU + Prefetch 23-55 0.36-086| <1 ~0 0 | reads related objects together
HC-Log + Prefetch 55 0.86 <1 ~0 0 | reads related objects together

Table 3: Summary of HashCache policies, with Squid and comialeentries included for comparison.
Main memory consumption values assume an average objeetdiZ8KB. Squid memory data appears in
http://www.comfsm.fm/computing/squid/FAQ-8.html

index-less cache would spend most of its disk time consignificant hash bits per object, the break-even point is
firming cache misses. This behavior would add extra la-around 50% — once more than half the sets will be stored
tency for the end-user, and provide no benefit. To addresis& memory, it is cheaper to remove the LRU pointers and
the problem of requiring seeks for cache misses, we inbin number, and just keep all of the sets. A discussion of
troduce the first HashCache policy with any in-memoryhow to select values for these parameters is provided in
index, but employ several optimizations to keep the in-Section 4.
dex much smaller than traditional approaches. If the full array is kept in memory, we call it

As a starting point, we consider storing in main mem-HashCache-SetMem, and if only a subset are kept in
ory an H-bit hash values for each cached object. Thesememory, we call it HashCache-SetMemLRU. With a
hash values can be stored in a two-dimensional arrajow hash collision rate, HashCache-SetMem can deter-
which corresponds to the Disk Table, with one row for mine most cache misses without accessing disk, whereas
each bin, and N columns corresponding to the N-wayHashCache-SetMemLRU, with its tunable memory con-
associativity. An LRU cache replacement policy would sumption, will need disk accesses for some fraction of
need forward and reverse pointers per object to maintaithe misses. However, once a set is in memory, per-
the LRU list, bringing the per-object RAM cost to (H + forming intra-set cache replacement decisions requires
64) bits assuming 32-bit pointers. However, we can reno disk access for policy maintenance. Writing objects
duce this storage as follows. to disk will still require disk access.

First, we note that all the entries in an N-entry set share
the same modulo hash value (%S) where S is the numbe.4 Optimizing Cache Writes
of sets in the Disk Table. We can drop the lowest log(S)with the previous optimizations, cache hits require one
bits from each hash value with no loss, reducing the hasBeek for small files, and cache misses require no seeks
storage to only H - log(S) bits per object. (excluding false positives from hash collisions) if the as-

Secondly, we note that cache replacement policiesociated set's metadata is in memory. Cache writes still
only need to be implemented within the N-entry set, sorequire seeks, since object locations are dictated by their
LRU can be implemented by simply ranking the entrieshash values, leaving HashCache at a performance dis-
from O to N-1, thereby using only log(N) bits per entry. advantage to high-performance caches that can write all

We can further choose to keep in-memory indexes forcontent to a circular log. This performance problem is
only some sets, not all sets, so we can restrict the numbarot an issue for caches with low request rates, but will
of in-memory entries based on request rate, rather thahecome a problem for higher request rate workloads.
cache size. This approach keeps sets in an LRU fashion, To address this problem, we introduce a new pol-
and fetches the in-memory index for a set from disk onicy, HashCache-Log, that eliminates the Disk Table and
demand. By keeping only partial sets, we need to alsareats the disk as a log, similar to the high-performance
keep a bin number with each set, LRU pointers per setcaches. For some or all objects, we store an additional
and a hash table to find a given set in memory. offset (32 or 64 bits) specifying the location on disk. We

Deciding when to use a complete two-dimensional arretain the N-way set associativity and per-set LRU re-
ray versus partial sets with bin numbers and LRU point-placement because they eliminate disk seeks for cache
ers depends on the size of the hash value and the set asisses with compact implementation. While this ap-
sociativity. Assuming 8-way associativity and the 8 mostproach significantly increases memory consumption, it

can also yield a large performance advantage, so this | Policy Throughput
tradeoff is useful in many situations. However, even | HC-Basic rr = !
when adding the log location, the in-memory index is
. - HC-Set rr =
still much smaller than traditional caches. For exam-
ple, for 8-way set associativity, per-set LRU requires 3 | HC-SetMem | rr =
bits per entry, and 8 bits per entry can minimize hash 7
i s ; ; i HC-LogN T = s
collisions within the set. Adding a 32-bit log position 2-chr+(1—chr)-
increases the per-entry size from 11 bits to 43 bits, but | HC-LogLRU rp = trel
. - 2-chr+(1—chr)-cbr
virtually eliminates the impact of write traffic, since all
).
).

