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Abstract
Soft hangis an action that was expected to respond instantly but in-
stead drives an application into a coma. While the application usu-
ally responds eventually, users cannot issue other requests while
waiting. Such hang problems are widespread in productivitytools
such as desktop applications; similar issues arise in server programs
as well. Hang problems arise because the software contains block-
ing or time-consuming operations in graphical user interface (GUI)
and other time-critical call paths that should not.

This paper proposes HANGWIZ to find hang bugs in source
code, which are difficult to eliminate before release by testing,
as they often depend on a user’s environment. HANGWIZ finds
hang bugs by finding hang points: an invocation that is expected
to complete quickly, such as a GUI action, but calls a blocking
function. HANGWIZ collects hang patterns from runtime traces
supplemented with expert knowledge, and feed these patterns into a
static analysis framework that searches exhaustively for hang points
that involve potential hang bugs.

Experiments with several large, real-world software packages
(including a source control client, a graphics editor and a web
server) show that there are several hang bugs in these applications,
and that HANGWIZ is effective in finding them. The experiments
also demonstrate that HANGWIZ is scalable and can analyze mil-
lions of lines of code. We further discuss related techniques and
report our experience on fixing hang bugs.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Diagnostics; D.4.7 [Operating
System]: Organization and Design; D.4.8 [Operating System]:
Performance

General Terms Experimentation, Performance, Reliability

Keywords hang, responsive invocation, blocking invocation, in-
teractive performance, responsiveness, program analysis

1. Introduction
Almost every user of modern computer software has had the an-
noying experience of the unresponsiveness problem known assoft
hang. In such scenarios, a mouse click suddenly drives an applica-
tion into a coma, and the operating system (OS) may declare the
application to be “not responding”. The application willeventually
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return to life. However, during the long wait, the user can neither
cancel the operation nor close the application. The user mayhave
to kill the application or even reboot the computer.

The problem of “not responding” is widespread. In our expe-
rience, hang has occurred in everyday productivity tools, such as
office suites, web browsers and source control clients. The actions
that trigger the hang issues are often the ones that users expect to re-
turn instantly, such as opening a file or connecting to a printer. As
shown in Figure 1(a),TortoiseSVN repository browser becomes
unresponsive when a user clicks to expand a directory node ofa
remote source repository.

The causes of “not responding” bugs may be complicated. An
erroneous program that becomes unresponsive may contain dead-
locks (Engler and Ashcraft 2003; Williams et al. 2005), infinite
loops or many other correctness bugs that relate to the problem
of termination (Cook et al. 2006, 2007). However, a large category
of responsive problems, such as thesoft hangthat we will address
in this paper, arenot triggered by such correctness bugs. Consider
the case ofTortoiseSVN repository browser we just described. Fig-
ure 1(b) illustrates a snapshot of the call stack of the user interface
(UI) thread, where the UI thread synchronously invokes a socket
API function connect to establish a network connection to a re-
mote source repository. Since the UI thread waits for the return of
connect, further message processing such as the UI rendering task
is blocked. This is the reason that it stopped responding. However,
the UI thread will be unblocked eventually when theconnect call
timeouts or completes. This is not a correctness bug. Yet, itshould
most certainly be rewritten to be more user-friendly. The applica-
tion should have performed network communications in a separate
thread, popping up a dialog box to indicate the status and progress,
and optionally allow the user to cancel the operation.

In addition to GUI applications, similar hang problems pervade
in a broader range of systems, such as event-driven servers and
chained filters. An event-driven server should avoid blocking on
long-running operations; if there is such an operation in anevent
handler, subsequent operations such as accepting new connections
and serving file contents cannot be processed until the long-running
operation completes. Such defects lead to responsiveness problems
and performance degradation (Pai et al. 1999; Elmeleegy et al.
2004). Similarly, in the case of chained filters, the end-to-end la-
tency may also become significantly worse if an intermediatefilter
performs an operation that takes a long time. This is usuallycaused
by third-party extensions or plug-ins that can slow down thesystem
and cause responsiveness problems (Basu et al. 2007).

In this paper, we consider the particular category of responsive-
ness bugs that generally involveno correctness problems, namely
hangbugs. In such abnormal cases, a program blocks on an opera-
tion that consumes a perceptible interval to finish, and unnecessar-
ily prevents subsequent critical operations from being processed.
This can lead to the loss of responsiveness and poor user experi-
ences, or even degradation of performance. Hang bugs are becom-
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Figure 1: A simple hang case ofTortoiseSVN 1.4 repository browser. When a user clicks in the tree view toexpand a directory node
of a remote source repository, the UI thread calls back to theevent handler functionCRepositoryTree::OnTvnItemexpanding in
TortoiseSVN, which eventually invokes a blocking socket API functionconnect. Thus, its UI stops responding and the application hangs
during network communication.

ing one of the most significant issues. A recent survey by the Mi-
crosoftOffice team has indicated that user complaints about hang
bugs are nearly as frequent as complaints about crashes.

Hang bugs are difficult to eliminate before release. In the hunt
for the cause of hang, we lack effective tools. We are aware of
the testing approach that catch abnormal states when an invocation
takes longer than a pre-specified period. While useful, it has a num-
ber of drawbacks. First, tests in the lab do not cover all cases that
trigger hang bugs due to complicated interactions between mod-
ules in several threads. More important, hang bugs are oftensen-
sitive to environments, e.g. special inputs and network conditions,
which are hard to reproduce. Static analysis tools that can exhaust
all call paths do not have the vulnerability of a limited testing envi-
ronment. However, the lack of a formal model of hang bugs has so
far hindered the use of static analysis.

To the best of our knowledge, this paper is the first to address
the issue of soft hang in real-world applications. As we willdemon-
strate, instead of relying on testing to uncover hang bugs, we collect
patterns as expert knowledge, which are fed into a model thatour
static analysis framework uses to find hang bugs. We believe that
it has established the foundation of defining an ecosystem whereby
we can gradually increase both accuracy and coverage.

1.1 Contributions

In this paper, we identify the problem of hang and discuss tech-
niques to solve it. Specifically, we make the following contribu-
tions.

• We propose a general hang model to describe this particular cat-
egory of responsiveness bugs. Based on the model, we collect
patterns as the generalization of hang cases found in testing and
client-side traces. Such patterns can also be specified by domain
experts.

• We present an extensible framework to perform a precise and
scalable static analysis on source code to find hang bugs based
on collected patterns. Our approach has successfully analyzed
software up to one million lines of code while having an accept-
able false positive rate.

• We implement a hang analysis system HANGWIZ, and report
our experience on analyzing various large, real-world software.
We also discuss related techniques and design principles to
solve hang problems.

The rest of the paper is organized as follows. Section 2 presents
the hang model and Section 3 illustrates the architecture ofour hang
analysis system. Section 4 describes our hang analysis algorithm,
while Section 5 explains implementation details. Section 6evalu-
ates our hang analysis system on various software. We reportour
experience in Section 7, and further discuss extensions in Section 8.
We survey related work in Section 9, then conclude in Section10.

2. Model
In this section, we present our hang model to describe operations
that may cause hangs. We consider invocations, i.e. calls tofunc-
tions, as the basic unit of operations, since the next level of oper-
ations such as memory access and computation statement are un-
likely to cause hangs. Extensions are discussed in Section 8.

