Hang Analysis. Fighting Responsiveness Bugs

XiWang' Zhenyu Gué

Haoxiang Lirt

TTsinghua University

Abstract

Soft hangs an action that was expected to respond instantly but in-
stead drives an application into a coma. While the appbcatisu-

ally responds eventually, users cannot issue other rexjudste
waiting. Such hang problems are widespread in productteitys
such as desktop applications; similar issues arise in spregrams

as well. Hang problems arise because the software contmiok-b
ing or time-consuming operations in graphical user intefg@G UI)

and other time-critical call paths that should not.

This paper proposes ANGWIz to find hang bugs in source
code, which are difficult to eliminate before release byingst
as they often depend on a user’'s environmemNEWIz finds
hang bugs by finding hang points: an invocation that is exgkct
to complete quickly, such as a GUI action, but calls a blogkin
function. HANGW1z collects hang patterns from runtime traces
supplemented with expert knowledge, and feed these paftdma
static analysis framework that searches exhaustivelydinglpoints
that involve potential hang bugs.

Experiments with several large, real-world software pgeka
(including a source control client, a graphics editor and ebw
server) show that there are several hang bugs in these atmtis,
and that ANGW Iz is effective in finding them. The experiments
also demonstrate thatA#icWIz is scalable and can analyze mil-
lions of lines of code. We further discuss related techrsgaied
report our experience on fixing hang bugs.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Diagnostics; D.4.Dderating
Systerh Organization and Design; D.4.80perating Systen
Performance

General Terms Experimentation, Performance, Reliability

Keywords hang, responsive invocation, blocking invocation, in-
teractive performance, responsiveness, program analysis

1. Introduction

Almost every user of modern computer software has had the an-

noying experience of the unresponsiveness problem knowofas
hang In such scenarios, a mouse click suddenly drives an applica
tion into a coma, and the operating system (OS) may declare th
application to be “not responding”. The application veillentually

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’08, April 1-4, 2008, Glasgow, Scotland, UK.
Copyright(© 2008 ACM 978-1-60558-013-5/08/04. . . $5.00

Xuezheng Lidi
Xiaoge Wang

Zhilei Xuf
Zheng Zhan§

tMicrosoft Research Asia

return to life. However, during the long wait, the user caithez
cancel the operation nor close the application. The userhaag
to kill the application or even reboot the computer.

The problem of “not responding” is widespread. In our expe-
rience, hang has occurred in everyday productivity toalshsas
office suites, web browsers and source control clients. Thiers
that trigger the hang issues are often the ones that userstérpe-
turn instantly, such as opening a file or connecting to a @rimts
shown in Figure 1(a)TortoiseSVN repository browser becomes
unresponsive when a user clicks to expand a directory node of
remote source repository.

The causes of “not responding” bugs may be complicated. An
erroneous program that becomes unresponsive may coni@ilh de
locks (Engler and Ashcraft 2003; Williams et al. 2005), iitén
loops or many other correctness bugs that relate to the gobl
of termination (Cook et al. 2006, 2007). However, a largegaty
of responsive problems, such as #uft hangthat we will address
in this paper, ar@ot triggered by such correctness bugs. Consider
the case oTortoiseSVN repository browser we just described. Fig-
ure 1(b) illustrates a snapshot of the call stack of the ugerface
(UI) thread, where the Ul thread synchronously invokes &eioc
API function connect to establish a network connection to a re-
mote source repository. Since the Ul thread waits for thernedf
connect, further message processing such as the Ul rendering task
is blocked. This is the reason that it stopped respondingueder,
the Ul thread will be unblocked eventually when #wnect call
timeouts or completes. This is not a correctness bug. Yeiatld
most certainly be rewritten to be more user-friendly. Thpliap-
tion should have performed network communications in arsepa
thread, popping up a dialog box to indicate the status angress,
and optionally allow the user to cancel the operation.

In addition to GUI applications, similar hang problems et
in a broader range of systems, such as event-driven sermdrs a
chained filters. An event-driven server should avoid blogkon
long-running operations; if there is such an operation ireant
handler, subsequent operations such as accepting newatiomse
and serving file contents cannot be processed until therlonging
operation completes. Such defects lead to responsivenasgms
and performance degradation (Pai et al. 1999; Elmeleegy. et a
2004). Similarly, in the case of chained filters, the enea-la-
tency may also become significantly worse if an intermedititsr
performs an operation that takes a long time. This is uscalised
by third-party extensions or plug-ins that can slow downsystem
and cause responsiveness problems (Basu et al. 2007).