1+ % +(1t—ch7") -cbr

1+ % +(1t—ch7") -cbr

chr-(1+i)+(1—chr)-cbr

rel

t-rel
writes can now be accumulated and written in one disk HC-Log " = Schrt(i-—chr)cbr
seek. Additionally, we need a few bits (assume 4) to | Commercial rr = Wﬁhrdw
record the log generation number, driving the total to 47
bits. Even at 47 bits per entry, HashCaChe-Log still usegable 4: Throughputs for techniqueg' = peak request
indexes that are a factor of 6-12 times smaller than currate, chr = cache hit rateghr = cacheability rateyel =
rent high-performance proxies. average number of related objeats, peak disk seek rate
We can reduce this overhead even further if we ex- all calculations include read prefetching, so the results
ploit Web object popularity, where half of the objects arefor Log and Grouped are the same. To exclude the effects
rarely, if ever, re-referenced [8]. In this case, we canof read prefetching, simply seti to one.
drop half of the log positions from the in-memory index,
and just store them on disk, reducing the average pembe applied to many of the previously described Hash-
entry size to only 31 bits, for a small loss in performance.Cache policies, and only requires that the application us-
HashCache-LogLRU allows the number of log positioning HashCache provide some information about which
entries per set to be configured, typically usiffglog objects are related. Assuming prefetch lengths of no
positions per N-object set. The remaining log offsets inmore than 256 blocks, this policy only requires 8 bits
the set are stored on the disk as a small contiguous filgser index entry being read. In the case of HashCache-
Keeping this file and the in-memory index in sync re- LogLRU, only the entries with in-memory log position
quires a few writes reducing the performance by a smallnformation need the additional length information. Oth-
amount. The in-memory index size, in this case, is 9-2Qerwise, this length can also be stored on disk. As a resullt,
times smaller than traditional high-performance systemsadding this prefetching to HashCache-LogLRU only in-
. creases the in-memory index size to 35 bits per object,
3.5 Prefetching Cache Reads assuming half the entries of each set contain a log posi-
With all of the previous optimizations, caching storagetion and prefetch length.
can require as little as 1 seek per object read for small For the rest of this paper, we assume all the policies to
objects, with no penalty for cache misses, and virtuallyhave this optimization except HashCache-LogN which is
no cost for cache writes that are batched together anthe HashCache-Log policy without any prefetching.
written to the end of the circular log. However, even
this performance can be further improved, by noting that3.6 Expected Throughput
prefetching multiple objects per read can amortize theTo understand the throughput implications of the vari-
read cost per object. ous HashCache schemes, we analyze their expected per-
Correlated access can arise in situations like Welformance under various conditions using the parameters
pages, where multiple small objects may be embeddedhown in Table 4.
in the HTML of a page, resulting in many objects being The maximum request rate() is a function of the
accessed together during a small time period. Groupinglisk seek rate, the hit rate, the miss rate, and the write
these objects together on disk would reduce disk seekste. The write rate is required because not all objects
for reading and writing. The remaining blocks for thesethat are fetched due to cache misses are cacheable. Ta-
pages can all be coalesced together in the log and writteble 4 presents throughputs for each system as a function
together so that reading them can be faster, ideally witlof these parameters. The cache hit rdte) is simply a
one seek. number between 0 and 1, as is the cacheability rétg (
The only change necessary to support this policy isSince the miss rate is (1chr), the write rate can be rep-
to keep a content length (in blocks) for all of the re- resented as (1 ehr) - cbr. The peak disk seek rat(
lated content written at the same time, so that it can bés a measured quantity that is hardware-dependent, and
read together in one seek. When multiple related objectthe average number of related objects) is always a
are read together, the system will perform reads at lespositive number. Due to space constraints, we omit the
than one seek per read on average. This approach caterivations for these calculations. These throughputs are

conservative estimates because we do not take into a¢.3 Flexible Memory Management

count the in-memory hot object cache, where some por4TTP workloads will often have a small set of objects
tion of the main memory is used as a cache for frequently¥hat are very popular, which can be cached in main mem-
used objects, which can further improve throughput. oy to serve multiple requests, thus saving disk /0. Gen-
erally, the larger the in-memory cache, the better the
4 HashCache I mplementation proxy’s performance. HashCache proxies can be config-
Oured to use all the free memory on a system without un-
Igliuly harming other applications. To achieve this goal, we
implement the hot object cache via anonymouap()

We implement a common HashCache filesystem |/
layer so that we can easily use the same interface wit
different applications. We expose this interface via . .
POSIX-like calls, such as open(), read(), write(), close() calls so that the operating system can evict pages as

seek(), etc., to operate on files being cached. Rather thghcMory pressure dictates. Before the HashCache proxy

operate directly on raw disk, HashCache uses a large fild>es the hot O_bJeCt c_ache, itchecks the memory res_ldency
of the page via ther ncor e() system call, and sim-

in the standard Linux ext2/ext3 filesystem, which does . o .
ply treats any missing page as a miss in the hot object

not require root privilege. Creating this zero-filled large . . :
file on a fresh ext2/ext3 filesystem typically creates acache. The hot object cache is managed as an LRU list

mostly contiguous on-disk layout. It creates large filesand unwsnted objectz O[rﬁages ho Ior;lge”r n mtt;l]m Eer‘p}—
on each physical disk and multiplexes them for perfor-Ory can be unmapped. This approach aflows the Hash-

mance. The HashCache filesystem is used by the Hasl?—ache proxy to use the entire main memory when no

Cache Web proxy cache as well as other applications Wgther applications need it, and to _seamlessly reduce Its
are developing. memory consumption when there is memory pressure in

the system.
4.1 External Indexing Interface In order to maximize the disk writing throughput, the
HashCache proxy buffers recently-downloaded objects

HashCache provides a simple indexing interface to SUP5g that many objects can be written in one batch (often

port other applications. Given a key as input, the mte_r-to a circular log). These dirty objects can be served from

face returns a data structure containing the file descr'pr‘nemory while waiting to be written to disk. This dirty
tors for the Disk Table file and the contiguous log ﬁle(ﬁbject cache reduces redundant downloads during flash

(if required), the location of the requested content, an rowds because many popular HTTP objects are usually
metadata such as the length of the contiguous blocks b‘?’equested by multiple clients

longing to the item, etc. We implement the interface for
each indexing policy we have described in the previ0u§0