As discussed in Section 1, there are some time-critical invoca-
tions that should or are expected to complete in a timely fashion
in some specific contexts (e.g. invocations in the UI thread). Such
invocations areresponsive invocations. Meanwhile, there are some
time-consuming invocations that would block for a perceptible in-
terval (e.g.connect). Such invocations areblocking invocations. If
the call path of a responsive invocation contains a blockinginvoca-
tion, this will produce a hang. In other words, a hang is uncovered
if a responsive invocation (as expected by design) meets a blocking
invocation (as manifested by the runtime system). Our modelstarts
by defining responsive patterns and blocking patterns to capture re-
sponsive invocations and blocking invocations, respectively.

2.1 Responsive Invocations

Responsive invocations are domain-specific, such as invocations
to message processing methods in GUI applications and thoseto
event handlers in event-driven systems. The responsive property
propagates down along the call graph: if an invocation to a function



needs to be responsive, then all invocations inside the function to
other functions should also be responsive.

As in Figure 1,wWinMain is the entry of the UI thread. So
that the invocation to one of its callees, the GUI message pro-
cessing methodCRepositoryTree::OnTvnItemexpanding that
is responsible to expand a directory view, should be responsive.
Therefore, the invocations deep down the call graph to functions
such asconnect are also responsive in this thread. On the contrary,
if connect is called in a separate thread other than the UI thread,
the invocation is not responsive since its callers are not responsive.

We collect responsive patterns that capture these responsive in-
vocations. Here is a common responsive pattern for GUI applica-
tions.

PATTERN 2.1. An invocation to any function in the UI thread is
responsive.

Similarly, we can specify more responsive patterns for other
systems to capture domain-specific responsive invocations, such as
invocations to event handlers or filters.

2.2 Blocking Invocations

On the other hand, blocking invocations may synchronously con-
sume much time to finish. They can be invocations to sleep and
wait functions, networking and inter-process communications, in-
teractions with intensive I/O or computations, etc.

We collect blocking patterns to capture blocking operations.
Here is a blocking pattern for the socket API functionconnect
in Figure 1.

PATTERN 2.2. An invocation toconnect is blocking.

Note that in this work, we consider blocking APIs only and ig-
nore other runtime performance problems caused by OS side ef-
fects such as paging/swapping. An API is blocking if there exists
a worst case scenario that prevents the calling logic from making
progress until timeout. In the above example, if the networkenvi-
ronment is perfect, the operation will complete shortly anda user
does not feel a lag. However, if the connection endpoint is over
wide-area or is simply down, this is a blocking call.

Blocking patterns such as Pattern 2.2 are unconditional; they do
not depend on calling contexts or function parameters, and always
identify blocking invocations. However, some invocationsmay be
blocking or not in different contexts, i.e. they are sensitive to prop-
erties of function parameters or other contexts. Consider an invo-
cation to the Win32 API functionGetFileAttributesW (or the
POSIX API functionstat) that retrieves file information. It may
be blocking, if the file path is remote (e.g.\\server\directory\file);
or it may be instant, if the file path refers to a local-disk file(e.g.
application configuration file). The latter case should be pruned. A
naive unconditional blocking pattern that states all invocations to
GetFileAttributesW or stat are blocking will cause too many
false alarms.

We introduce a more precise category of blocking patterns,
namely conditional blocking patterns, which are attached with
blocking conditions on parameters. For example, since a filepath
that reads from user inputs (e.g. a file-open dialog) may be remote,
we can specify a conditional blocking pattern as follows.

PATTERN 2.3. An invocation toGetFileAttributesW is blocking
if the file path is may-remote.

The pattern places a restriction on the parameter for the filepath,
so it captures fewer and more precise invocations compared to an
unconditional counterpart. The may-remote property in Pattern 2.3
can also be applied to other blocking patterns of file operation API
functions.

void file_open_dialog_response (GtkWidget *open_dialog, ...) {

uris = gtk_file_chooser_get_uris (GTK_FILE_CHOOSER (open_dialog));

for (list = uris; list; list = g_slist_next (list)) {

gchar *filename = file_utils_filename_from_uri (list->data);

if (g_file_test (filename, G_FILE_TEST_IS_REGULAR))

GIMP

Win32 GetFileAttributesW(filename)

GLib g_file_test(filename)

kernel network connection (filename is remote)

Figure 2: A more sophisticated hang case ofGIMP when a file
opens after a user inputs or selects a file in a file-open dialog.
The code snippet usually does not cause hangs. However, if a user
inputs a remote pathfilename that is passed tog file test,
GetFileAttributesW and eventually processed by the kernel,
the kernel will establish network connections, take some time to
communicate over networks and prevent subsequent operations
such as UI rendering; thus the application may hang.

In fact, an unconditional blocking pattern can be thought of
as a special blocking pattern, predicated by a Boolean evalua-
tion that will always turn out to be true. There is a wide cate-
gory of conditional blocking patterns. Table 1 lists some exam-
ples.Sleep(0) is a popular trick to perform a yield and it does
not block.TransmitFile performs asynchronous I/O operations
and does not block,if the lpOverlapped parameter is non-null.
We use conditional blocking patterns to prune the cases thatdo not
meet their blocking conditions to reduce false alarms.

2.3 Hang Bugs

To discover hang bugs, we analyze source code, using responsive
and blocking patterns to compute responsive and blocking invo-
cations, respectively. Invocations in their intersectionare potential
hang bugs. In other words, a hang bug is an invocation that is both
responsive and blocking.

For a simple example, as in Figure 1, assume that we have
Pattern 2.1 that an invocation to any function in the UI thread
is responsive, and Pattern 2.2 that an invocation toconnect is
blocking. Since the invocation toconnect is in the UI thread, it
is responsive; while the invocation toconnect is also blocking.
This is a hang.

Figure 2 gives a more sophisticated hang case. Again, assume
that we have Pattern 2.1 that an invocation to any function in
the UI thread is responsive, and Pattern 2.3 that an invocation to
GetFileAttributesW is blocking if the file path is may-remote.
As the stringuris returned bygtk file chooser get uris is
from an input dialog outside the program, it is may-remote. The
may-remote property can be propagated tofilename via list,
such thatfilename is also may-remote. Since the invocation to
file open dialog response is in the UI thread, the invocation
to GetFileAttributesW is responsive; while the invocation to
file open dialog response with a may-remotefilename is
blocking. Thus it is a hang bug.

Section 4 will give a detailed description of the analysis algo-
rithm to compute responsive and blocking invocations for finding
hang bugs.

3. Architecture
Figure 3 illustrates the overall architecture of our hang analysis
system HANGWIZ, which consists of the following components.



property example brief description blocking condition
may-remote GetFileAttributesW( get file information lpFileName is remote

lpFileName)

may-nonzero Sleep( sleep for an interval dwMilliseconds is nonzero
dwMilliseconds)

may-null TransmitFile( send file data over a socket asynchronously,lpOverlapped is null
. . . ,lpOverlapped,. . . ) or synchronously iflpOverlapped is null

Table 1: Examples of conditional blocking patterns.GetFileAttributesW, Sleep andTransmitFile are Win32 API counterparts to
POSIX APIstat, sleep andsendfile, respectively.
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Figure 3: Architecture of the hang analysis system.

