
Dwelling in Software: Aspects of the 

felt-life of engineers in large software 

projects 

Harper, R., Bird*, C., Zimmermann*, T. & Murphy, B. 
Microsoft Research Cambridge and *Microsoft Research Redmond 

r.harper@; bmurphy@;christian.bird@; tzimmer@microsoft.com 

Abstract. The organizational and social aspects of software engineering (SE) are now 

increasingly well investigated. This paper proposes that there are a number of 

approaches taken in research that can be distinguished not by their method or topic but 

by the different views they construct of the human agent acting in SE. These views have 

implications for the pragmatic outcome of the research, such as whether systems design 

suggestions are made, proposals for the development of practical reasoning tools or the 

effect of Social Network Systems on engineer’s sociability. This paper suggests that 

these studies tend to underemphasize the felt-life of engineers, a felt-life that is 

profoundly emotional though played in reference to ideas of moral propriety and ethics. 

This paper will present a study of this felt-life, suggesting it consists of a form of digital 

dwelling. The perspective this view affords are contrasted with process and ‘scientific’ 

approaches to the human agent in SE, and with the more humanistic studies of SE 

reasoning common in CSCW.  

Keywords 

Software Engineering, CSCW, Dwelling.  

Setting the scene 

A recent paper in Communications of the ACM asks whether changes in software 

engineering (SE) represented under the moniker ‘agile computing’ are as 

applicable today as they were in the middle of the 1990s. The changes 

exemplified by agile computing – and various other approaches of that time (such 

as ‘Xtreme programming’, and sometimes by the more prosaic sounding ‘End 

User Programming’) - all turned around the realization that SE required more 

flexible processes to requirements capture and coding (Williams, 2012). 

Adherence to a plan came to be seen as something that should always be 

subordinate to the development of a product that worked and appealed even if this 

violated aspects of the plan. Bitter and expensive failures in the SE industry up to 

that time had made it clear that the right products could only be devised through 

constant iteration of the design and associated software engineering; this meant 

mailto:bmurphy@;christian.bird@


 

that plans had to be looser and made flexible, and this in turn meant that coding 

itself had to be more dynamic in tempo, more ‘agile’ as the saying had it. Though 

the ACM article focuses on Agile SE, it notes that the basic need to be more 

flexible in design and development has become more or less the norm, certainly 

in the engineering of consumer products, even to some extent in open-source 

activities. Another recent paper, this time in the IEEE Transactions on S.E., de 

Souza et al,’s The Awareness Network (2011), examines three different contexts 

of software development and finds that whatever the moniker given to the 

engineering process, coordination and change is the fundamental contradiction 

whose ‘solution’ needs to be ensured to deliver the product.  

 If one accepts this, and it seems reasonable to do so, then what these authors 

are arguing is that doing SE requires balancing of the relationship between plans, 

the ways that engineers orient to and used these plans, and the coding itself. 

Coding has to be done in a fashion that allows revision, and sometimes 

concurrency of revision in different places in the overall code base. This has to be 

achieved while the code remains of sufficiently good quality to be (easily) 

‘reconciled with’ and ‘fitted into’ what comes to be the ‘emerging plan’ or 

‘evolving spec’. The relationship between tools of coordination (like plans) and 

actual instances of action (such as writing a line of code) are then complex, 

fraught with difficulties of comprehension and overview (De Souza, 2011, 

Ronkko et al, 2005). Processes need to ensure that engineers ‘program to plan’ 

but at the same time can alter their coding when a new plan comes into play, 

whenever that might happen, without the quality of coding diminishing – though 

there is always a cost of some form in terms of delay or even in the quality of the 

code - leaving aside the question of what measures can be applied to such notions 

(see Nagappan, et al, 2008). 

 All SE involves such problems. Very large scale SE development programs 

(sometimes involving hundreds, even thousands of individuals) have these 

problems in even larger scale. Coding is typically undertaken in ‘branches’ or in 

discrete units. Changing code is ring fenced and only reinserted into the ‘code 

base’ once complete. Such branching creates costs however: coders in one branch 

can lose sight of what is happening elsewhere and so even though their coding 

might fit the requirements of their ‘own’ branch, the overall goal of the 

application (or product) itself might be undermined. Considerable effort has been 

put into researching where these instances occur as well as to suggest ways of 

alleviating them (Philips et al, 2011). Key to this has been the development of 

coordination tools of particular kinds. Amongst the most important of these are 

Software Configuration Management (SCM) tools which allow communications 

and documentation of coding practices in different branches in an overall 

engineering program. These documentation practices can take various forms, 

some of which can be overly burdensome. Annotation of changes is obviously 

important, but this takes many forms and is often affected by the attitudes of those 



 

doing the annotation (Storey et al, 2008). Besides, annotation tools are more than 

just methods of documenting; they are also articulation devices, and so need 

especial care in design and use (Storey et al, 2008; de Souza et al 2011). Just how 

to support ‘mutual awareness’ and articulation work through such tools is now an 

increasingly fertile area; suggestive of new theoretical constructs as well as 

empirical findings (de Souza et al 2008). The emergence of Social Networking 

Systems (SNS), a technology that is essentially about sociability rather than the 

division of labour, has been of particular interest recently (Storey, 2012). 

 One could go on; this is just to sketch of the scene of contemporary 

software engineering research and the particular features of research in large-scale 

SE. The research agendas in question are in many ways straightforward and clear. 

What we would like to suggest, however, is that answers to the question of 

balance one finds in the literature are often coloured by assumptions made by 

researchers. The assumptions we have in mind are not to do with choices between 

method; say between quantitative or qualitative, between statistical technique, 

interviewing protocol or sample size, or between ethnographic and other data 

collection modalities. They often have to do with how the human actor in the 

software engineering setting (the coder if you like), the relationship between the 

structures that constrain and guide this individual, and the form of the actor’s 

actions (their reasoning or predicted behavior, say) are construed from the outset. 