. . . disk so that they can be read together later, providing
section. Using the data returned from the interface oNe o benefits of prefetching. The HashCache proxy uses
can utilize the POSIX calls to handle data transfers tg '

this feature to amortize disk seeks over multiple objects,
thereby obtaining higher read performance. One com-
T‘nercial system parses HTML to explicitly find embed-
ed objects [7], but we use a simpler approach — simply
grouping downloads by the same client that occur within
a small time window and that have the same HTTP Re-
4.2 HashCache Proxy ferrer field. We have found that this approach works well

o in practice, with much less implementation complexity.
The HashCache Web Proxy is implemented as an

event-driven main process with cooperating helper pro4.4 Parameter Selection

cesses/threads handling all blocking Operations, such qsOr the imp'ementation' we choose some design param-
DNS lookups and disk I/Os, similar to the design of eters such as the block size, the set size, and the hash
Flash [25]. When the main event loop receives a URL resjze. Choosing the block size is a tradeoff between space
quest from a client, it searches the in-memory hot-object;sage and the number of seeks necessary to read small
cache to see if the requested content is already in menypjects. In Table 5, we show an analysis of object sizes
ory. In case of a cache miss, it looks up the URL us-from a live, widely-used Web cache called CoDeeN [41].
ing one of the HashCache indexing policies. Disk I/O\ye see that nearly 75% of objects are less than 8KB,
helper processes use the HashCache filesystem I/O intgfhile 87.2% are less than 16KB. Choosing an 8KB block
face to read the object blocks into memory or to write would yield better disk usage, but would require multiple
the fetched object to disk. To minimize inter-processseeks for 25% of all objects. Choosing the larger block
communication (IPC) between the main process and thgjze wastes some space, but may increase performance.

helpers, only beacons are exchanged on IPC channels gjyce the choice of block size influences the set size,
and the actual data transfer is done via shared memory.

HashCache also provides for grouping related objects

and from the disk. Calls to the interface can block if disk
access is needed, but multiple calls can be in flight at th
same time. The interface consists of roughly 600 lines o
code, compared to 21000 lines for the HashCache We
Proxy.

Size (KB) | % of objects< size Read Size (KB)| Seeks/seq Latency/seek (ms
8 74.8 1 78 12.5
16 87.2 4 76 12.9
32 93.8 8 76 13.1
64 97.1 16 74 13.3
128 98.8 32 72 13.7
256 99.5 64 70 14.1

128 53 19.2

Table 5: CDF of Web object sizes
Table 6: Disk performance statistics

we make the decisions based on the performance of cur- we yse the latest standard workload, Polymix-4 [38],
rent disks. Table 6 shows the average number of seekghich was used at the Fourth Cache-off event [39] to
per second of three recent SATA disks (18, 60 and 15Genchmark many proxies. The Polygraph test harness
GB each). We notice the sharp degradation beyongses several machines for emulating HTTP clients and
64KB, so we use that as the set size. Since 64KB capthers to act as Web servers. This workload offers a
hold 4 blocks of 16KB each or 8 blocks of 8KB each, we cache hit ratio (CHR) of 60% and a byte hit ratio (BHR)
opt for an 8KB block size to achieve 8-way set associapf 40% meaning that at most 60% of the objects are
tivity. With 8 objects per set, we choose to keep 8 bitscache hits while 40% of bytes are cache hits. The aver-
of hash value per object for the in-memory indexes, toage download latency is 2.5 seconds (including RTT). A
reduce the chance of collisions. This kind of an analy-jarge number of objects are smaller than 8.5 KB. HTML
sis can be automatically performed during initial systempages contain 10 to 20 embedded (related) objects, with
configuration, and are the only parameters needed ongg, average size of 5 to 10 KB. A small number (0.1 %)
the specific HashCache policy is chosen. of large downloads (300 KB or more) have higher cache
hit rates. These numbers are very similar to the charac-
teristics of traffic in developing regions [8].

In this section, we present experimental results that com- We test three environments, reflecting the kinds of
pare the performance of different indexing mechanismsaches we expect to deploy. These are the low-end sys-
presented in Section 3. Furthermore, we present #&ms that reflect the proxy powered by a laptop or simi-
comparison between the HashCache Web Proxy Cachégr system, large-disk systems where a larger school can
Squid, and a high-performance commercial proxy calledourchase external storage to pre-load content, and high-
Tiger, using various configurations. Tiger implementsperformance systems for ISPs and network backbones.
the best practices outlined in Section 2 and is currently .

used in commercial service [6]. We also present the im- -2 Low-End System Experiments

pact of the optimizations that we included in the Hash-Our first test server for the proxy is designed to mimic
Cache Web Proxy Cache. For fair comparison, we us@ low-memory laptop, such as the OLPC XO Laptop, or
the same basic code base for all the HashCache varian® shared low-powered machine like an OLPC XS server.

5 Performance Evaluation

with differences only in the indexing mechanisms. Its configuration includes a 1.4 GHz CPU with 512 KB
of L2 cache, 256 MB RAM, two 60GB 7200 RPM SATA
5.1 Workload drives, and the Fedora 8 Linux OS. This machine is far

To evaluate these systems, we use the Web Polyfrom the standard commercial Web cache appliance, and
graph [37] benchmarking tool, thie facto industry stan- is likely to be a candidate machine for the developing
dard for testing the performance of HTTP intermediariesworld [23].

such as content filters and caching proxies. We use the Our tests for this machine configuration run at 40-275
Polymix [38] environment models, which models many requests per second, per disk, using either one or two
key Web traffic characteristics, including: multiple con- disks. Figure 3 shows the results for single disk perfor-
tent types, diurnal load spikes, URLs with transient pop-mance of the Web proxy using HashCache-Basic (HC-
ularity, a global URL set, flash crowd behavior, an un-B), HashCache-Set (HC-S), HashCache-SetMem (HC-
limited number of objects, DNS names in URLSs, object SM), HashCache-Log without object prefetching (HC-
life-cycles (expiration and last-modification times), per LN), HashCache-Log with object prefetching (HC-L),
sistent connections, network packet loss, reply size variTiger and Squid. The HashCache tests use 60 GB caches.
ations, object popularity (recurrence), request rates antlowever, Tiger and Squid were unable to index this
inter-arrival times, embedded objects and browser behavamount of storage and still run acceptably, so were lim-
ior, and cache validation (If-Modified-Since requests andted to using 18 GB caches. This smaller cache is still
reloads). sufficient to hold the working set of the test, so Tiger and