• Pattern extraction.This step collects crucial patterns for the
later stage to identify responsive and blocking invocations.
These patterns can be specified by developers or testers using
their expert knowledge based on event traces of running soft-
ware. These patterns are independent of specific applications
and are applicable to analyzing other software systems.

• Static analysis.This is the heart of our hang analysis system and
also the focus of this paper. We first extract the set of all invoca-
tions from source code via a compiler plug-in. With the inputs
of the responsive patterns and blocking patterns, we reducethe
set of all invocations into responsive invocations and blocking
invocations, respectively, and compute the intersection.The fi-
nal result is a set of approximation of hang bugs.

• Cure and refactoring.The output of the previous stage is a hang
bug report. Generally speaking, hang bugs should be fixed by
code refactoring. From our experience of identifying hang bugs
in a number of large, real-world applications, we offer summary
of typical hang root causes and provide suggestions for fixes.
For legacy applications, code refactoring may not always be
possible. Thus, we have investigated techniques to cure hangs
at runtime if a blocking invocation can be safely canceled.

4. Algorithm
The general idea of the algorithm is to start from all invocations of
a program, and to compute responsive invocations and blocking in-
vocations based on their corresponding patterns. Their intersection,
the set of hang invocations, is the approximation to hang bugs.

Figure 4 illustrates the stages of the analysis algorithm tosuc-
cessively prune invocations that are out of interest, including:

1. all-invocations computation,

2. responsive-invocations computation,

3. blocking-invocations computation, and

4. hang-invocations post-processing.

4.1 Program Analysis as Database Queries

Our analysis leverages database techniques. Consider a simple ex-
ample, to compute the set of functions that themain function can
reach. LetF be the set of all functions. Acall relation (caller,

Responsive-Invocations 

Computation

Blocking-Invocations 

Computation

Hang-Invocations 

Post-Processing

All-Invocations 

Computation

Responsive Patterns Blocking Patterns

Figure 4: Stages of the hang analysis algorithm.

callee) can be viewed as a database relation in the formF × F.
For two functionsf andg, f callsg if and only if (f, g) ∈ call.

First, a compiler plug-in extracts thecall relation from source
code: at each call site, it emits the corresponding pair for (caller,
callee). After constructing thecall relation, to compute the func-
tions thatmain can reach turns out to be arecursivequery over the
call relation.

Reach = {f |(main, f) ∈ call}∪{f |∃g ∈ Reach : (g, f) ∈ call}

Note that the definition of the queryReach depends on itself, so it
is recursive.

Such queries can be expressed in a logic programming lan-
guage. A logic database can solve the queries over corresponding
database relations and produce new resulting relations. Specifically,
our analysis is expressed in the Datalog query language (Ullman
1989). Datalog enables recursive queries and can be evaluated in
polynomial time. It is efficient for large databases and popular for
program analysis (Reps 1994). Datalog evaluation and optimiza-
tion techniques are beyond the scope of this paper; please refer to
(Ullman 1989; Whaley and Lam 2004) for details.

Thus, performing analysis to a program is converted to the
practice of constructing database relations and applying queries
over them. This is how we will describe our algorithm in the rest of
this section. To avoid introducing the syntax details of theDatalog
query language, we use the set notation as above in our analysis.
We use the termssetandrelation interchangeably. Note that the set
notation isnot formalization but database queries over relations.

4.2 All-Invocations Computation

First of all, we compute a call graph for all invocations as the basis
for subsequent computations. As discussed in Section 2.2, afunc-
tion parameter may have a property that depends on specific con-
texts, e.g. a file path can only be may-remote on specific call paths.
An invocation with such a parameter, e.g.GetFileAttributesW
with a file path, may be blocking or not on different calling paths.
To precisely analyze these cases, we should compute the properties
on individual call paths. In other words, we need a context-sensitive
graph.

We adopt a cloning-based context-sensitive analysis (Whaley
and Lam 2004) to construct a context-sensitive call graph. In this
method, we first compute an initial context-insensitive call graph,
as shown in the left graph in Figure 5. Then, strongly connected
components (i.e. direct or indirect recursive calls) are reduced into
one node, and a clone is made for each new context. This effectively
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Figure 5: Example of cloning-based construction of a context-
sensitive call graph. The left graph is a context-insensitive call
graph. The right graph is a context-sensitive call graph with all call
paths expanded.

transforms a context-insensitive call graph to an expandedone that
is context-sensitive, as shown in the right graph in Figure 5. In a
context-sensitive call graph, we can distinguish functionparameter
properties on each clone and perform a more precise analysisto
reduce false alarms.

However, the cloning-based approach would lead to a large
number of calling contexts. The key to achieve scalability is to rep-
resent this exponential call graph as database relations compactly
with an efficient data structure. Binary decision diagram (BDD)
(Bryant 1986) is widely used for this purpose. It has been known
to successfully analyze large programs up to5 × 1023 paths in a
context-sensitive call graph using a BDD-based Datalog database
(Whaley 2007).

We compute a context-sensitive call graph for each thread using
the cloning-based approach. For example, the root of the call graph
of the main thread can be themain function for a C/C++ program.
The call graph yields the set of all invocationsAllIvk, in the form
of tuples of(i, c):

• i ∈ I is a call site where a function is called. The caller is the
function that contains the call site, denoted asH(i); while the
callee is the function being called, denoted asF(i).

• c ∈ C is a calling context. If there aren different call paths to a
function from the root, their calling contexts will be expanded
from 0 for n − 1.

Thus, each edge in a context-sensitive call graph represents an
invocation (i, c). As in Figure 5, the call sitei6 from d to e is
expanded as(i6, 0), (i6, 1) and (i6, 2) in a context-sensitive call
graph. For each invocation(i, c), we can identify a unique call path
that reaches it from the root.

All subsequent computations are based on(i, c) tuples from all
invocationsAllIvk.

4.3 Responsive-Invocations Computation

This stage computes the subset of all invocations that are time-
critical, i.e. responsive invocations. Each responsive invocation has
one of the following attributes:

1. It is an invocation captured by a responsive pattern, which is
domain-specific.

2. It is an invocation that can be reached from a known responsive
invocation along a call path.

The initial set of responsive invocationsResponsiveIvk0 is
captured by a group of responsive patternsResponsiveRulek

from all invocationsAllIvk. Then we perform reachability analy-
sis to compute the transitive closureResponsiveIvk, in two steps
as follows.

Rk = ResonsiveRulek(AllIvk)

ResponsiveIvk0 =
[

Rk

ResponsiveIvk = {(i, c)|(i, c) ∈ AllIvk

∧ ∃(i′, c′) ∈ ResponsiveIvk0 : (i′, c′) −→∗ (i, c)}

First, responsive patterns are specified as queries over(i, c)
tuples. For example, Pattern 2.1 that an invocation to any function
in the UI thread is responsive can be specified as the following
query.

R1 = {(i, c)|(i, c) ∈ AllIvk ∧ H(i) = main}

Here we assume thatmain is the entry function of the UI thread,
and all invocations inmain are the initial responsive invocations.

Then we can compute the set of all responsive invocations
ResponsiveIvk as the transitive closure ofResponsiveIvk0, the
initial set of responsive invocations captured by responsive patterns
such asR1.