This in turn drives or determines which analytical perspectives are chosen that 

deliver ‘data’ of a particular kind; these choices too are made at the outset before 

data is gathered. When these are put altogether (these assumptions, tools of 

analysis and forms of data collection), a certain picture of the individual at the 

heart of this view is thereby constructed.  

 What we are thinking of here is Foucault’s insight that institutionally 

organised research always emphasises particular aspects of human agency and 

exclude others (see in particular his 1966 book, The Order of Things). Different 

disciplinary perspectives don’t simply offer diverse views on the same animal, 

like the proverbial blind men grasping the elephant. In Foucault’s view, 

disciplines create the creatures they investigate. Taken to extreme, Foucault’s 

view can be thought of as offering the most ardent relativism. We certainly want 

to avoid some of the exaggerated claims associated with his view, but we do want 

to preserve some of the merits that it affords. We are thinking of Rorty’s 1979 

interpretation of Foucault in The Mirror of Nature. Rorty argues that one ought to 

judge the value of any particular rendering of human agency by the practical 

implications that the view generates. In this way one can also assess any claims it 

makes about empirical validity. Rorty argues this is particularly important when 

different methods and assumptions are used, implying a kind of internal 

interdisciplinarity within a domain; it is also important when diverse approaches 

are being deployed to address apparently similar topics. 



 

 We have both these manifest in the SE research: certainly the list above viz-

à-viz SCM tools, branching structures and coding practices, annotation and 

articulation, and so on, would seem to suggest so. In each instance – or set of 

instances - certain type of creature, an instantiation of the species named a 

software engineer, is cast. As a result, there is more than one type of animal 

described within the SE literature: the species generalis, homo softwarus, in other 

words, is made up of many kinds.  

 And yet given this, it also seems to us that the creatures presented in this 

literature are notice-able for the lack of attention they give to the felt-experience 

of software engineers - to describing and exploring the form of life constitutive of 

what Ingold calls ‘dwelling’ (see his Being Alive, 2011). Certainly there seems 

little interest in this felt-life and more shown in topics that seem too vague to be 

tractable, like ‘culture’, or, as in a recent case, to ideas that pertain to psychology 

rather than consciousness and experience. One thinks of the idea that cognitive 

abilities of coders are being affected by social networks, drawing them out of 

their somewhat private forms of reason to more public ones (Storey, Treude, et al, 

2010). These perspectives do not look at how engineers enact their selves through 

the mixtures of sense, feeling and compression that we noted in our research with 

SE; that resonate with the ‘praxis of living’, as Ingold puts it.  

 Our claim is not that our findings are any more correct than any other, but 

that we focus on aspects of ‘being’ that other approaches need to neglect by dint 

of their analytic assumptions. We approached our software engineers with a view 

for ‘dwelling’ not for, say, situated ‘reason’ or ‘objective fact’. An important 

corollary of our argument is that other approaches are likely to have their own 

merits, focusing as they do on different concerns and thus producing a different 

sense of the software engineer and their practices. Having a sensibility for all 

these views is likely to be hard, we believe, but ought to be sought, so that 

appropriate evaluations of different ways of constructing the animal at the heart of 

SE can be done. One set of criteria has to do with empirical merit, another set 

should be in terms of what each view leads one to do.  

 It is our purpose in this paper to justify these claims: specifically that, (a), 

there are different species of software engineer in the literature; (b) to show one 

that we do not think has been looked at greatly before, namely some aspects of 

dwelling in software engineering; (c) and to make some suggestive remarks about 

how this and other views might be judged by their utility and empirical merits. 

Overview of the evidence 

With this in mind we present, in the body of the paper, two views already 

common in the literature. We then present a differing perspective. The two extant 

views are, respectively, from what we will call, for the purposes of exposition, the 

objective science of SE and, second, the view from the humanistic perspective, 



 

one quite often taken in CSCW. As we explain and analyze each view, and to 

some extent we do this by showing each view in extremis, so we will also explain 

the benefits that each affords. Both views we present here lead to very practical 

suggestions, we shall show, some for design, others for learning and training, but 

both offering practical benefits for the subjects rendered in the analysis itself. We 

shall then explore our own set of data and convey what ‘dwelling in software 

engineering’ might look like (or be experienced as). Having completed our 

exposition we shall offer some remarks in conclusion that point towards how this 

sensibility for a Foucaultian understanding of the output of SE research might be 

leveraged in the future, as well as some comments on ‘inter’ and ‘multi-

disciplinarity’ both within CSCW and other domains that treat SE as a topic.  

View 1: The animal in the ‘scientific vision’ of SE  

The first approach we want to talk about is one that could be illustrated with more 

papers than any other, we think, for no other reason than because most of the 

software engineering research we are familiar with is produced under its auspices. 

We don’t want to get into the process of quantifying this view since it adds 

nothing to our argument, nor are we saying that other views are less important, or 

even whether there is a shift towards other views (for discussion see Somerville 

2007). The studies we have in mind tend to have an engineering science 

background and thus emphasise the processual, the quantitative, the ‘objective’ 

over the ‘subjective’. It is with these concerns in mind that research from this 

view addresses the processual efficacy and use of SCM tools, the quantitative 

efficiency of different branch structures, and the relationship between these 

structures and pre-existing organizational forms.  

 A paper that illustrates this view well is Bird & Zimmerman (2012; see also 

Bird, Nagaappan, et al, 2009; 2012). This reports on the values that different 

braches offer in a large scale SE program, namely Windows. Its premise is that 

some branches will be more useful than others. Data for this study was collected 

through a mixed method, though garnering data through survey was central. 