In this paper, we consider the particular category of respen
ness bugs that generally involwe correctness problems, namely
hangbugs. In such abnormal cases, a program blocks on an opera-
tion that consumes a perceptible interval to finish, and cesear-
ily prevents subsequent critical operations from beingcessed.
This can lead to the loss of responsiveness and poor useri-expe
ences, or even degradation of performance. Hang bugs anebec

Il

TR TortoiseSVN | wWinMain

OS'detects the unrgspon_sweness CRepositoryTree: :OnTvnItemexpanding
CRepositoryTree::LoadChildItems
SVN::Ls

subversion | svn_client_1s3

svn_client_list

svn_ra_get_dir2
svn_ra_dav__get_dir
svn_ra_dav__get_props
svn_ra_dav__parsed_request_compat

neon | ne_request_dispatch
ne_begin_request
ne_sock_connect

| 00

(o)) | connect

(a) TortoiseSVN repository browser (not responding). (b) A snapshot of the Ul thread’s call stack.

Figure 1: A simple hang case dfortoiseSVN 1.4 repository browser. When a user clicks in the tree viewxpand a directory node
of a remote source repository, the Ul thread calls back toethent handler functiortRepositoryTree: :OnTvnItemexpanding in
TortoiseSVN, which eventually invokes a blocking socket API functiosnnect. Thus, its Ul stops responding and the application hangs
during network communication.

ing one of the most significant issues. A recent survey by the M e We implement a hang analysis systemN&Wiz, and report
crosoft Office team has indicated that user complaints about hang our experience on analyzing various large, real-worldveafe.

bugs are nearly as frequent as complaints about crashes. We also discuss related techniques and design principles to
Hang bugs are difficult to eliminate before release. In thet hu solve hang problems.

for the cause of hang, we lack effective tools. We are aware of

the testing approach that catch abnormal states when acsitiwo The rest of the paper is organized as follows. Section 2 ptese

takes longer than a pre-specified period. While useful dthaum- the hang model and Section 3 illustrates the architecturerdfiang

ber of drawbacks. First, tests in the lab do not cover all cdsat analysis system. Section 4 describes our hang analysistalgo

trigger hang bugs due to complicated interactions betweed-m while Section 5 explains implementation details. Secticvélu-
ules in several threads. More important, hang bugs are sftan ates our hang analysis system on various software. We report
sitive to environments, e.g. special inputs and networlditams, experience in Section 7, and further discuss extensionsdtidh 8.
which are hard to reproduce. Static analysis tools that rhatest We survey related work in Section 9, then conclude in Sedtn
all call paths do not have the vulnerability of a limited tegtenvi-

ronment. However, the lack of a formal model of hang bugs bas s

far hindered the use of static analysis. 2. Model

To the best of our knowledge, this paper is the first to address |n this section, we present our hang model to describe dpesat
the issue of soft hang in real-world applications. As we déiinon- that may cause hangs. We consider invocations, i.e. cafle
strate, instead of relying on testing to uncover hang bugsiallect tjons, as the basic unit of operations, since the next lezeper-

patterns as expert knowledge, which are fed into a modelaiiat ations such as memory access and computation statement-are u
static analysis framework uses to find hang bugs. We belle® t |ikely to cause hangs. Extensions are discussed in Section 8

it has established the foundation of defining an ecosysteeretdy As discussed in Section 1, there are some time-criticaldavo
we can gradually increase both accuracy and coverage. tions that should or are expected to complete in a timelyidash
o in some specific contexts (e.g. invocations in the Ul threSdgh
11 Contributions invocations argesponsive invocationd/eanwhile, there are some
In this paper, we identify the problem of hang and discush-tec time-consuming invocations that would block for a perdalptin-
niques to solve it. Specifically, we make the following cémnir terval (e.gconnect). Such invocations atglocking invocationslf
tions. the call path of a responsive invocation contains a blockingca-

tion, this will produce a hang. In other words, a hang is ueces
 We propose a general hang model to describe this particatar ¢ if a responsive invocation (as expected by design) meetsckibig
egory of responsiveness bugs. Based on the model, we collectinvocation (as manifested by the runtime system). Our msidets
patterns as the generalization of hang cases found indesstich by defining responsive patterns and blocking patterns thuoape-
client-side traces. Such patterns can also be specifiedrbgido ~ sponsive invocations and blocking invocations, respebtiv
experts.