Let (i′, c′) −→∗ (i, c) denote that invocation(i, c) is reachable
from invocation(i′, c′), i.e. there is a call path from(i′, c′) to
(i, c) on a context-sensitive call graph. We perform a reachability
analysis to find all responsive invocationsResponsiveIvk that
ResponsiveIvk0 can reach. Since the responsive property can
be propagated down along call paths, if(i′, c′) is responsive and
(i′, c′) −→∗ (i, c), (i, c) is also responsive. We iterate to construct
ResponsiveIvk until reaching a fixed point.

4.4 Blocking-Invocations Computation

This stage computesBlockingIvk, the union of blocking invoca-
tions, in which each invocation is captured by some blockingpat-
ternBlockingRulek.

Bk = BlockingRulek(AllIvk)

BlockingIvk =
[

Bk

A blocking pattern is specified in the form of queries over
(i, c) tuples as two parts: a call to a specific function, and an op-
tional blocking condition on function parameters. Following are
two examples of blocking patterns: Pattern 2.2 that an invoca-
tion to connect is blocking, and Pattern 2.3 that an invocation to
GetFileAttributesW is blocking if the file path is may-remote.

B1 = {(i, c)|(i, c) ∈ AllIvk ∧ F(i) = connect}

B2 = {(i, c)|(i, c) ∈ AllIvk ∧ F(i) = GetFileAttributesW

∧ (P(i, 1), c) ∈ may-remote}

We can see that the blocking pattern forconnect is quite
intuitive, while a conditional blocking pattern such as Pattern 2.3
requires to specify additional restrictions on function parameters to
capture blocking invocations precisely. Now we explain thelatter
one in details.

Let P be a map thatP(i, n) returns the variable of then-
th function parameter at a given call sitei. Consider an invoca-
tion to GetFileAttributesW at call sitei. P(i, 1) returns the
variable for the first parameter, i.e. the file path. If(P(i, 1), c)
is in set may-remote, i.e. the file path parameterP(i, 1) in
calling context c is may-remote, the invocation at call sitei
to GetFileAttributesW in calling context c will be put in
BlockingIvk.

The question now is how to compute the setmay-remote, a
set of variables that may be remote file paths in a context-sensitive
way. It is in the formV × C, whereV is the set of variables andC
is the set of calling contexts. We computemay-remote as follows.



In addition to checking constant strings for file paths, we anno-
tate parameters or return values of certain functions as may-remote
(e.g. a function that reads and returns a string from user inputs),
and estimate an initial set ofmay-remote variables. By following
up operations such as assignments, we propagate the may-remote
property from variables inmay-remote to other variables, and it-
eratively put them inmay-remote, in a recursive manner. Take
Figure 2 for an example. Assume that by annotation we know that
the return value ofgtk file chooser get uris is may-remote.
Thus uris with its calling context is in the setmay-remote,
and our computation incrementally addslist, list->data and
filename with their calling context intomay-remote via propa-
gations. This process repeats until it converges.

In summary, conditional blocking patterns are evaluated inthe
following steps.

1. Compute variables that have certain properties startingfrom
function annotations, e.g. the return value is read from network
or file. This step is required only for computing proprieties
such as may-remote; other properties such as may-null can be
inferred automatically from source code.

2. Compute a set of variables that have the property via propaga-
tions, e.g. variable assignments and parameter passing.

3. Combined with call site information, evaluate blocking condi-
tions of invocations by inspecting the property of corresponding
parameters.

Similarly, we estimate sets in the formV×C for other properties
such as may-nonzero and may-null listed in Table 1, and evaluate
corresponding blocking conditions. Most such properties can be di-
rectly inferred from code, so no annotations are required. Besides,
if a blocking pattern requires conditions on multiple parameters, it
can specify a conjunction of blocking conditions of the parameters.

4.5 Hang-Invocations Post-Processing

The intersection of responsive invocationsResponsiveIvk and
blocking invocationsBlockingIvk is hang invocationsHangIvk,
our approximation to hang bugs. Each hang invocation is in the
form (i, c), a call sitei in calling contextc, so we can identify a
hang call sitei with a call path that can reach from a root function,
e.g.main.

The results generate a hang bug report after a few more post-
processing steps. First, we merge hang invocations that areon
the same call path, i.e. the same hang bug that is captured on
more than one invocation by different patterns. We either manually
inspect a call path that leads to a hang bug or feed a call path
into more expensive analysis and testing tools (Ball and Rajamani
2002; Henzinger et al. 2002; Das et al. 2002; Xie and Aiken 2005;
Godefroid et al. 2008) to check its feasibility.

In addition, we rank hang bugs with the following significance
factors.

• Hot call site.If a call site causes hangs in several calling con-
texts, it is hot. Intuitively, if the hang bug at the hot call site gets
fixed, more hang invocations get cured.

• Hot call path. Modern software may have integrated built-in
diagnosis mechanisms to monitor user actions. Some UI actions
are triggered more often than others. This can be perceived
as feedback that gives weights to responsive invocations. Such
weight distribution assigns priority on which hang bugs to fix
first.

Modern software is composed by many modules and libraries. A
complete application often links its code with many external pack-
ages. A developer’s main interest is to fix bugs in the application’s
code. We definehang gate, the firstexternal function on a hang

call path. Fixing a hang gate limits the developer’s code refactor-
ing effort within its own logic. Interestingly, as we will illustrate
through our experiments, hang gates are usually hot call sites as
well. This is in fact quite natural since hang gates are interfaces
and (often) entry points to the lower-level functions provided by
external libraries. As in Figure 1,svn client ls3 is a hang gate
for the case inTortoiseSVN, whileconnect at the bottom is where
the hang would occur, in one of its external libraries.

4.6 Discussion

As we have discussed in Section 4.1, the analysis algorithm is
expressed as queries in a Datalog program.

• Responsive-invocations computation is a recursive query over
call edges in a call graph. Responsive patterns provide entries
of critical functions; our analysis computes invocations that are
reachable from the entries and prunes those that are out of
interest.

• Blocking-invocations computation consists of recursive queries
over dataflow edges (e.g. assignments, parameter passing).For
blocking patterns conditioned on properties of parameters(e.g.
may-remote), our analysis propagates properties along dataflow
edges.

A Datalog implementation will apply optimizations to the queries
automatically, and evaluate them efficiently to produce responsive
and blocking invocations. The intersection of these two sets are
hang bugs.

We employ an interprocedural context-sensitive analysis.As
we will explain in the evaluation section, a completely context-
sensitive analysis is neither practical nor required for large, real-
world applications. The applications that we have examinedcontain
millions of lines of code. This poses serious challenges in terms of
memory usage, even with an efficient logic database implementa-
tion. Motivated by the observation that a developer cares far less
about external libraries than main application logic, we adopt a hy-
brid approach. Essentially, we perform context-sensitiveanalysis
on the software internal code, and context-insensitive analysis on
external libraries that are deep down the call paths. The trade-off is
that sometimes we will see more false positives, in the sensethat
properties such as may-remote are not propagated beyond thehang
gates.

In addition to false positives raised by the above practicalcon-
straints, we may flag false positives for other reasons. Our algo-
rithm is flow-insensitive, and it conservatively computes call graphs
and propagate properties for blocking conditions. As such,there
can be no feasible paths that lead to a reported hang invocation.
Besides, if blocking patterns are too conservative, i.e. missing pre-
cise blocking conditions, we may also report false hang bugs.