Survey data included engineers own calculation of the time they give to dealing 

with code changes in some branch, similarly their own judgment of the 

difficulties entailed doing code rewrites, and the perceived burdens that dealing 

with the branching placed on their work. This is juxtaposed with simulations and 

testing against objective data stored in the SCM tool used in Windows. This 

allows modeling that identifies whether the files amended in some branch are the 

same as in some other branch and if so, whether the teams that undertake the 

changes in question are one and the same. The analysis offered in the paper 

suggests that the coding work will be more efficient, with less likelihood of code 

conflicts, when code is reinserted into the code base, if the teams working on the 

same code are the same, or rather if it is the same people who are modifying the 



 

same files albeit in different branches. If the teams are different, there can be 

potential problems between a pair of branches, as different people modify the 

same files and they are likely less coordinated. As it happens, this latter situation 

is less common, but the analysis helps identify where this is likely to be the case 

and makes suggestion as to how to alter the branch structure to minimise it.  

 Without wanting to comment on the empirical merits of the paper – it seems 

persuasive in its analysis – the view it offers entails understanding the software 

engineer in a particular way. To put it very simply, it treats the research problem 

as one of uncovering and understanding the overall SE process, the one into 

which the software engineer ‘fits’. This picture is produced through corroborating 

findings, statistical investigations and hard facts. As we have remarked, one might 

say that it is a ‘scientific-like’ approach – and this is indeed the kind of 

nomenclature than the authors use. By dint of this orientation, the software 

engineer constructed creature at the heart of the analysis is a creature that is 

‘lacking’. It is lacking particularly in objective knowledge and it is not fully 

aware of all the considerations that affect its own behaviour. The view of this 

creature, the engineer, contrasts with the wisdom of the researcher, wisdom 

produced by the method of inquiries. The software engineer is not devoid of 

knowledge in this view, but when compared to the analysis, theirs is only a partial 

view, parochial at best. 

 Before we go any further, it is very important to bear in mind that we are 

not suggesting that this view, the one that casts the software engineer this way, is 

incorrect. As we allude above, this (and any other view) is to be judged by what it 

leads to, what actions that result, as well as in terms of evidence. In the case of 

this paper, the approach it embodies (and represents) has the great benefit of 

pointing out the ways understandings of the software engineer can be enhanced. If 

the engineer is parochial, the output of this research can be used to provide 

insights and tools that can educate and correct that parochialism. The empirical 

adequacy of the paper are to be judged in part by whether its insights do in fact 

lead to better reasoning about the relationship between branches and bug fixes.  

 Second, the construction of the software animal at the heart of this view are 

not necessarily bound to the method used, though the choice of method and the 

construction of the animal might appear to go hand in hand. This is not necessary, 

we do not believe. The fact that, for example, the authors of the branchmania 

paper use quite sophisticated statistical techniques to weigh the evidence does not 

mean they could not have supplemented that material with say, ‘ethnographic’ 

type evidence. There might be difficulties bringing the qualitative and the 

quantitative together but we do not think these are epistemic, so much as 

practical: so much of the stuff that comes from ethnographic evidence is 

orthogonal to processual matters for example and so needs sifting out. The 

important point is the presumption that research adds understanding to the 



 

somehow deficient software engineer. All sorts of information can benefit these 

impoverished animals, quantitative and qualitative.  

View 2: the engineer as ‘creative reasoner’  

The second view we want to highlight casts the engineer in quite a different light 

to the one mentioned above, in the scientific vision of the engineer. The long held 

emphasis on the ethnomethodological concern with reasoning in CSCW (Button 

& Sharrock, 1994; Schmidt & Bannon, 1992) has led to an approach to SE 

research that emphasizes and investigates how engineers ‘work through’ and 

‘work up’ particular software concerns into solvable problems (see for example, 

the de Souza et al paper mentioned above, 2011). That this is so does not always 

show itself in remarks on the premises of the research, however; it is, rather, 

simply often a characteristic of CSCW-type papers. 

  The paper that Phillips et al (2011) provides a good illustration of how this 

view casts the engineer in this special way. This reports a study of the 

informational needs of those about to reinsert ‘fixed’ code back into the code 

database. Here the research does not assume that the software engineer is 

‘lacking’; rather, it shows that they have rich resources at hand which can be built 

upon and extended, made more general and made richer. The study uses evidence 

gathered through semi-structured interviews of seven individuals who, like the 

Bird et al study, worked in a development team on the West Coast. These 

included release managers, two team ‘leads’ and two developers – coders in other 

words. Data from these interviews were coded against a predefined set of topics, 

generated by a prior survey of branching activities in the SCM tool used in 

Windows.  

 More specifically, the study identifies ten ‘rules’ (or maxims) that are used 

by a sample of software engineers to determine what is an optimal time for 

submitting revised code into the code base. One rule holds that the number of 

lines of code being altered in a branch can be used to predict the likelihood of the 

difficulty that the engineers addressing that code will face. Thus the number of 

lines can act as a predictor of the likelihood that the branch in question will 

produce code later than planned. By the same token, differences in the number of 

lines between branches may also indicate the likelihood that branches will deliver 

their code changes on time. Another rule has to do with the ordering of branch 

integration or the sequence of different code ‘reinserts’. Concurrent activities do 

not always lead to identical times of merging but a sequence - some are upload-

able before others and others later. Knowing which, knowing the rule that 

determines which goes first, and which is dependent upon another, can allow 

engineers to predict the likely order of problems that will happen when code 

inserts happen. This sequencing can indicate the likelihood of problems and 

dependencies that arise after code is put back into the main code base. Another 



 

rule has to do with distinguishing between ‘bugs’ and ‘features’: the latter are 

nearly always subject to ‘agile iteration’ and change and hence can take longer 

than predicted whereas the former, bugs, are more likely to have pre-determinable 

timelines, how long they take can be fixed as it were.  

 One could go on. The important point is that this approach, then, paints the 

engineer in quite a different light to view in Bird et al: here it is their capacity and 

ability that is celebrated, not the contrast between ‘the facts’ and ‘their 

knowledge’. Research in this vein tends to offer guidance for new kinds of 

information and data that will provide engineers with tools that refine their ability 

to use their rich knowledge (see also Martin et al, 2007; also the considerable 

corpus of research by de Souza and his colleagues). Thus, and for example, 

Phillips et al propose that more information about the actual timelines of code 

reinserts be made clearly visible in the SCM tools; engineers know how to use 

this information but simply need it to be better specified.  