¢ We present an extensible framework to perform a precise and 21 Responsivelnvocations

scalable static analysis on source code to find hang bugd base Responsive invocations are domain-specific, such as itieosa
on collected patterns. Our approach has successfully zethly to message processing methods in GUI applications and tbose
software up to one million lines of code while having an atcep event handlers in event-driven systems. The responsiveefso
able false positive rate. propagates down along the call graph: if an invocation tanation

needs to be responsive, then all invocations inside thetitmto
other functions should also be responsive.

As in Figure 1,wWinMain is the entry of the Ul thread. So
that the invocation to one of its callees, the GUI message pro
cessing metho@RepositoryTree: :OnTvnItemexpanding that
is responsible to expand a directory view, should be respens
Therefore, the invocations deep down the call graph to fanst
such agonnect are also responsive in this thread. On the contrary,
if connect is called in a separate thread other than the Ul thread,
the invocation is not responsive since its callers are regorsive.

We collect responsive patterns that capture these resgoinsi
vocations. Here is a common responsive pattern for GUI eapli
tions.

PATTERN 2.1. An invocation to any function in the Ul thread is
responsive.

Similarly, we can specify more responsive patterns for rothe
systems to capture domain-specific responsive invocatsueh as
invocations to event handlers or filters.

2.2 Blocking Invocations
On the other hand, blocking invocations may synchronousty ¢

sume much time to finish. They can be invocations to sleep and

wait functions, networking and inter-process communaratj in-
teractions with intensive I/O or computations, etc.

We collect blocking patterns to capture blocking operation
Here is a blocking pattern for the socket API functiethnect
in Figure 1.

PATTERN 2.2. An invocation toconnect is blocking.

Note that in this work, we consider blocking APls only and ig-
nore other runtime performance problems caused by OS side ef
fects such as paging/swapping. An API is blocking if theristsx
a worst case scenario that prevents the calling logic frorkimga
progress until timeout. In the above example, if the netwank-
ronment is perfect, the operation will complete shortly anaser
does not feel a lag. However, if the connection endpoint isrov
wide-area or is simply down, this is a blocking call.

Blocking patterns such as Pattern 2.2 are unconditioney;, dio
not depend on calling contexts or function parameters, amaya
identify blocking invocations. However, some invocationay be
blocking or not in different contexts, i.e. they are semsito prop-
erties of function parameters or other contexts. Consideneo-
cation to the Win32 API functioGetFileAttributesW (or the
POSIX API functionstat) that retrieves file information. It may
be blocking, if the file path is remote (e g\server\directory\file);
or it may be instant, if the file path refers to a local-disk {iéeg.
application configuration file). The latter case should henpd. A
naive unconditional blocking pattern that states all imt@ns to
GetFileAttributesW or stat are blocking will cause too many
false alarms.

We introduce a more precise category of blocking patterns,
namely conditional blocking patterns, which are attached with
blocking conditions on parameters. For example, since géth
that reads from user inputs (e.g. a file-open dialog) may inote,
we can specify a conditional blocking pattern as follows.

PATTERN2.3. Aninvocation taGetFiledttributesiis blocking
if the file path is may-remote.

The pattern places a restriction on the parameter for thpdile,
S0 it captures fewer and more precise invocations comparad t
unconditional counterpart. The may-remote property itePat2.3
can also be applied to other blocking patterns of file openadiPI
functions.

GIMP

void file_open_dialog_response (GtkWidget *open_dialog, ..

DR
uris = gtk_file_chooser_get_uris (GTK_FILE_CHOOSER (open_dialog));
for (list = uris; Llist; list = g_slist_next (list)) {

gchar *filename = file_utils_filename_from_uri (list->data);
if (g_file_test (filename, G_FILE_TEST_IS_REGULAR))

l GLib | g_file_test(filename)

l Win32 | GetFileAttributesW(filename)

l kernel ‘

W network connection (filename is remote) . 4
[N €
% g

Figure 2: A more sophisticated hang caseG@MP when a file
opens after a user inputs or selects a file in a file-open dialog
The code snippet usually does not cause hangs. Howeverséra u
inputs a remote patliilename that is passed tg_file_test,
GetFileAttributesW and eventually processed by the kernel,
the kernel will establish network connections, take someetto
communicate over networks and prevent subsequent opesatio
such as Ul rendering; thus the application may hang.