Similar to previous static analysis work, we may miss some
hang bugs in practice, i.e. false negatives. They happen in the
following cases.

• Our collections of responsive pattern and blocking patternare
incomplete. A “sound” alternative is to specify non-responsive
patterns and non-blocking patterns instead, and to prune those
invocations captured that obviously do not cause hangs. How-
ever, this alternative is infeasible and nonintuitive, since neither
experts nor tools would be able to collect such patterns. We be-
lieve that our approach allows incremental addition of pattern
collection and refinement once the system is tested in the real
world, and thus it will become more complete over time.

• Evaluating blocking conditions for some conditional blocking
patterns relies on computing sets likemay-remote. This requires
annotations on function parameters or return values of proper-



executables LOC
version main plug-ins internal external total brief description

TortoiseSVN 1.4.5 5 1 254K 918K 1.1M network client
GIMP 2.4.0 1 167 864K 198K 1.0M graphics editor
lighttpd 1.5.0 1 42 62K 311K 0.3M web server

Table 2: Benchmarks. The “executables” columns list the numbers of main programs and plug-ins. The “LOC” column lists lines of internal
code, external dependent code and those in total.

analysis reported false hangs
time invocations alarms invocations gates

TortoiseSVN 17m30s 229 77 152 26
GIMP 1h29m57s 69 35 34 10
lighttpd 3m19s 33 9 24 10
Total – 331 121 210 46

Table 3: Experimental results.

ties like may-remote. If the annotations are incomplete, wemay
miss corresponding hang bugs.

• For a practical tool that needs to deal with large, complex soft-
ware package, our implementation has to make a few com-
promises. For instance, we track function pointers interproce-
durally with a best-effort approach. To avoid too many false
alarms, we also ignore any unresolved call sites instead of as-
suming that they will be calls to any functions. These compro-
mises will lead additional missing hang bugs.

• A traditionally difficult problem of practical static analysis tools
is to capture implicit invocations, such as callbacks from operat-
ing systems, dynamic loading techniques (e.g. shared libraries
and reflections). It requires additional efforts to capturethese
implicit invocations for a more complete call graph, e.g. toan-
notate on functions or to perform reflection analysis (Livshits
et al. 2005). Thus, we may compute an incomplete call graph
on unresolved call sites and miss some invocations that involve
hang bugs.

• For open programs such as plug-ins, the callee code is missing.
Consequently, the call graph is also incomplete in such cases.
We can compute a more complete call graph for open programs
using domain-specific expert knowledge.

5. Implementation
We use thePhoenix compiler framework (pho) to analyze pro-
grams and dump their intermediate representations (IR). AsPhoenix
enables us to analyze C/C++ sources and C#/.NET bytecode, we
develop a back-end plug-in to extract database relations based on
thePhoenix IR, including variable assignments, memory accesses,
invocations, parameter passing, and other instructions.

In our current implementation, responsive patterns are specified
by experts. Blocking patterns are collected from two sources: sur-
veys by product teams provide frequent blocking patterns onWin-
dows; we also inspect suspicious runtime traces that cause hang
problems on several popular desktop applications such as Microsoft
Office, and manually extract blocking patterns from them. Block-
ing conditions for conditional blocking patterns are further refined
by experts based on API reference documentations.

Responsive patterns, blocking patterns, and our analysis algo-
rithm described in Section 4 are all expressed as Datalog queries.
We solve them over database relations extracted from sourcecode
using thebddbddb database (Lam et al. 2005), an effective Dat-

alog implementation based on binary decision diagrams thathas
been proven to scale to large programs.

As discussed in Section 4.6, our analysis algorithm requires
annotations to compute setmay-remote for variables that may be
remote file paths, and to capture implicit callbacks from operating
systems. Besides manual effort, we also obtain such annotations
from Windows header files, since most of them are well annotated
using the Standard Annotation Language (SAL) (Hackett et al.
2006).

6. Evaluation
We apply our hang analysis system HANGWIZ to a number of large
applications summarized in Table 2. These applications include
both main programs and plug-ins. Our experiments are conducted
on a Windows Server 2003 x64, with Intel Xeon 2.0 GHz CPU
and 32 GB memory. As the Datalog implementationbddbddb we
used is implemented in Java, we specify the maximum heap sizeby
command-line parameters to reduce garbage collection timefor a
better performance.

We will describe the responsive patterns used in the experiments
individually. We use 102 blocking patterns (53 unconditional and
49 conditional) in these experiments. As we have discussed,they
are general and independent of applications.

Our results are summarized in Table 3, including the analysis
time, the number of reported hang invocations, false alarms, hang
invocations and the corresponding hang gates. Overall, these ap-
plications are very large and contain millions of lines of code; we
have succeeded in finding many hang bugs and the false positive
rates are moderate.

For each experiment, we summarize top hang gates , including
the number of call paths that reach a gate, the function namesof
hang gates, and the blocking patterns that capture the invocations
at the bottom of call paths. We also report the call depth froma
top invocation to a gate and the remaining call depth to a bottom
invocation on a call graph (denoted as⊤/⊥).

6.1 Network Client: TortoiseSVN

TortoiseSVN is a popular source control client software. It contains
several GUI applications to synchronize between local working
copies and their remote repository sources, and to support other
file operations such as merge and diff. In addition, it provides a
shell extension as a Microsoft COM component that plugs into
Windows Explorer. As a typical network client, it is multi-threaded,



hit gate bottom ⊤/⊥

24 svn client open ra session connect 3/7
17 svn client proplist2 connect 3/8
15 svn client cat2 connect 5/8

Table 4: TopTortoiseSVN hang gates.

and operates on files on local disks and communicates with remote
servers.

TortoiseSVN depends on the portableSubversion library,
which further relies on numerous other software packages, includ-
ing Apache Portable Runtime andOpenSSL. These libraries con-
tain more than 900K lines of code, and the complete application
has more than 1.1 millions lines of code.

We use Pattern 2.1 (an invocation to any function in the UI
thread is responsive) as the responsive pattern for the GUI applica-
tions. Windows GUI applications have a fairly standard structure,
and we add implicit callbacks to UI message processing methods
from the Windows operating system. For the shell extension,we
mark invocations inside the public interface methods as respon-
sive. We have found 152 hang invocations at 26 hang gates. Top
hang gates are summarized in Table 4.

All the hang gates capture network invocations inTortoiseSVN
UI threads. This is what we have shown in Figure 1: clicking to
expand a repository tree would cause a hang. We follow the call
paths and find another more serious problem: refreshing in the
repository browser would make it become unresponsive for a much
longer time, even up to several minutes.

There are 77 false alarms, most of which are due to invoca-
tions toGetFileAttributesW with a file path from outer envi-
ronments. While we consider file paths from outer environments
as may-remote, and according to Pattern 2.3 all invocationsto
GetFileAttributesW with a may-remote file path are blocking,
we reported such invocations as blocking. Actually, putting sources
at a network path may cause hangs. However, it rarely happensin
practice; users usually keep a working copy on local disks instead.
We manually re-classify these reported hang invocations asfalse
alarms. All these false alarms were easily identified once wereal-
ized the semantics of the file path.