View 3: The felt-life: the ‘dwelling of engineers’  

One of the things we have remarked upon repeatedly is that those who deploy 

these various ways of looking at SE don’t often see themselves as constructing a 

view of the human actor in the centre of their inquiries (the software engineer) in 

the way we have described. There may be a number of reasons for this, one being 

a lack of interest in this possibility – it may simply not concern them. Besides, 

there is also sometimes a conviction on the part of those doing research that their 

approach has a purity that would make any claims about it being constructive of 

the subject matter something to be resisted. One can readily imagine those who 

claim a scientific attitude and who deploy ‘scientific methods’ would hold this 

view. One might be more surprised that anthropologists hold it too, however, 

especially given the apparent affinity of their discipline to the soft sciences, and to 

the humanities in particular. But in fact this is often the case: anthropologists 

often claim that theirs is the ultimate arbiter of all studies of human action, the 

‘totalizing science’ as one textbook writer on the anthropological method put it 

(see for example Sykes’ Arguing with Anthropology of 2005).  

 We mention this now because it is apparently a form of anthropology (and 

its methods) that we need to bear in mind as we approach the third view we want 

to expound. This too constructs its subject. And the way this one does resonate 

with the style and techniques of anthropology, treating the interview between the 

fieldworker, the so-called ethnographer, and the subjects of the enquiries as the 

essential mechanism and topic of the research. In the view of many contemporary 

anthropologists (even if historically this might have been disputed), it is not the 

world at large that is at issue, it is not the world that exists outside of the 

interview that matters; it is the specific interlocution of the anthropologist with 

‘subjects’ in those moments that does. To paraphrase David Mosse, it is the 



 

dialogue between the anthropologist and their subject and their subject’s world 

that is the ‘crucible’ of the anthropological imagination (Mosse, Anti-Social 

Anthropology, 2006): the site of anthropology is thus the interview.  

 This has all sorts of consequences. One is that it becomes very important 

‘just who’ the fieldworker meets. It also becomes important to do multi-sited 

ethnography, when the interviews are undertaken in different parts of a subject 

world (Coleman & Hallerman, 2011). This also begs questions as to what an 

ethnography might be if it is of the virtual world where the interaction between 

the anthropologist and that world happens: for this interaction might be with 

proxies, not real persons and so this might skew the data in certain kinds of ways 

(Hine, 2000). Besides all this, and to refer to Mosse again, there is also the 

problem of what happens when those interviewed come to dispute with the 

researcher: what happens when interviews turn into arguments?  

 Be that as it may, the reason why we are spending some time on the 

problem of interview is that unlike the other two approaches we have sketched, 

the point at which data is gathered, in this case in and through qualitative 

interviewing, is fundamentally the source and province of inquiry. It is not, say, a 

largely taken for granted resource, or one that has to be treated with candid 

corroboration from other data sources. In the Bird el al paper, for example, other 

data was gathered from a SCM tool; in the Phillips et al paper the process of 

interviews was treated as a gathering resource that produced information that had 

to be reinterpreted, ‘coded’ in reference to other (as it happens unspecified) 

resources ‘drawn from a survey’. The function of the interviews was then to 

provide evidence to characterise something else, the reasoning of software 

engineers, say, for corroboration of quantitative facts about bugs, perhaps. 

 We can illustrate what one focuses on when the topic is the interview with 

our own data. Like the authors of both the papers mentioned above, we were 

fortunate enough to get access to the Windows programming team in Microsoft. 

With this access we sought to interview a range of ‘subjects’ in this domain. And 

like them, to get a comprehensive sense of the domain we sent out requests to 

individuals in a variety of roles, and this resulted in 17 interviews with engineers, 

from product managers (in charge of several dozen coders), branch managers 

(who had responsibility for ensuring the development and testing of code before it 

is re-entered into the main code database), coders and testers. In this way we had 

access to at least some of the ‘sites’ of SE.  

 All the interviews were qualitative, with a simple list of initial topics being 

used to foster an open-ended, ‘constructive’ interview that encompassed all that 

subjects felt important, and which could be combined with discussion of the 

topics that we thought valuable. Each interview thus informed the next, such that 

the process resembled a voyage, where the understandings provided at the end 

built on those created at the outset. As with all such fieldwork,  extensive notes 



 

were made in and after interviews, as well as transcripts made when participants 

allowed tape recordings.  

 The first thing that came out of the interviews – or rather was made visible 

in them - was not anything to do with things like ‘what the engineer knows’ or 

‘examples of algorithms’, nor perhaps more pertinently given the Bird et al and 

Phillips et al papers: how the branch structure is, say, misleading. Certainly 

branches were talked about but something else happened first. 

 What was made clear at the outset of the interaction between us and the 

subjects was that ‘the information’ that we were about to be provided with was 

‘dangerous’. All of the interviews commenced with discussions as to who we 

were and who might hear or worse ‘read’ what was shared with us. As these 

discussions unfolded in the first minutes of each interview, so it became clear that 

we could only be given information if we understood something about the 

‘specialness’ of what was being given us. Doors were closed, voices hushed, 

queries made about the security of our recordings. One interview (#3) came to an 

abrupt end when the subject exclaimed that he ‘wasn’t going to tell everything’ – 

as if he was releasing something dangerous, fearful, something that our levity 

made him think we did not fully appreciate; he came to doubt us. 