In fact, an unconditional blocking pattern can be thought of
as a special blocking pattern, predicated by a Boolean avalu
tion that will always turn out to be true. There is a wide cate-
gory of conditional blocking patterns. Table 1 lists somearax
ples.Sleep(0) is a popular trick to perform a yield and it does
not block.TransmitFile performs asynchronous I/O operations
and does not blockf the 1pOverlapped parameter is non-null.
We use conditional blocking patterns to prune the caseslthabt
meet their blocking conditions to reduce false alarms.

2.3 HangBugs

To discover hang bugs, we analyze source code, using régpons
and blocking patterns to compute responsive and blocking-in
cations, respectively. Invocations in their intersectwe potential
hang bugs. In other words, a hang bug is an invocation thattis b
responsive and blocking.

For a simple example, as in Figure 1, assume that we have
Pattern 2.1 that an invocation to any function in the Ul tdrea
is responsive, and Pattern 2.2 that an invocatiordanect is
blocking. Since the invocation teonnect is in the Ul thread, it
is responsive; while the invocation tnnect is also blocking.
This is a hang.

Figure 2 gives a more sophisticated hang case. Again, assume
that we have Pattern 2.1 that an invocation to any function in
the Ul thread is responsive, and Pattern 2.3 that an invatat
GetFileAttributesW is blockingif the file path is may-remote.
As the stringuris returned bygtk _file_chooser_get_uris is
from an input dialog outside the program, it is may-remotee T
may-remote property can be propagatedfidename via list,
such thatfilename is also may-remote. Since the invocation to
file open_dialog response is in the Ul thread, the invocation
to GetFileAttributesW is responsive; while the invocation to
file open_dialog response with a may-remotefilename is
blocking. Thus itis a hang bug.

Section 4 will give a detailed description of the analysigoal
rithm to compute responsive and blocking invocations fodifig
hang bugs.

3. Architecture

Figure 3 illustrates the overall architecture of our hanglgsis
system FANGWIz, which consists of the following components.

property | example | brief description | blocking condition

may-remote | GetFileAttributesW(get file information 1pFileName IS remote
1lpFileName)

may-nonzero| Sleep(sleep for an interval dwMilliseconds IS honzero
dwMilliseconds)

may-null TransmitFile(send file data over a socket asynchronously,pOverlapped is null
...,1lpOverlapped,...) | or synchronously ilpOverlapped is null

Table 1: Examples of conditional blocking pattergstFileAttributesW, Sleep and TransmitFile are Win32 API counterparts to

POSIX APlstat, sleep andsendfile, respectively.

Event
Traces

P
Pattern
L Extraction

Domain
Knowledge

Responsive &
Blocking Patterns

Static Code
Analysis Refactoring

Figure 3: Architecture of the hang analysis system.

Hang Bugs
(ranked)

Runtime
Cure

e Pattern extraction.This step collects crucial patterns for the
later stage to identify responsive and blocking invocation

Responsive Patterns Blocking Patterns

All-Invocations Responsive-Invocations Blocking-Invocations Hang-Invocations
Computation Computation Computation Post-Processing

Figure 4: Stages of the hang analysis algorithm.

callee) can be viewed as a database relation in the formTF.
For two functionsf andg, f callsg if and only if (f, g) € call.
First, a compiler plug-in extracts thel! relation from source

These patterns can be specified by developers or testeg usin code: at each call site, it emits the corresponding pair ¢afigr,

their expert knowledge based on event traces of running soft
ware. These patterns are independent of specific applisatio
and are applicable to analyzing other software systems.

Static analysisThis is the heart of our hang analysis system and
also the focus of this paper. We first extract the set of abdav
tions from source code via a compiler plug-in. With the irgput
of the responsive patterns and blocking patterns, we reithece
set of all invocations into responsive invocations and kilug
invocations, respectively, and compute the interseciitwe. fi-

nal result is a set of approximation of hang bugs.

Cure and refactoringThe output of the previous stage is a hang

bug report. Generally speaking, hang bugs should be fixed by

code refactoring. From our experience of identifying hangsh

in a number of large, real-world applications, we offer suemyn

of typical hang root causes and provide suggestions for.fixes
For legacy applications, code refactoring may not always be
possible. Thus, we have investigated techniques to curgshan
at runtime if a blocking invocation can be safely canceled.