300 T T T T T T T 3

HC-SM ——
HC-SML30 —-&---
25 HC-SML40 -+
o
2 —
S]
g & 2t
~ @
£ £
E
% E 15
% [}
g &
14 § 1L
k] <
j)
[N
05
g
O hd T 1 1
HC-B HC-S Squid HC-SM HC-LN Tiger HC-L 120 130 140 150 160
System Request Rate

Figure 3: Peak Request Rates for Different policies forFigure 4: Peak Request Rates for Different SetMemLRU

low end SATA disk. policies on low end SATA disks.
policy SATA | SCSI| ScCsli 100 ‘ ‘ ‘
7200 | 10000 | 15000 Ha}jhch%:her;BaSsic ==
HC-Basic 20 50 85 HashCache.SetMiem

80 - HashCache-Log

HC-Set 40 50 85 Squid
HC-SetMem 66 85| 140 Tiger =
HC-LogN 132 170 | 280 g of

HC-LogLRU | 264 | 340| 560 3

HC-Log 264 340 560 S 0t

Commercial 264 340 560

20
Table 7: Expected throughputs (regs/sec) for policies // :)
for different disk speeds— all calculations include read o L VR o Ve BT

i M Usr CPU Sys CPU Disk
prefetching emory st v s
Resource

Squid do not suffer in performance as a result. Table 7 Figure 5: Resource Usage for Different Systems
gives the analytical lowerbounds for performance of each
of these policies for this workload and the disk perfor-hash table and the LRU list overhead of HashCache-
mance. The tests for HashCache-Basic and HashCachg8etMemLRU is such that when 50% of set headers are
Set achieve only 45 reqs/sec. The tests for HashCacheached, it takes about the same amount of memory when
SetMem achieve 75 reqs/sec. Squid scales better tharsing HashCache-SetMem. These experiments serve to
HashCache-Basic and HashCache-Set and achieves 6Aow that HashCache-SetMemLRU can provide further
regs/sec. HashCache-Log (with prefetch), in comparisavings when working set sizes are small and one does
son, achieves 275 reqs/sec. The Tiger proxy, with itot need all the set headers in main memory at all times
optimized indexing mechanism, achieves 250 regs/seco perform reasonably well.
This is less than HashCache-Log because Tiger's larger These experiments also demonstrate HashCache’s
index size reduces the amount of hot object cache availsmall systems footprint. Those measurements are shown
able, reducing its prefetching effectiveness. in Figure 5 for the single-disk experiment. In all cases,
Figure 4 shows the results from tests conductedhe disk is the ultimate performance bottleneck, with
on HashCache-SetMem and two configurations ofhearly 100% utilization. The user and system CPU re-
HashCache-SetMemLRU using 2 disks. The perfor-main relatively low, with the higher system CPU lev-
mance of the HashCache-SetMem system scales to 16f)s tied to configurations with higher request rates.
regs/sec, which is slightly more than double its perfor-The most surprising metric, however, is Squid’s high
mance with a single disk. The reason for this differencememory usage rate. Given that its storage size was
is that the second disk does not have the overhead of halenly one-third that used by HashCache, it still exceeds
dling all access logging for the entire system. The twoHashCache's memory usage in HashCache’s highest-
other graphs in the figure, labeled HC-SML30 and HC-performance configuration. In comparison, the lowest-
SML40, are the 2 versions of HashCache-SetMemLRWerformance HashCache configurations, which have per-
where only 30% and 40% of all the set headers ardormance comparable to Squid, barely register in terms
cached in main memory. As mentioned earlier, theof memory usage.

Request Ratg Throughput| Hit Time | All Time | Miss Time | CHR % | BHR %

per sec Mb/s msec msec msec
HashCache-Log 2200 116.98 77 1147 2508 56.91 41.06
Tiger 2300 121.40 98 1150 2512 56.49 41.40
Squid 400 21.38 63 1109 2509 57.25 41.22

Table 8: Performance on a high end system

70 T T
CHR &xxxx1

BHR szsszsn

100 SR

HashCache-Log EXXxxi
iger e

Squid m—

80 -

XS
QK

XX

2999204
oo
QR

<X

50 -

,,,,
0393
o

%
%

7
0

2%
%

60 -

%
5%
9203

%

<57
5K

40

%%
o

X
%S
o%6%

Hit Rate
SRR

X

% Usage

5%

40 -

757
25

XX
X

2
&

%

XK
o
o2e%
o~
o9
s
3%

RIRITR

20 |

X
X

72
200

vvv
XX
=

2
%

5%
XK

7
ol

RIIRRIIL
oetetetete%ee

XXX
SRR

<

o%

y
%

Sys CPU
Resource

3

Squid
Policy

Usr CPU

Figure 6: Low End Systems Hit Ratios Figure 7: High End System Performance Statistics
Figure 6 shows the cache hit ratio (by object) and thegye 10k RPM Ultra2 SCSI disks, of 18GB each. These
byte hit ratios (bandwidth savings) for the HashCacheyjsks perform 90 to 95 random seeks/sec. Using our an-
policies at their peak request rate. Almost all configu-5)ytical models, we expect a performance of at least 320
rations achieve the maximum offered hit ratios, with thereqs/sec/disk with HashCache-Log. On this machine we
exception of HashCache-Basic, which suffers from hash,, HashCache-Log, Tiger and Squid. From the Hash-
collision effects. o _ Cache configurations, we chose only HashCache-Log

While the different policies offer different tradeoffs, pecause the ample main memory of this machine would
one might observe that the performance jump betweegjciate that it can be used for better performance rather
HashCache-SetMem and HashCache-Log is substantiagh5, maximum cache size.