 These actions, these patternings in the interviews were not merely people 

judging whether they ought to allow strangers to pass the gate – into the world of 

Windows programmers. This is a classical problem in fieldwork (reported in 

papers that use a different approach such as the Bird et al 2009; see also Button & 

Sharrock, 2006); rather we had to learn and acknowledge in the opening moments 

of the interview process – even during the interview as with #3 - that we 

understood that information would be dangerous if it got to the wrong person. We 

came to learn this by questions posed to us by our subjects such as ‘Who would 

see this work?’, or ‘Is this just for research, not for Windows?’; or ‘Who else are 

you talking to?’ Somehow danger arose when information and persons combined, 

we were being told. But in being told this we were also being told something 

about ourselves: if we were to have the information, no danger was implied; our 

use was neutral, sterile one might say. If we were to act as couriers, on the other 

hand, that was another matter. These concerns seemed designed to evoke ‘fear’ in 

our part. Certainly, they did make us more timid, more respectful, keener to show 

silence. 

What these interlocutions with our subjects lead was to think on was not what 

they were hiding. We did not see their injunctions as devices to put us off from 

seeing the truth. On the contrary, the apparently sensitive topics made us think 

that our prior readings of research on SE had not conveyed the felt-life of SE very 

well. This life world seemed somewhat drained of colour, certainly when 

compared with what we were experiencing. This life world also seemed more 

passionate, volatile and tendentious than the descriptions of reasoning and 

accountability presented in the CSCW literature. What our interviews, or rather 



 

the experience of the interviews lead us to think of, was Ingold’s claim (in Being 

Alive, 2011) that human life entails forms of embodied praxis in particular sites of 

movement. By this he means that people do not simply react to situations but 

produce their reactions through confronting the possibilities presented to them 

and their own aspirations in a kind of dialogue. This mixes material constraints 

with the trajectories of human beings in rich, resonant and evocative ways: it is 

the weave of all this that produces the thing called experience.  

So in Ingold’s view, a real place such as, for example, a software engineers’ 

office will have certain sensual features – a kind of light, an ambient sound, a 

physical form and each of these material phenomena will have their own 

properties and dynamics. These are combined with the human-sourced tensions 

that result when occupants of those offices, engineers, think about and engage 

with the work they need to do in those spaces, work that entails them sitting at in 

the light of the windows (where they quiet their minds) and where they gently tap 

their fingertips on a keyboard. An office may afford silences that allow an 

engineer to concentrate, but they might need to talk with people elsewhere and so 

must break those silences to get their engineering job done. They need to navigate 

these constraints, Ingold’s view suggests; engineers need to judge when to work 

quietly or when to speak noisily. They need to ‘dwell’ in ways that makes their 

domain work for them. It was this that was brought to mind when we started our 

interviews: when we got the ‘push back’ after our opening remarks, once we had 

described our own trajectories and ‘work’.  

Delving into software dwelling   

 To access ‘dwelling’ Ingold proposes that the fieldworker participate in the 

experience of the contexts, not in the sense of being a participant observer but in 

the sense of feeling some of the lived vitality of the places in question. They need 

to grasp just what it feels like to dwell there. For example, we soon began to learn 

just how fraught SE can be, bound up with fears and navigated through with 

powerful notions of who should not be given knowledge and who should be. We 

were being instructed on the importance of recognizing the trajectories of those 

who pass by and come through SE dwellings. We were learning to attend to what 

other researchers had chosen to bypass or ignore.  

So what was it that was being pointed to in our interviews that seemed to 

demand timidity on our part? Moreover, why did this concern, this worry, have an 

almost mystical quality? And besides who were the wrong persons? As we say, 

we weren’t given information about algorithms.  

One of our interviewees (#6) worked on the ‘security handles’ in the Windows 

kernel and so one might have imagined that descriptions of code in that context 

could indeed be dangerous stuff to know – we could have walked out of the room 

with ways of breaking the Windows security paradigms. But that was not the kind 



 

of stuff were we given. Nor, for that matter, were the persons that seemed implied 

as dangerous the kinds of individuals that one would imagine: when we listed 

bosses that had given us access the stating of their names did not get reacted to as 

if they were dangerous; the hierarchical location of these individuals didn’t seem 

to drive a sense of danger for our interviewees.  

 What was mentioned continuously, however, and reasserted again and 

again, was the idea that their code revision decisions, their management of code 

inserts back into the branch system and so forth, was always motivated by what 

they wanted us to understand was ‘good faith’, a phrase used just in passing by 

two individuals. To paraphrase what we were being told by them and the others 

we met: the motivations we had described to us were meant to be embody or 

reflect sympathy, sympathy with and consideration for others. Good faith had to 

do with how individuals oriented to the problem of how their own work impacted 

on others. The tales we were presented with in interviews made it clear that 

behaving in good faith and, conversely, the presumption that others would behave 

with similar good faith, was something that was sought for and assumed but in 

practice chronically undermined and tested. 

 For example, subject #1 explained that, in one instance, the interdependency 

of his own team and that of another branch broke down. This was not because of 

poor faith by either party. It was due to poor understanding. As he put it, ‘We 

didn’t really take it seriously’. The ‘it’ he was talking about was a component in 

their code that turned out to be much more consequential for other branches than 

he and his colleagues had realized. When his team altered it they did not think it 

would affect their colleagues in another branch. He explained that they ought to 

have realized that it would have done so, but as he put it, they were too 

whimsical, not taking it seriously enough to find out how it had consequences 

until it was too late. The example was meant to show that it was not that our 

subjects acted in bad faith, or that their colleagues did so; it was rather that trying 

to act in good faith by our subjects was very hard work.  

 It was partly in this sense that the information being shared in the interviews 

was dangerous: it was dangerous because it begged questions as to whether we, us 

researchers, ‘really wanted to find this out’: the implication in this formulation 

being that we concocted a picture in our minds of a pure world of branched 

software engineering where decisions and practices were not sullied by the 

failures of engineers who didn’t take everything seriously enough. This aspect of 

danger then was not pointing towards the danger of, say, managers ‘finding this 

out’. It was not those who were the dangerous souls we had to avoid sharing our 

cargo with, it was us.  