4. Algorithm

The general idea of the algorithm is to start from all invamad of
a program, and to compute responsive invocations and Ipigcki
vocations based on their corresponding patterns. Theirgettion,
the set of hang invocations, is the approximation to hangbug
Figure 4 illustrates the stages of the analysis algorithisut
cessively prune invocations that are out of interest, uhicig:

1. all-invocations computation,

2. responsive-invocations computation,
3. blocking-invocations computation, and
4. hang-invocations post-processing.

4.1 Program Analysisas Database Queries

Our analysis leverages database techniques. Considepke st
ample, to compute the set of functions that #tagn function can
reach. LetF be the set of all functions. Aall relation (caller,

callee). After constructing theall relation, to compute the func-
tions thatmain can reach turns out to berecursivequery over the
call relation.

Reach = {f|(main, f) € call}U{f|3g € Reach : (g, f) € call}

Note that the definition of the queigeach depends on itself, so it
is recursive.

Such queries can be expressed in a logic programming lan-
guage. A logic database can solve the queries over corrésmpn
database relations and produce new resulting relatioexif&ally,
our analysis is expressed in the Datalog query languagenéil
1989). Datalog enables recursive queries and can be evdliat
polynomial time. It is efficient for large databases and papfor
program analysis (Reps 1994). Datalog evaluation and ag#im
tion techniques are beyond the scope of this paper; pleésetoe
(Ullman 1989; Whaley and Lam 2004) for details.

Thus, performing analysis to a program is converted to the
practice of constructing database relations and applyingrigs
over them. This is how we will describe our algorithm in thstref
this section. To avoid introducing the syntax details of Btz¢alog
query language, we use the set notation as above in our @alys
We use the termsetandrelationinterchangeably. Note that the set
notation isnot formalization but database queries over relations.

4.2 All-Invocations Computation

First of all, we compute a call graph for all invocations aes biasis
for subsequent computations. As discussed in Section 2uhca
tion parameter may have a property that depends on specific co
texts, e.g. a file path can only be may-remote on specific atttig
An invocation with such a parameter, e@@tFileAttributesW
with a file path, may be blocking or not on different callinghea
To precisely analyze these cases, we should compute therfiesp
on individual call paths. In other words, we need a contexisgtive
graph.

We adopt a cloning-based context-sensitive analysis (gyhal
and Lam 2004) to construct a context-sensitive call graphhis
method, we first compute an initial context-insensitive gehph,
as shown in the left graph in Figure 5. Then, strongly coretect
components (i.e. direct or indirect recursive calls) ackioed into
one node, and a clone is made for each new context. Thisigélyct

Figure 5: Example of cloning-based construction of a cdntex
sensitive call graph. The left graph is a context-insersitall
graph. The right graph is a context-sensitive call graph &k call
paths expanded.

transforms a context-insensitive call graph to an expawotedhat

is context-sensitive, as shown in the right graph in Figurtn®a
context-sensitive call graph, we can distinguish funcparameter
properties on each clone and perform a more precise anatysis
reduce false alarms.

However, the cloning-based approach would lead to a large
number of calling contexts. The key to achieve scalabiitipirep-
resent this exponential call graph as database relationpactly
with an efficient data structure. Binary decision diagranb(B
(Bryant 1986) is widely used for this purpose. It has beensmo
to successfully analyze large programs u@ts 10> paths in a
context-sensitive call graph using a BDD-based Datalogluete
(Whaley 2007).

We compute a context-sensitive call graph for each threimg)us
the cloning-based approach. For example, the root of theegh
of the main thread can be thein function for a C/C++ program.
The call graph yields the set of all invocatioA$l I vk, in the form
of tuples of(4, ¢):

e ; ¢ [is a call site where a function is called. The caller is the
function that contains the call site, denotedra&); while the
callee is the function being called, denoted?(s).

e ¢ € Cisacalling context. If there ane different call paths to a
function from the root, their calling contexts will be exjpkzu
fromO forn — 1.

Thus, each edge in a context-sensitive call graph represent
invocation (7, c¢). As in Figure 5, the call sités from d to e is
expanded agis, 0), (is, 1) and (is,2) in a context-sensitive call
graph. For each invocatidp, c), we can identify a unique call path
that reaches it from the root.

All subsequent computations are based9m) tuples from all
invocationsAllIvk.