To bridge this gap one can use multiple small disks in- Figure 7 shows the resource utilization of the three

sﬁlad (?f Otnr? large disk to Tcrfeasg performanc?”\:vhn%ystems at their peak request rates. HashCache-Log con-
st using the same amount of main memory. esesumesjustenough memory for hot object caching, write
experiments further demonstrate that for low-end ma

buffers and also the index, still leaving about 65% of the

chines, HashCache can not only utilize more disk Stor'memoryunused. At the maximum request rate, the work-

age than commercial cache d_e5|gr_ls, but can also aCh'ngad becomes completely disk bound. Since the working
comparable performance while using less memory. Th

| ¢ : hould t late int] " et size is substantially larger than the main memory size,
arger storage size should fransiate nto greater newor xpanding the hot object cache size produces diminish-
savings, and the low resource footprint ensures that th

hi d 1ot be dedicated to iust inal g returns. Squid fails to reach 100% disk throughput
proxy machin€ need not be dedicated 1o just a sing eS'multaneously on all disks. Dynamic load imbalance

tars]k. The Hasrlc?chec-jSetll\/lem c((j)_m;(lguratloln can bde use&inong its disks causes one disk to be the system bottle-
when one wants 1o Index larger disks on a low-end May,q o eyen though the other four disks are underutilized.

fCh'rt]e .Wt'th afrelatl\;_ely Iowht_ra;flc demand: The Iowegt- The load imbalance prevents it from achieving higher re-
ootprint configurations, which useé no main-memory in- 8uest rates or higher average disk utilization.

dexing, HashCache-Basic and HashCache-Set, woul . .
The performance results from this test are shown in

even be appropriate for caching in wireless routers o . .

. able 8, and they confirm the expectations from the ana-
other embedded devices. . X

)) lytical models. HashCache-Log and Tiger perform com-

5.3 High-End System Experiments parably well at 2200-2300 regs/sec, while Squid reaches
For our high-end system experiments, we choose hardsnly 400 reqs/sec. Even at these rates, HashCache-Log
ware that would be more appropriate in a datacenteiis purely disk-bound, while the CPU and memory con-
The processor is a dual-core 2GHz Xeon, with 2MB of sumption has ample room for growth. The per-disk per-
L2 cache. The server has 3.5GB of main memory, andormance of HashCache-Log of 440 reqgs/sec/disk is in

1TB Configuration Request Ratg Throughput| Hit Time | All Time | Miss Time | CHR % | BHR %
per sec Mb/s msec msec msec
HashCache-SetMem 75 3.96 27 1142 2508 57.12 40.11
HashCache-Log 300 16.02 48 1139 2507 57.88 40.21
HashCache-LogLRU 300 16.07 68 1158 2510 57.15 40.08
2TB Configuration Request Ratg Throughput| Hit Time | All Time | Miss Time | CHR % | BHR %
per sec Mb/s msec msec msec
HashCache-SetMem 150 7.98 32 1149 2511 57.89 40.89
HashCache-Log 600 32.46 56 1163 2504 57.01 40.07
HashCache-LogLRU 600 31.78 82 1171 2507 57.67 40.82

Table 9: Performance on large disks

100

HashCache-SetMem 1TB
HashCache-LogLRU 1TB &

HashCache-Log 1T
HashCache-SetMem 2TB ¢
HashCache-LogLRU 2TB @77z
HashCache-Log 2TB s

14000 -

o

12000 - 80 -

10000 -

RIS

60 -

X

oo

8000

XL

% Usage

6000 - 40

Disk Size (GB)

4000

e

X

;
20t i
&
i

%

2000 -

%

%

Disk

4 N
Usr CPU Sys CPU

Squid

Tiger HC-L HC-SM

System

Memory

Resource

Figure 8: Sizes of disks that can be indexed by 2GB Figure 9: Large Disk System Performance Statistics
memory

)))) _ of the configurations that have larger index requirements,
line with the best commercial showings — the h'ghESt'representative of low-end servers being deployed [24].
performing system at the Fourth Cacheoff achieved less compare the performance of HashCache-SetMem,
than an average of 340 regs/sec/disk on 10K RPMyashcache-Log and HashCache-LogLRU with one or
SCSI disks. The absolute best throughput that we find,, external drives. Since the offered cache hit rate for
from the Fourth Cacheoff results is 625 regs/sec/diskp,o \vorkload is 60%, we cache 6 out of the 8 log off-
on two 15K RPM SCSI disks, and on the samegeq jn main memory for HashCache-LogLRU. For these
speed disks HashCache-Log and Tiger both achieve 700y riments, the Disk Table is stored on a disk separate

regs/sec/disk, confirming the comparable performance. ¢, the ones keeping the circular log. Also, since filling

These tests demonstrate that the same HashCacljg, 115 hard drives at 300 reqs/second would take exces-

code base can provide good performance on I0Wg; ey |ong, we randomly place 50GB of data across each
memory machines while matching or exceeding the peryive to simulate seek-limited behavior

formance of high-end systems designed for cache ap-
pliances. Furthermore, this performance comes with
significant savings in memory, allowing room for larger