 We shall come back to this concept of danger in a moment. But before we 

do so we want to note that in several interviews we were provided with examples 

not of passion and anger, but with tales about attempts to negotiate and bargain 

when the thing that was being bargained over was the right to adjust some code. 



 

‘We didn’t own that problem’ (#6), was a common phrase used to describe 

attempts. What was being illustrated was not giving work to others but taking on 

work for oneself. Individual decisions about how long some coding work would 

take, about the consequences of that work and so forth, were not simply questions 

about one’s own activity but always and endemically about the implied work that 

this had for others. 

  Unfortunately, the decisions that an SE would make might not always have 

the interests of other SEs at heart; sometimes SE’s had to look after ‘themselves’. 

Sometimes ‘one’s own interest’ had to take precedence. Just as our subjects 

recognised that they would be selfish, so they accepted that others would be too: 

‘they told us to politely go away’ one subject told us when they had sought to 

have responsibility for some code given over to them. If ‘they had been given it’, 

he explained, the other group judged that their work would be made greater. 

There was no knowing whether this was ‘objectively’ true, of course, but it was 

assumed to be a reasonable possibility; thus they rejection was ‘OK’, the engineer 

explained.  

 At the same time, we were told that there was danger in the relationships 

those we were interviewing had with others, danger when these simple 

negotiations failed. We were told that those ‘others’ got frustrated and angry, and 

would sometimes find excuses like ‘not taking it seriously’ simply not good 

enough. Their reactions ‘didn’t leave a very good taste in my mouth as .. they 

jumped up and down’ (#6).  

 So if one part of the danger had to do with whether ‘we’ (i.e. us researchers) 

could handle a real understanding of the world rather than a tidy ‘researcher’s 

vision’, another aspect of the danger had to do with the fact that things talked 

about were things that caused friction between persons: there really was anger, 

resentment, fury. In this view, software engineering naturally led to ‘dangerous 

situations’.  

Were our subjects telling us that this organizational context was riven by 

ubiquitous personal animosity? Not at all; for our participant’s were seeking to 

instruct us that the relationship between software practice and large scale 

programs of coding, manifest in this case in a vast branching structure, was not 

simply a question of schedules and planning; the relationship between action and 

system was not mechanical.  

 What we were being led to see was that the world of a programmer is a 

contested one, where the motivations and desires of one individual can come to be 

played out at the expense of another, and where the danger that we needed to 

acknowledge had to do with the fact that people ‘naturally’, sensibly and 

understandably get angry and resentful, bitter at the lack of good faith of others. 

At the same time as learning this, we were not being told that the overall system 

of which our subjects were a part was collapsing; quite the reverse: our subjects 

told us stories that not only instructed us to see the natural order of passion in 



 

software engineering, but also the fact that most often, and in most instances, 

targets were hit and deadlines met despite the tensions that arose in the work 

itself.  

 In this sense, our subjects were saying that although the maxim of having 

good faith in others might not be constantly abided by, the organisation itself 

could have faith that its workers would deliver the goods despite the stresses and 

strains. In sum, what our interviewees drew attention to is human passion. Their 

goal was to teach us, to instruct us to see, that SE is not a computational-like 

activity, it’s about an activity that is all too human.  

Conclusion 

Our proposal has been that within the SE literature various kinds of human animal 

can be seen. These animals are created by a mix of assumptions about topic, 

choices about methods, and following on from that, treatments of evidence. Key 

to the perspective we have just presented is the way the subjects of it, in this case 

software engineers, don’t simply act as conduits of the facts, conduits between 

their world and the world of the interviewer. Rather, interviews with these 

subjects were opportunities wherein the software engineer in question instructed 

us, the interviewers, on how to understand and orient to their world, the felt-life 

world of software engineer. As they did so, so the nature of themselves as 

engineers in their dwellings was, as it were, ‘determined’ in what Ingold would 

call ‘the lived praxis of interlocution between interviewer and subject’ (Ingold 

2011, particularly 229-243).  

 One important distinction between this view and the prior views sketched is 

that here it is the engineer who was treated as the expert; the researcher is treated 

as parochial. Or rather, the researcher is treated as gauche – hence the concern 

about what the researcher wants to find out. The reason for this concern is that the 

software engineer, the animal at the heart of the world, is quite different from the 

one that the SE’s think the researchers expect; this is particularly in what we have 

called, without any perjorative intent, the scientific view – the one in for example 

Bird et al.  

 A similar distinction is to be found between the view that the real, 

embodied, software engineer wants to convey about the ‘human predicament’ of 

their circumstances and the ‘reasoned professional’ described in what we called 

the CSCW-type view. This latter view is an approach that emphasises the 

creative, situated purposeful reasoning of engineers exemplified in Phillips’ et al. 

This ‘reasonable person’ view is also exemplified in de Souza et al’s rich and 

well-argued study of awareness (2001: pp325-339); just as it is in, for example, 

Storey et al’s TODO or To Bug paper (2008). But this is quite unlike the world as 

the subjects in our study wanted to convey.  



 

 The world that the view we have emphasised is populated with experts, to 

be sure, but these experts are of a particular kind, one that might frighten the 

researcher. For these individuals want to make sure that visitors to their space, to 

their dwellings, walk away with a sense of the heat within: SE is not about calm 

algorithmic reasoning alone; indeed that hardly conveys the sense of it. Those 

who dwell seem to want to highlight the structures of human passion within. 

Theirs is the world that looks, for all practical purposes, like the one the great 

Scottish philosopher Hume populated, one where the logical reason of the 

individual has to be understood as bound to the human nature that produces that 

reason: that is to say one where action is affected by anger, by choices about good 

faith, or coloured by resentment about the distribution of labour. In the world of 

Hume and so in the dwelling of software engineers, the animal at its heart is ‘flesh 

and blood and reason’. Just as passion and logic are married for Hume in ways 

that appalled the eighteenth century rationalists, so it would appear that passion 

with coding is the key to be what can be seen when studying SE. In this view, SE 

is to be understood as an all too human affair; that is why it is dangerous to ask 

about and dangerous to know. Dwelling here is all too human. 