6.2 Editor: GIMP

GIMP is a popular graphics editor available on many platforms. It
contains a main program and many plug-ins that enhance its func-
tionalities. It is built based on the portableGTK+ toolkit and re-
lies on a number of external libraries. We have analyzedGIMP
and parts ofGTK+ that provide system-related utilities, ignoring
rendering-related external libraries that do not count. Unlike Tor-
toiseSVN, GIMP’s own logic is the majority, containing more than
800K lines of code; the complete application has about 1 million
lines of code.

SinceGIMP is a GUI application, we again use Pattern 2.1
as the responsive pattern, with seven additional rules as expert
knowledge to capture callbacks to UI processing methods from
GTK+. Because there are almost no networking operations in a
desktop editor such asGIMP, we did not expect there would be
hang bugs. Surprisingly, we have found 34 hang invocations at 10
hang gates. Top hang gates are summarized in Table 5.

GTK+ API function g file test utf8 holds the first place,
which further calls to Win32 API functionGetFileAttributesW
or POSIX API functionstat. As in Pattern 2.3, it causes hangs
in UI threads when a given file path is may-remote. In fact, this
is a common problem for desktop editors: to input a network file
path would cause hangs. Other two hang casesFcFontList and
FcConfigAppFontAddDir may cause hangs when scanning di-

hit gate bottom ⊤/⊥

28 g file test utf8 GetFileAttributesW 4/1
1 FcFontList readdir 3/8
1 FcConfigAppFontAddDir readdir 2/8

Table 5: TopGIMP hang gates.

hit gate bottom ⊤/⊥

6 getaddrinfo getaddrinfo 4/0
5 readdir readdir 3/0
5 ldap simple bind s gethostbyname 2/9

Table 6: Toplighttpd hang gates.

rectories and loading fonts, captured by the POSIX API function
readdir that is used to read all entries in a directory in a loop. We
consider an invocation toreaddir as blocking, because its run-
ning time highly depends on the numbers of entries in a directory
in outer environments, which is non-deterministic. This iswhy it
takes rather a long time to startGIMP if a number of fonts are in-
stalled, which causes the splash window unresponsive.

There are 35 false alarms. Similar to those inTortoiseSVN, they
are also mostly caused by invocations toGetFileAttributesW.
Consider the following code snippet inGTK+.

g_home_dir = g_strdup (g_getenv ("HOME"));
if (!(g_path_is_absolute(g_home_dir) &&

g_file_test(g_home_dir, ...)))

Since g home dir is read from an outer environment variable
HOME, it is may-remote. Later it is passed into functiong file test
that subsequently callsGetFileAttributesW. It will hang if the
environment setsHOME as a network path, which may happen in
an intranet. However, as this is of low probability in practice, we
classify them as false alarms. Again, once we inspected the code, it
was easy to remove such false alarms.

6.3 Web Server: lighttpd

The lighttpd web server is fast and flexible to serve millions of
pages per day. It is widely deployed to power many Web 2.0 sites,
includingMySpace.com andYouTube.com. To achieve high scal-
ability and performance, it adopts a single-process, event-driven
(SPED) architecture. Its execution requires neither context switch-
ing nor synchronization. However, a SPED web server has a ma-
jor disadvantage: if the underlying operating systems or dependent
libraries do not provide support for asynchronous operations, the
synchronous substitutes will block the process and lead to loss
of performance (Pai et al. 1999). In this experiment, we investi-
gate such synchronous operations, i.e. blocking invocations used in
lighttpd.

Like many other web servers,lighttpd is composed of dozens
of module plug-ins that can be dynamically loaded. The complete
application has more than 300K lines of code, including client
libraries ofOpenLDAP andMySQL.

Each module provides an entry function to register event han-
dlers. In a SPED web server, all invocations there can be considered
as responsive. Thus, we mark invocations in all handlers that are
registered in the entry functions as responsive, since there are no
explicit calls from the main program to plug-ins. We have found 24
hang invocations at 10 hang gates. Top hang gates are summarized
in Table 6.

Among the hang gates,getaddrinfo is a POSIX API func-
tion that synchronously resolves a DNS hostname and IP ad-
dresses, so that it would cause hangs. Thereaddir function is



hit pattern brief description
43 GetFileAttributesW Pattern 2.3
41 connect Pattern 2.2
6 getaddrinfo POSIX API function

Table 7: Statistics of top effective hang patterns.

similar to the cases inGIMP. Another source of hang bugs is
blocking invocations to functions in external libraries, such as
ldap simple bind s in LDAP.

There are nine false alarms, due to false blockingconnect in-
vocations. While a bloated set of socket API functions on Win-
dows (e.g.ioctlsocket, WSAAsyncSelect) will set a socket into
non-blocking mode automatically,connect on a socket after these
functions would not block. We conservatively consider allconnect
invocations as blocking, and thus we may report false alarmson
connect. A better version would perform flow analysis to refine
the blocking condition ofconnect and prune such invocations.

6.4 Experience

We have mentioned in Section 4.6 that we employ a hybrid ap-
proach that applies context-sensitive and context-insensitive anal-
ysis to an application’s code and external libraries, respectively.
Context-sensitive analysis is precise; and we did not choose the
hybrid approach as an accident. Even with the efficient BDD-based
Datalog implementation, our first attempt to apply context-sensitive
analysis over the complete application has failed. In some cases, we
ran out of memory on the 32 GB memory server. Though a BDD
can represent relations compactly in general, its size is usually sen-
sitive to BDD variable orders; some “bad” order would lead toan
exponential size as well. However, finding an optimal order is an
NP-complete problem (Bryant 1986).

As reported earlier, the hybrid approach does bring some false
positives, but still at an acceptable rate. To improve the scalability
for a precise and complete context-sensitive analysis, it requires
extra efforts to find a better BDD variable order for BDD-based
database queries, particularly for analyzing C/C++ code. This will
be addressed in future work.

We inspect the most effective hang patterns, i.e. the top API
functions that cause the most hangs in our experiments from Ta-
ble 7, and find some interesting results.

• Implicit blocking specifications of high-level library API. Con-
temporary large software packages depend on a great number
of external libraries. This is the case inall three applications we
have examined. A subtle problem is that certain blocking func-
tions such asconnect can be hidden deep down the call paths
insideexternal libraries. This makes the blocking specifications
of high-level library API such asSubversion andMySQL im-
plicit. These high-level APIs are entry points to external li-
braries. Unawareness of whether these APIs are blocking —
in other words whether they are hang gates — puts the devel-
oper at the risk of bringing hangs into their applications. In our
results,connect holds the one of the top killer places of hang
causes, but the call paths all traverse to the external libraries
through the hang gates.

• Testing the existence of a path.It is generally a gentle way to
test whether a directory or a file exists before taking further
operations. However, the corresponding API functions usually
do not provide a timeout parameter for developers to specifya
maximum wait span. Thus, calls to these functions may block in
kernel and then timeout at rather a large value, often definedby
drivers. This is an issue of legacy platform assumption fromthe
days when computers were not connected and all storage I/O

were local. Transparently supporting legacy storage I/O APIs
that work over networked file path has its cost. Unawareness of
such may-block APIs is another dominant source of hang. It is
even worse to perform such testing while a user is interacting
with an application. For instance inEclipse JDT, when creating
a project whose directory is remote mounted, it will cause
hang every time a user presses a character when inputing the
directory path.