Unfortunately, even with 2GB of main memory, Tiger
%nd Squid are unable to index these drives, so we were
. unable to test them in any meaningful way. Figure 8
storage or higher performance. shows the size of the largest disk that each of the sys-
5.4 LargeDisk Experiments tems can index with 2 GB of memory. In the figure, HC-
Our final set of experiments involves using HashCachéSM and HC-L are HashCache-SetMem and HashCache-
configurations with large external storage systems. Fokog, respectively. The other HashCache configurations,
this test, we use two 1 TB external hard drives attached td®asic and Set have no practical limit on the amount of
the server via USB. These drives perform 67-70 randon€éxternally-attached storage.

seeks per second. Using our analytical models, we would The Polygraph results for these configurations are
expect a performance of 250 reqs/sec with HashCacheshown in Table 9, and the resource usage details are in
Log. In other respects, the server is configured compara-igure 9. With 2TB of external storage, both HashCache-
bly to our low-end machine experiment, but the memoryLog and HashCache-LogLRU are able to perform 600
is increased from 256MB to 2GB to accommodate someeqs/sec. In this configuration, HashCache-Log uses

slightly more than 60% of the system’s memory, while Some information has been published about commer-
HashCache-LogLRU uses slightly less. The hit time forcial caches and workloads in the past, including the
HashCache-LogLRU is a little higher than HashCache-design considerations for high-speed environments [3],
Log because in some cases it requires 2 seeks (one for tipgoxy cache performance in mixed environments [9],
position, and one for the content) in order to perform aand workload studies of enterprise user populations [12].
read. The slightly higher cache hit rates exhibited on thiswhile these approaches have clearly been successful in
test versus the high-end systems test are due the Polyhe developed world, many of the design techniques have
graph environment — without filling the cache, it has anot typically transitioned to the more price-sensitive-por
smaller set of objects to reference, yielding a higher of-tions of the design space. We believe that HashCache
fered hit ratio. demonstrates that addressing problems specific to the de-
The 1TB test achieves half the performance of the 2TBveloping world can also open interesting research oppor-
test, but does so with correspondingly less memory utitunities that may apply to systems that are not as price-
lization. The HashCache-SetMem configuration actuallysensitive or resource-constrained.
uses less than 10% of the 2GB overall in this scenario, In terms of performance optimizations, two previ-
suggesting that it could have run with our original serverous systems have used some form of prefetching, in-
configuration of only 256MB. cluding one commercial system [7], and one research
While the performance results are reassuring, these exproject [33]. Based on published metrics, HashCache
periments prove that HashCache can index disks that afgerforms comparably to the commercial system, despite
much larger than conventional policies could handle. Atusing a much similar approach to grouping objects, and
the same time, HashCache performance meets or exceedsspite using a standard filesystem for storage instead
what other caches would produce on much smaller disksof raw disk access. Little scalability information is pre-
This scenario is particularly important for the develop-sented on the research system, since it was tested only
ing world, because one can use these inexpensive higlusing Apache magbroxy at 8 requests per second. Oth-
capacity drives to host large amounts of content, suclerwise, very little information is publically available-re
as a Wikipedia mirror, WAN accelerator chunks, HTTP garding how high-performance caches typically oper-
cache, and any other content that can be preloaded @te from the extremely competitive commercial period

shipped on DVDs later. for proxy caches, centered around the year 2000. In
that year, the Third Cache-Off [40] had a record num-
6 Related Work ber of vendors participate, representing a variety of dif-

Web caching in its various forms has been studied exferent caching approaches. In terms of performance,
tensively in the research and commercial communitiesiashCache-Log compares favorably to all of them, even
As mentioned earlier, the Harvest cache [4] and CERNWhen normalized for hardware.

caches [17] were the early approaches. The Harvest Web caches also get used in two other contexts:
design persisted, especially with its transformation intoserver accelerators and content distribution networks
the widely-used Squid Web proxy [35]. Much re- (CDNSs) [1, 10, 26, 41]. Server accelerators, also known
search has been performed on Squid, typically aimeds reverse proxies, typically reside in front of a Web
at reorganizing the filesystem layout to improve perfor-server and offload cacheable content, allowing the Web
mance [16, 18], better caching algorithms [14], or betterserver to focus on dynamically-generated content. CDNs
use of peer caches [11]. Given the goals of HashCacheeographically distribute the caches reducing latency to
efficiently operating with very litle memory and large the client and bandwidth consumption at the server. In
storage, we have avoided more complexity in cache rethese cases, the proxy typically has a very high hit rate,
placement policies, since they typically use more mem-and is often configured to serve as much content from
ory to make the decisions. In the case of working sets thahemory as possible. We believe that HashCache is
dramatically exceed physical memory, cache policies ar@!so well-suited for this approach, because in the Set-
also likely to have little real impact. Disk cache replace-MemLRU configuration, only the index entries for popu-
ment policies also become less effective when storagéar content need to be kept in memory. By freeing the
sizes grow very large. We have also avoided Bloom-main memory from storing the entire index, the extra
filter approaches [2] that would require periodic rebuilds,memory can be used to expand the size of the hot object
since scanning terabyte-sized disks can sap disk perfogache.