 How different this vision from Bird, from Phillips, from de Souza or Storey 

et al; how particular its topics and insights. The discussions in this paper have 

suggested quite a different way of thinking about evidence about software 

engineering. This holds that we might well be able to merge views on some cases 

but we might also find that the kinds of views we are marshaling are seeing quite 

different phenomena, constituting different animals all called engineers. When we 

recognize this we might not be so easily persuaded to conclude that one view on 

this animal is ‘righter’ than another; nor might we be so keen to bring them 

together. When we are confronted by such possibilities, the suggestion put forth 

in this paper is not that they should be avoid doing this at all costs but rather that 

one should treat doing so with care – triangulating the arithmetic of branch costs 

with the sense of dwelling in SE seems a hard thing to do, perhaps not even a 

sensible thing to do.  

 Besides, a more important concern might be to investigate instead what a 

one of these approaches allows one to do alone. In the case of the last view we 

have presented, the view that emphasises the sense of dwelling articulated in 

interview, then a number of obvious implications follow on. One has to do with 

realisation that SE in large corporate enterprises (where the code base is also 

large) involves considerable interpersonal and organisational skill, skills it should 

be clear of a peculiar kind, ‘human ones’ we have said. This is not simply because 

there is a loose fit between branch structures and code elements; it is because of 

the felt-life of existence within such enterprises: to feel concern for an unknown 

other is surely a different feeling for those one knows; but to worry about the 

travelers who pass through one’s office and their likely destination is another. 

Part of the sensibility required to leverage this view turns around the fact that 



 

what is a finding in other approaches is the assumed starting place here: those 

who dwell in the spaces described know that large code bases are not designed 

around nucleated elements and that there is an inevitable blurring between one 

component and another. They know too that even the most ardent branch design 

may well fail to ensure that the mapping between who does what can in all cases 

guarantee that what one person’s code does cannot have (in some obscure way) 

an unexpected consequence for someone else’s work. In this sense, the suggestion 

by the agile theorists like Williams mentioned at the outset (if theorists is the right 

word) that there needs to be a constant desire to communicate on the part of 

engineers, often face to face, is as true now as when the agile turn was first 

initiated all those years ago. But what the approach focused on dwelling 

highlights is how profoundly this is felt; how agitating of the spirit this can be. 

Those approaches that have looked at reason and accountability seem to eschew 

this very fact: just how communication is facilitated, managed, controlled, and 

acted upon in the dwellings of software engineers. If our characterisation has 

pointed the way, then much further consideration of these spaces is required. The 

view that the SE animal is passionate means that the human arts of reasoned 

negotiation are all the more important to enable but this may not be something 

that will only entail reasonableness. The turn to SNS may not lead to the more 

effective articulation of needs, as Storey, Treude, et al imply (2010). It might also 

facilitate the vituperative and the ill-considered; off-the-cuff explosions of vented 

passion. As Rettberg notes in her book Blogging, this is certainly what appears to 

be the emergent norm in the blogosphere (2009). Harper (2011) confirms this 

view.  

 Another has to do with how attempts to theorise reasoning by software 

engineers need to recognise the importance of the dwellings in which it occurs. 

For what one can say about this last study, brief though it was, is that it highlights 

how software engineers undertake regular, continuous and often artful ethical 

decision making. This decision making looks nothing like the abstract rendering 

of reason one finds in, for example, philosophical studies of ethical choice, 

especially those that deploy the so-called trolley method of enquiry, where ethical 

questions are posed in a totally hypothetical manner. There is nothing 

hypothetical about ethics in SE. Nor does it look like those representations of 

human reasoning articulated in game theory which is increasingly popular. As 

O’Connor notes (2012) the trolley method is so devoid of linkages to real 

situations of choice that the kind of reasoning it does illuminate are almost 

completely egregious. This will apply to game theoretic models when attempts 

are made to apply them to abstract renderings of SE for the same reasons.  

 What this approach to SE brings to bear then is the kind of ethics that SE 

entails. Some years ago John Bowers made the claim SE in CSCW should 

become ethical. This assertion was evidently without any reference to what 

engineers actually do in organisational life, day in, day out. They make decisions 



 

not about what to code but about how their coding choices will affect others and 

how the choices will affect them in turn. This is endemic to SE practice.  

 That this is so should make it clear that a concern for dwelling does not 

make available the world of coding; it highlights how coding turns around 

relationships between organisational roles as kinds of identity, the community to 

which identities owe affiliation (the workgroups or gang in which an SE fits), 

such things as the moral rights to comment and act upon code elements and not 

others, as well as the felt-life of that ensemble.  

 As we conclude this paper, so one ought to be able to see now that one can 

see the analogies between the structures in the felt-life and such things as tribal 

structure, kinship systems, distributions of ‘rights to know’ and ‘rights to act’ in 

places far distant from the development offices of Windows. These analogous 

ensembles are most often to do with religious matters, with who has access to the 

inner sanctum of some holy place. But, here, we have seen through the casting 

light of a concern for dwelling that when it comes to the world of Windows 

software engineering on the ‘West Coast’, access to and control of bits of code is 

similarly drawn. Who can get to the code in the branch, who has access to that 

branch and who is prohibited are not strictly rational matters, we have seen. Like 

priests protecting the sanctum of their temples, those who dwell in software have 

much to protect. But whether it is software or theology, it is all the same from the 

analytic point of view used in this paper. As Foucault suggests, it’s a question of 

how one constructs the human at the centre of the world one is interested in, and, 

as a consequence, what that world comes to look like given the human put in the 

heart of it. 