• Loading or saving files.Many editors try to load and save files
in UI threads. After all, this is the most convenient place to
code in such logic. This is not an issue for small files, but will
most certainly generate hangs when the format is complex to
parse, or a file is large and stored on a slow device or a remote
machine over networks. Besides, an editor often employs an
extensible structure that enables plug-in modules to support
more file formats. These modules may come from third parties,
and expose the application to the similar level of responsiveness
risks. Some recent editors such as the latest MicrosoftOffice do
the job in a better way. They load files in a separate thread and
pop up a dialog box indicating the status with a cancel button.

In our current implementation, most blocking patterns focus on
OS-level API functions, such as the patterns listed in Table1. If
high-level API functions are similarly attached with blocking pat-
terns, we will arrive at a more scalable solution since exploration
can stop at these function calls. However, high-level library API
functions may involve more complex blocking conditions. Con-
sider the followingSubversion API function.

svn_error_t *
svn_client_status(..., const char *path,

..., svn_boolean_t update,

..., svn_client_ctx_t *ctx,

...)

It retrieves the status of a working copy filepath; if update is
true, it connects to the repository specified byctx. It may block
if the working copypath is remote,or update is trueand ctx
represents a remote repository. Such a blocking pattern canalso be
expressed in Datalog and solved by a logic database. However, it is
not practical to enforce developers to specify the blockingcondition
for every API of their libraries. Thus, our future work will look into
automatic specification synthesis for high-level API functions.

7. Dealing with Hangs
Once hangs are discovered, they must be fixed. Refactoring code
is the most fundamental approach, and it calls for sound coding
discipline as well as correct architecture. For legacy applications,
refactoring may not always be possible, and we need to investigate
techniques to safely cure hangs at runtime.

7.1 Code Refactoring

In general, it should be considered as a domain-specifictiming
requirementthat a part of a program should be responsive. The
blocking property of an operation, on the other hand, is a matter of
timing specification. A hang bug occurs if the timing specification
of an operation contradicts the timing requirement at a program
point.

The general fix is to spawn a separate thread that takes the
task, with a progress dialog box that also allows a user to cancel
the operation. For simple patterns, this strategy is already adopted
by developers. Some latest software such as MicrosoftOffice has
adopted such a practice for some of its file operations.

It becomes extremely difficult for developers to understandthe
timing behavior of some invocations. This is where hang analysis



tools such as the one we presented in this paper bring value. Such
tools makes clear where the potential hangs can be, whether they
are hang gates to external libraries or platform APIs that may hang
depending on the calling context (e.g.GetFileAttributesW and
stat). Once they are found, they should be generally fixed with the
same strategy as outlined above.

However, there are a group of hang bugs that cannot be resolved
by simply spawning separate threads. One category is problem-
atic platform implementations. For example, the standard Windows
print dialog thats pops up before printing may internally call the
Win32 API functionEnumPrintProcessorDatatypesW to con-
nect to the default printer. The printer is usually locally attached or
shared in an intranet. As such this API will return quickly. However,
if the environment has changed, e.g. users reopen the print dialog
in another workplace, or when there happens to be some problems
with the printer or the intranet, this API will block, causing a hang.
This problem is difficult to fix at the user level, since the user ac-
tion that triggers the APIhasto be in the UI thread. One way to fix
this problem is to let the print dialog include a cancel option. More
fundamentally, however, it is the API that should be fixed.

The long debate about the design of high-performance, event-
driven web servers (Pariag et al. 2007) is qualitatively similar. If the
platform does not support an asynchronous API for the service that
an incoming event handling relies on,or that the event handling
must process this event in its entirety (i.e. cannot re-service it in
a separate thread), the hang is unavoidable (e.g. the hang case of
lighttpd).

7.2 Runtime Cure

We have also developed a tool to cure hangs in legacy software
at runtime without touching the source code. When an application
hangs and a user presses a hot key, our tool will try to bring the
application back to control.

The basic idea is to intercept functions that may block and to
avoid falling into a coma. The tool requires no source code for bi-
nary instrumentation (Guo et al. 2008a). It takes API function pro-
totypes as input and generates wrapper code automatically based on
a given code template (Guo et al. 2008b). The wrapper code works
as follows.

• For invocations towait functions for a long timeout that most
blocking functions may end up with, we break the timeout into
shorter intervals (500 ms). If a user presses the cure hot key, the
tool returns immediately with a timeout error code.

• For invocations to other functions that may block in kernel,i.e.
they do not callwait functions in user space, we put them in a
queue that are taken by threads in a separate pool. We periodi-
cally (500 ms) check the status, and it returns immediately with
a preset error code if a user presses the cure hot key.

We applied our cure tool on several software systems and suc-
cessfully recovered them from comas. A hang case occurs often in
Microsoft Office when a user clicks on a faulty network path or
an HTTP URL, such as inWord documents,PowerPoint slides or
Outlook emails. Our tool is able to cancel all these blocking invo-
cations in the UI threads and bring the applications back to respond.
Furthermore, we can extract patterns in these cases for our analysis
algorithm.

• The UI thread ofOutlook blocks on a networking API function
WNetEnumResourceW for a network path.

• The UI threads ofWord andPowerPoint block on the Win32
API functionGetFileAttributesW for a network path.

• The UI thread ofPowerPoint blocks on a wait API function
WaitForMultipleObjectsEx inside another API function
HlinkNavigate for an HTTP URL.

org.eclipse.update.internal.core.SiteFileFactory

private void parsePackagedPlugins(File pluginDir) … {

...

String[] dir = pluginDir.list(…);

...

for (int i = 0; i < dir.length; i++) {

...

File file = new File(pluginDir, dir[i]);

jarReference = new JarContentReference(null, file);

ref = jarReference.peek("META-INF/MANIFEST.MF", …);

if (ref != null) {

in = ref.getInputStream();

Figure 6: Example of long-running loops inEclipse 3.3. The stop
condition depends ondir.Length of the outer environment, and
thus the loop may take a long time.

While useful, this tool isnot a silver bullet solution. First,
though modern operating systems such as Windows Vista may
support cancelable I/O (Maffeo and Sliwowicz 2005), it would still
be dangerous to cancel I/O operations in some cases, particularly if
the application code is unaware of cancellation. In worst cases, it
can result in inconsistent application states and even leadto crash.
Besides, it cannot cancel operations that do not use synchronization
objects, such as a wait by checking a flag variable in a loop rather
than a wait for a signal. In these cases, code refactoring remains
necessary to fix hang bugs.

8. Extensions
Our model has taken the granularity of invocation; this neednot be.
Furthermore, the concepts of responsive and blocking invocations
can both be generalized. Below is an incomplete list of possible
extensions.

Responsiveness is a design attribute, meaning certain codere-
gion/path should be completed quickly. Invocation is arguably the
simplest instance when we talk about responsiveness. Another typ-
ical and useful instance is lock. If a lock is being held for a long
period of time, lock contention can result in performance degrada-
tion. A simple rule is that there should be no long-running I/O in
a lock region. Thus, lock region can be considered as a responsive
pattern.

The blocking property, too, can refer to code regions more than
just blocking invocations. The essence of blocking patternis not
that it will always be long-running, but that it some times does. The
root of the problem is theunpredictability plus highprobability
of becoming long running. Hypothetically, a system writtenwith
manyconnect calls may not hang at all if it always connects to a
loopback socket running on the same machine. Following thisline
of reasoning, there are more blocking patterns.