mance for long periods. Likewise, approaches that re- Finally, in terms of context in developing world
quire examining multiple disjoint locations [19, 32] are projects, HashCache is simply one piece of the infras-
also not appropriate for this environment, since any smaltructure that can help these environments. Advances in
gain in reducing conflict misses would be offset by largewireless network technologies, such as WiMax [42] or
losses in checking multiple locations on each cache misgural WiFi [27, 36] will help make networking available

to larger numbers of people, and as demand grows, w& ones that require only one-tenth as much as current
believe that the opportunities for caching increase. Giverhigh-performance approaches. It provides this flexibil-
the low resource usage of HashCache and its suitabilitjty without sacrificing performance — its lowest-resource
for operation on shared hardware, we believe it is well-configuration has performance comparable to free soft-
suited to take advantage of networking advancements iware systems, while its high-end performance is compa-

these communities. rable to the best commercial systems. These configura-
tions allow memory consumption and performance to be
7 Deployments tailored to application needs, and break the link between

HashCache is currently deployed at two different lo-storage size and in-memory index size that has been com-
cations in Africa, at the Obafemi Awolowo University monly used in caching systems for the past decade. The
(OAU) in Nigeria and at the Kokrobitey Institute (KI) benefits of HashCache’s low resource consumption al-
in Ghana. At OAU, it runs on their university server low it to share hardware with other applications, share
which has a 100 GB hard drive, 2 GB memory and a duathe filesystem, and to scale to storage sizes well beyond
core Xeon processor. For Internet connection, they payvhat present approaches provide.
$5,000 per month for a 2 Mbps satellite link to an ISP in On top of the HashCache storage layer, we have built
Europe and the link has a high variance ICMP ping timea Web caching proxy, the HashCache Proxy, which can
from Princeton ranging 500 to 1200 ms. We installedrun using any of the HashCache configurations. Us-
HashCache-Log on the machine but were asked to limitng industry-standard benchmarks and a range of hard-
resource usage for HashCache to 50 GB disk space aniare configurations, we have shown that HashCache per-
no more than 300 MB of physical memory. The serverforms competitively with existing systems across a range
is running other services such as a E-mail service and &f workloads. This approach provides an economy of
firewall for the department and it is also used for generafcale in HashCache deployments, allowing it to be pow-
computation for the students. Due to privacy issues weered fromlaptops, low-resource desktops, and even high-
were not able to analyze the logs from this deploymentesource servers. In all cases, HashCache either performs
but the administrator has described the system as usef@pmpetitively or outperforms other systems suited to that
and also noticed the significant memory and CPU usagélass of hardware.
reduction when compared to Squid. With its operation flexibility and a range of available
At KI, HashCache runs on a wireless router for a smallperformance options, HashCache is well suited to pro-
department on a 2 Mbps LAN. The Internet connectionviding the infrastructure for caching applications in de-
is through a 256 Kbps sub-marine link to Europe and theveloping regions. Not only does it provide competitive
link has a ping latency ranging from 200 to 500 ms. Theperformance with the stringent resource constraint , but
router has a 30 GB disk and 128 MB of main memoryalso enables new opportunities that were not possible
and we were asked to use 20 GB of disk space and agith existing approaches. We believe that HashCache
little memory as possible. This prompted us to use thecan become the basis for a number of network caching
HashCache-Set policy as there are only 25 to 40 peoplgervices, and are actively working toward this goal.
using the router every day. Logging is disabled on this
machine as well since we were asked not to consum
network bandwidth on transferring the logs. ® Acknowledgements

In both these deployments we have used HashCachg \youid like to thank Jim Gettys and John Watling-
policies to improve the Web performance while consum-, o their discussions about OLPC’s caching needs,
ing minimum amount of resource. Other solutions like 5,4 Marc Fiuczynski for arranging and coordinating our
Squid would not have been able to meet these resourc(rj:epk)ymemS in Affica. We also thank our shepherd,
constraints while providing any reasonable service. Peog;ichael Mitzenmacher as well as anonymous NSDI
ple at both places told us that the idea of a faster Internetoyiewers. This research was partially supported by
to popular Web sites seemed like a distant dream until WQ s Awards CNS-0615237, CNS-0519829. and CNS-

discussed the completeT capabilities of HashCache. W8520053. Anirudh Badam was partially supported by
are currently working with OLPC to deploy HashCache 5 technology for Developing Regions Fellowship from
at more locations with the OLPC XS servers. Princeton University.

8 Conclusion and Future Work
References

In this paper we have presented HashCache, a high-
performance configurable cache storage for the devel-{1] Akamal TEcHNoLOGIESING. http:/vww.akamai.com/.

opin_g regions. HashCache_ provides a range pf COf?ﬁg'[z] BLoOM, B. H. Space/time trade-offs in hash coding with allow-
urations that scale from using no memory for indexing able errors Communications of the ACM 13 (1970), 422-426.

(3]

(4

(5]
(6]
(7]

(8]

El

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]
(23]
[24]
[25]

BREWER, E., GAUTHIER, P., AND MCEvoY, D. Long-term
viability of large-scale caches. Proceedings of the 3rd Interna-
tional WM Caching Workshop (1998).

CHANKHUNTHOD, A., DANzIG, P. B., NEERDAELS, C.,
SCHWARTZ, M. F., AND WORRELL, K. J. A hierarchical inter-
net object cache. IRroceedings of the USENIX Annual Technical
Conference (1996).

CITRIX SYSTEMS. http://www.citrix.com/.
CoBLITZ, INC. http://www.coblitz.com/.

Cox, A. L., Hu, Y. C., RPai, V. S., R, V. S., AND
ZWAENEPOEL, W. Storage and retrieval system for WEB cache.
U.S. Patent 7231494, 2000.

Du, B., DEMMER, M., AND BREWER, E. Analysis of WWW
traffic in Cambodia and Ghana. Rroceedings of the 15th Inter-
national conference on World Wide Web (WMWAW) (2006).