References 

Bird, C. & Zimmerman, T. (2012) Assessing the Value of Branches with What-if Analysis. In 

Proceedings of the 20th International Symposium on Foundations of Software Engineering 

(FSE 2012), Research Triangle Park, NC, USA, November. 

Bird, C. Nagappan, N., Devanbu, H., Gall, and Murphy, B (2009) Does distributed development 

affect software quality? an empirical case study of windows vista. In Proc. of the International 

Conference on Software Engineering. 

Bird, C. N. Nagappan, P. Devanbu, H. Gall, and B. Murphy. (2009) Putting it All Together: Using 

Socio-Technical Networks to Predict Failures. In Proceedings of the 17th International 

Symposium on Software Reliability Engineering. IEEE Computer Society. 

Bird, C., Gall, H. Hagappan, N., Devanbu, P. & Murphy, B. (2011) Don’t Touch My Code!, 

ESEC/FSE’11, Sep 5- 9. 

Bucciarelli, L. (1994) Designing Engineers, MIT Press, Boston. 

Button, G. & Sharrock, W. W. (1994) Occasioned practices in the work of software engineers. In 

Goguen & M. Jirotka (Eds.), Requirements engineering: Social and technical issues. San 

Diego: Academic Press. 



 

Cleidson R. B. de Souza David F. Redmiles (2008) An Empirical Study of Software Developers’ 

Management of Dependencies and Changes, Proceeding ICSE '08 , pp241-250.  

Cleidson R. B. de Souza David F. Redmiles (2011) The Awareness Network, to Whom Should I 

Display my Actions, And, Whose Actions Should I Monitor?, IEEE Transactions on S..E. 

VOL 37, NO 3, 325-339. 

Coleman, S. & Hellerman, P. (2011) Multi-Sited Ethnography, Routledge, London. 

Dittrich, Y., John, M., Singer, J., & Tessem, (2007) Awareness in the Wild: Why Communication 

Breakdowns Occur, Global Software Engineering, ICGSE 2007, pp81 – 90. 

Cleidson R. B. de Souza1,Redmiles, D. Cheng, L. Millen, D. Patterson, J. (2004) Sometimes You 

Need to See Through Walls —A Field Study of Application Programming Interfaces, 

CSCW’04, November 6–10, 2004, Chicago, Illinois, USA. 

Foucault, M. (1966) The Order of Things, Chicago University Press, Chicago. 

Garfinkel, H. (1967) Studies in Ethnomethodology, Englewood Cliffs, NJ: Prentice Hall. 

Gutwin, C., and Greenberg, S. (2004) The importance of awareness for team cognition in 

distributed collaboration. In Team Cognition: Understanding the Factors that Drive Process 

and Performance, APA Press, 177–201.  

Harper, R. (2011) Texture: human expression in the age of communications overload, MIT Press, 

Boson.  

Hine, C. (2000) Virtual Ethnography, Sage, London.  

Ingold, T. (2011) Being Alive: Essays on Movement, Knowledge and Description, Routledge, 

Abingdon, UK. 

Kuhn, T. (1962) The Structure of Scientific Revolutions, Chicago.  

Martin, D., J. Rooksby, M. Rouncefield, and I. Sommerville (2007): ’Good' Organisational 

Reasons for 'Bad' Software Testing: An Ethnographic Study of Testing in a Small Software 

Company. In Proceedings of ICSE’07, pp. 602611. 

Mosse, D. (2006) Anti-Social Anthropology? Objectivity, Objection and the Ethnography of 

Public Policy and Professional Communities. Journal of the Royal Anthropological Institute 

12 (4): 935–—956. 

Nagappan, N., Murphy, B & Basili, V. (2008) The in Influence of organizational structure on 

software quality: an empirical case study. In Proc. of the 30th international conference on 

Software engineering. 

O’Connor, J. (2012) The Trolley Method of Moral Philosophy, Essays in Philosophy, Vol 13, 1, 

14. 

Paul, S., and Reddy, M. (2010) Understanding together: sensemaking in collaborative information 

seeking. In, CSCW ’10, ACM (New York, NY, USA, 2010), 321–330.  

Phillips, S., Sillito, J., and Walker, R. (2011) Branching and merging: an investigation into current 

version control practices. In International workshop on Cooperative and human aspects of 

software engineering, CHASE ’11, ACM (2011), 9–15.  

Rettberg, J. (2009) Blogging, Polity , Cambridge. 

Rönkkö, K., Y. Dittrich, and D. Randall (2005) When Plans do not Work Out: How Plans are 

Used in Software Development Projects. Journal of Computer Supported Cooperative Work, 

vol. 14, no. 5, pp. 433-468. 

Rorty, R (1979) Philosophy and the Mirror of Nature, Princeton University Press: Princeton. 

Schmidt, K and L. Bannon (1992) Taking CSCW Seriously: Supporting Articulation Work. 

Journal of Computer Supported Cooperative Work, vol. 1, nos. 1−2, pp. 7−40. 

Sharrock, W. & Read, R. (2002), Kuhn: Philosopher of Scientific Revolution, Polity, Cambridge. 

Sommerville, I. (2007). Software engineering. 8th edition, Pearson Education.  



 

Storey,M. Ryall, J. Bull, R., Myers, D. inger, J. (2008) “TODO or To Bug: Exploring How Task 

Annotations Play a Role in the Work Practices of Software Developers”, 30th international 

conference on Software engineering (ICSE). 

Storey,M., Treude, C. van Deursen, A. Cheng, L. (2010) “The Impact of Social Media on 

Software Engineering Practices and Tools”, 2010 FSE/SDP Workshop on the Future of 

Software Engineering Research (FOSER 2010). 

Sykes, K. (2005) Arguing with Anthropology, Routledge, London. 

Williams, L. (2012) ‘What Agile Teams Think of Agile Principles’, Communications of ACM, 

pp71-76, Vol 55.no 4.  

Walrad, C., and Strom, D. (2002)The importance of branching models in scm. Computer 35 

(September 2002), 31–38. 

 