The blocking property may highly depend onouter environ-
ments, such as a may-remote file path we have discussed. Figure 6
illustrates a loop inEclipse 3.3 when a user starts the update man-
ager. The platform begins to examine each plug-in in succession.
The loop depends ondir.length, which further depends on the
number of files in an outer directory. If there are a large number of
plug-ins installed inEclipse, as is usually the case, the action causes
a hang bug. Thus, the loop structure is potentially a blocking pat-
tern, and it critically depends on the stopping conditions.Similarly,
scanning a directory of files, computing a MD5 digest of a file by
reading its data sequentially, all have highly structured patterns that
we can generally lump into the blocking patterns.

Besides, the blocking property contextually depends on states
that the blocking code is conditioned on. This brings up the subtle
issue ofwait. We consider it generally an unsound practice to wait



in responsive invocations, since they introduce more dependencies
among multiple components and increase the complexity of soft-
ware. As a minimum,wait should have a timeout to prevent that
crashing of the signaler from hanging the thread altogether.

The difficulty of wait in the case of hang analysis is that
it depends not on any state at the local calling context, but on
the execution of the signaler, which can be generalized intothe
“condition” of the blocking property of thewait. In its simplest
form, if a wait is on termination of a separate thread, then we
can mark the invocations in the separate thread as responsive. If,
on the other hand, a wait is for a signal that is to be triggeredin
a separate thread, then we must trace signals passing in different
threads and perform a flow analysis to compute happens-before
relations between invocations.

The above are technically feasible to be performed semi-
automatically. The most difficult part is when the wait is to be
triggered by other processes. We have developed a dependency
tracker that intercepts synchronization and scheduling functions in
kernel to track dependencies between multiple threads and pro-
cesses. For the hang case of clicking an HTTP URL inPowerpoint
slides (see Section 7.2), we found that three processes weretangled
in a complicated manner, which we still do not fully understand.

9. Related Work
We believe that our hang analysis framework is the first to establish
a hang-focused model and apply it against large, real-worldsoft-
ware. In the course of this research, we have borrowed ideas from a
large body of existing work. We summarize them below according
to several categories.

9.1 Responsiveness

This work is motivated by large number of hang cases that have
plagued our daily research work. However, improving responsive-
ness has been a long standing research problems for many other
critical software.

The pioneer work TIPME (Endo and Seltzer 2000) introduces a
measurement infrastructure to detect response time of GUI systems
such as Microsoft Windows and the X Window system. It focuses
on interactive performance or responsiveness issues, and provides
a basis for tracing abnormal cases and diagnosing responsiveness
problems at runtime. We further generalize the model to event-
driven servers and other time-critical applications, and develop
several tools to deal with hang bugs.

One important category of performance-critical programs is
drivers (Ball et al. 2006; Zhou et al. 2006; Anderson et al. 2007).
In essence, our work shares a lot of similarities. However, drivers
have a much smaller code base, and their interface is much more
restricted. Scale and complexity are unique challenges that we must
tackle, and to some extent we have tackled them via a scalableyet
precise analysis framework .

Another type of applications that have received many atten-
tions are web servers. Scalability and performance are bothcriti-
cal for web servers. Event-driven servers usually can achieve both
goals. However, they also suffer from performance problemsif
there are blocking operations, as shown by one of the applica-
tions we have examined. There are ongoing discussions on high-
performance web server architecture (Pai et al. 1999; Zeldovich
et al. 2003; Elmeleegy et al. 2004; Wassermann and Su 2007), and
we expect that their lessons are relevant to other software.

9.2 Correctness and Performance

A possible cause of responsiveness problems is due to correct-
ness bugs that prevent a program from making progress. A typ-
ical instance of such correctness bugs is deadlock (Engler and

Ashcraft 2003; Williams et al. 2005), which usually occurs in
multi-threading systems. More generally, it is a fundamental halt-
ing problem to prove that a program terminates or to find corre-
sponding bugs (Cook et al. 2006, 2007) that prevent it from doing
so. Hang bugs are not correctness bugs, and the techniques tofight
them need to be driven by a different model. Our hang analysistool
is complementary to previous work in the perspective of tackling
correctness problems.

There are also a rich set of existing work on performance de-
bugging. They aim at understanding root causes, and many of them
rely on techniques to extracting patterns. There are numerous per-
formance analysis tools (Aguilera et al. 2003; Chen et al. 2004;
Barham et al. 2004; Chanda et al. 2007; Liu et al. 2008) for event
tracing and performance profiling. In addition, machine learning
techniques (Wang et al. 2004; Yuan et al. 2006; Basu et al. 2007)
can be applied on traces for pattern extraction. These work are not
directly related to our study, but the pattern extraction techniques
and potentially some of the patterns extracted can be used inour
hang analysis work.

9.3 Static Analysis

Many existing static analysis tools catch bugs such as resource leak
and invalid use based on system-specific rules or patterns (Engler
et al. 2001; Hallem et al. 2002; Larus et al. 2004). Our analysis
system focuses on the problem of hang, but can also leverage these
tools for a more complete diagnosis.

Our framework relies on a few techniques at the next level. In-
consistency inference via property propagation is used to compute
the condition of blocking invocations (e.g. may-remote). This is
similar to taint analysis that finds system vulnerabilities(Shankar
et al. 2001; Martin et al. 2005) such as SQL injection. Our may-null
analysis is related to null-deference analysis (Hovemeyerand Pugh
2007; Dillig et al. 2007).

We use annotations to inject expert knowledge into the hang
analysis system. Annotation languages such as SAL (Hackettet al.
2006) and Deputy (Zhou et al. 2006) are effective to specify spec-
ifications and find system bugs. We use SAL for building monitor-
ing and analysis tools. Our patterns for finding bugs can contribute
to the annotation languages to specify additional specifications for
functions, e.g. blocking conditions.

10. Conclusion
Soft hang is a widespread defect that plagues many software sys-
tems. This bug type is not correctness related, but harms user expe-
rience in desktop applications as well as degrades performance of
server software. This paper presents a simple and effectivemodel
that defines the hang issue: a hang occurs when time-criticaloper-
ations invoke blocking calls. We have built several tools and evalu-
ated against several large, real-world applications. The results show
that our static analysis tool is effective to uncover hang bugs with
an acceptable false alarm rate. To the best of our knowledge,this is
the first work that addresses the issue of hang at this scale.

Our study also yields a number of insights of the causes of
hang. One of the dominant causes is that the legacy storage API
hides the fact that the underlying storage may be remotely mounted.
While backward compatibility is always important, the costis cre-
ating more opportunities to obscure the fact that invocations can
be blocking. Compounding the issue further, modern software typ-
ically reuses existing external libraries. Calls into library interfaces
that may hide blocking invocations reside many layers belowwithin
the libraries. A lack of clear knowledge about the timing specifi-
cations of these library APIs is another source of hang bugs.We
have discussed various code refactoring principles and techniques,
as well as automatic and transparent runtime fix for legacy soft-
ware.



We are actively pursuing this line of research further. In par-
ticular, we are investigating more efficient and scalable analysis
to compute hang bugs more precisely, and pattern extractiontech-
niques to automatically synthesize conditional blocking patterns.
We are also continuing to understand more complex interactions
among processes that result in responsiveness issues.
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