FELDMANN, A., CACERES R., DouGLls, F., GLASS, G.,AND
RABINOVICH, M. Performance of web proxy caching in hetero-
geneous bandwidth environments. Mnoceedings of the 18th
|EEE INFOCOM (1999).

FREEDMAN, M. J., FREUDENTHAL, E., AND MAZIERES, D.
Democratizing content publication with coral. Rnoceedings of
the USENIX Symposium on Networ ked Sytems Design and Imple-
mentation (NSDI) (2004).

GADDE, S., (HASE, J.,AND RABINOVICH, M. Ataste of crispy
Squid. InWorkshop on Internet Server Performance (1998).

GRIBBLE, S.,AND BREWER, E. A. System design issues for in-
ternet middleware services: Deductions from a large cliexce.
In Proceedings of the USENIX Symposium on Internet Technolo-
gies and Systems (USITS) (1997).

INTEL. Classmate PC, http://www.classmatepc.com/.

JIN, S.,AND BESTAVROS, A. Popularity-aware greedydual-size
web proxy caching algorithms. IRroceedings of the 20th Inter-
national Conference on Distributed Computing Systems (ICDCS)
(2000).

LUOTONEN, A., HENRYK, F., LEE, T. B.
http://info.cern.ch/hypertext WWW/Daemon/Status.htm

MALTZAHN, C., RCHARDSON, K., AND GRUNWALD, D. Re-
ducing the disk I/0O of Web proxy server caches.Phoceedings
of the USENIX Annual Technical Conference (1999).

MALTZAHN, C., RCHARDSON, K. J., AND GRUNWALD, D.
Performance issues of enterprise level web proxiedréeed-
ings of the ACM SSGMETRICS (1997).

MARKATOS, E. P., NEVMATIKATOS, D. N., FLOURIS, M. D.,

AND KATEVENIS, M. G. Web-conscious storage management

for web proxies. IEEE/ACM Transactions on Networking 10, 6
(2002), 735-748.

MITZENMACHER, M. The power of two choices in randomized
load balancing.|EEE Transsactions on Parallel and Distributed
Systems 12, 10 (2001), 1094-1104.

MoguL, J. C., G4AN, Y. M., AND KELLY, T. Design, im-
plementation, and evaluation of duplicate transfer dietecn
HTTP. InProceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI) (2004).

03B NETWORKS. http://www.o3bnetworks.com/.

OLPC. http://www.laptop.org/.

OLPC. http://wiki.laptop.org/go/Hardwarspecification.
OLPC. http://wiki.laptop.org/go/XSRecommendediardware.

Pal, V. S., DRUSCHEL, P.,AND ZWAENEPOEL, W. Flash: An
efficient and portable Web server. Bnoceedings of the USENIX
Annual Technical Conference (1999).

[26]

[27]

(28]

[29]
(30]

(31]

(32]

(33]

(34]
(35]
(36]

(37]

(38]

(39]

[40]

[41]

[42]

PARK, K., AND Pal, V. S. Scale and performance in the CoBlitz
large-file distribution service. IRroceedings of the 3rd USENIX
Symposium on Networked Systems Design and Implementation
(NSDI) (2006).

PATRA, R., NEDEVSCHI, S., SURANA, S., HETH, A., SUB-
RAMANIAN, L., AND BREWER, E. WiLDNet: Design and im-
plementation of high performance wifi based long distande ne
works. InProceedings of the 4th Symposium on Networked Sys-
tems Design and Implementation (NSDI) (2007).

RHEA, S., LIANG, K., AND BREWER, E. Value-based web
caching. Inin Proceeding of the 13th International Conference
on World Wide Web (WMAW) (2003).

RIVERBED TECHNOLOGY, INC. http://www.riverbed.com/.

ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and
implementation of a log-structured file systePACM Transac-
tions on Computer Systems 10, 1 (1992), 26-52.

RUSSELL, M., AND HOPKINS, T. CFTP: a caching FTP server.
Computer Networks and |SDN Systems 30, 22-23 (1998), 2211
2222.

SEZNEC, A. A case for two-way skewed-associative caches.
In Proceedings of the 20th International Symposium on Com-
puter Architecture (ISCA) (New York, NY, USA, 1993), ACM,
pp. 169-178.

SHRIVER, E. A. M., GABBER, E., HUANG, L., AND STEIN,
C. A. Storage management for web proxies.Phoceedings of
the USENIX Annual Technical Conference (2001).

SILVER PEAK SYSTEMS, INC. http://www.silver-peak.com/.
SQuID. http://www.squid-cache.org/.

SUBRAMANIAN, L., SURANA, S., RTRA, R., NEDEVSCHI, S.,

Ho, M., BREWER, E.,AND SHETH, A. Rethinking wireless in
the developing world. IProceedings of Hot Topics in Networks

(HotNets-V) (2006).

THE MEASUREMENTFACTORY.
http://www.web-polygraph.org/.

THE MEASUREMENTFACTORY.
http://www.web-polygraph.org/docs/workloads/polyrdik

THE MEASUREMENT FACTORY. http://www.measurement-
factory.com/results/public/cacheoff/NO4/report.Bgkahtml.

THE MEASUREMENT FACTORY. http://www.measurement-
factory.com/results/public/cacheoff/NO3/report.dgkahtml.

WANG, L., PARK, K., PANG, R., BRI, V., AND PETERSON
L. Reliability and security in the CoDeeN content distribat
network. InProceedings of the USENIX Annual Technical Con-
ference (2004).

WIMAX FORUM. http://lwww.wimaxforum.org/home/.