4.3 Responsive-lnvocations Computation

This stage computes the subset of all invocations that are-ti
critical, i.e. responsive invocations. Each responsivedation has
one of the following attributes:

1. It is an invocation captured by a responsive pattern, visc
domain-specific.

2. ltis an invocation that can be reached from a known respens
invocation along a call path.

The initial set of responsive invocatiof@esponsivelvkg is
captured by a group of responsive pattefResponsiveRuley,

from all invocationsAllIvk. Then we perform reachability analy-
sis to compute the transitive closuResponsivelvk, in two steps
as follows.

Ry, = ResonsiveRuley(AllIvk)
Responsivelvko = U Ry
Responsivelvk = {(i,)| (i, c) € AllIvk
A3,) € Responsivelvkg : (i',¢') —* (i,¢)}

First, responsive patterns are specified as queries @yey
tuples. For example, Pattern 2.1 that an invocation to angtion
in the Ul thread is responsive can be specified as the follpwin

query.
Ry ={(4,¢)|(¢,¢) € AllIvk A 'H(i) = main}

Here we assume thatin is the entry function of the Ul thread,
and all invocations imain are the initial responsive invocations.

Then we can compute the set of all responsive invocations
Responsivelvk as the transitive closure &esponsivelvko, the
initial set of responsive invocations captured by resp@ngatterns
such asR;.

Let (i',c') —* (4, c) denote that invocatiofi, c) is reachable
from invocation (i, ¢’), i.e. there is a call path fronfi’,c’) to
(i, ¢) on a context-sensitive call graph. We perform a reachgbilit
analysis to find all responsive invocatiofi&sponsivelvk that
Responsivelvky can reach. Since the responsive property can
be propagated down along call paths(if, ¢') is responsive and
(7', ¢y —* (i, ¢), (i, c) is also responsive. We iterate to construct
Responsivelvk until reaching a fixed point.

*

4.4 Blocking-l1nvocations Computation

This stage computeBlockingIvk, the union of blocking invoca-
tions, in which each invocation is captured by some blockiat
tern Blocking Rule;,.

By, = BlockingRuley (AllIvk)
BlockingIvk = |] Bx

A blocking pattern is specified in the form of queries over
(i, ¢) tuples as two parts: a call to a specific function, and an op-
tional blocking condition on function parameters. Follogiare
two examples of blocking patterns: Pattern 2.2 that an iavoc
tion to connect is blocking, and Pattern 2.3 that an invocation to
GetFileAttributesW is blocking if the file path is may-remote.

B = {(4,¢)|(¢, ¢) € AllIvk A\ F(i) = connect}
By = {(3,¢)|(i, ¢) € AllIvk A F(i) = GetFileAttributesW
A (P(i,1),c) € may-remote}

We can see that the blocking pattern fesnnect is quite
intuitive, while a conditional blocking pattern such astBat 2.3
requires to specify additional restrictions on functiongmaeters to
capture blocking invocations precisely. Now we explain Itteer
one in details.

Let P be a map thatP(i,n) returns the variable of the-
th function parameter at a given call siteConsider an invoca-
tion to GetFileAttributesW at call sitei. P(i, 1) returns the
variable for the first parameter, i.e. the file path.(®(i, 1), c)
is in setmay-remote, i.e. the file path parameteP(i,1) in
calling contextc is may-remote, the invocation at call site
to GetFileAttributesW in calling contextc will be put in
Blockinglvk.

The question now is how to compute the sety-remote, a
set of variables that may be remote file paths in a contexgitben
way. ltis in the formV x C, whereV is the set of variables ard
is the set of calling contexts. We computeuy-remote as follows.

In addition to checking constant strings for file paths, wean
tate parameters or return values of certain functions asnerapte
(e.g. a function that reads and returns a string from usantsp
and estimate an initial set atay-remote variables. By following

up operations such as assignments, we propagate the mayerem

property from variables imay-remote to other variables, and it-
eratively put them inmay-remote, in a recursive manner. Take

Figure 2 for an example. Assume that by annotation we knotv tha

the return value ogtk_file_chooser_get_uris iS may-remote.
Thus uris with its calling context is in the sethay-remote,
and our computation incrementally adtlsst, 1ist->data and
filename with their calling context intonay-remote via propa-
gations. This process repeats until it converges.

In summary, conditional blocking patterns are evaluatethén
following steps.

1. Compute variables that have certain properties staftimm
function annotations, e.g. the return value is read fronvaik

or file. This step is required only for computing proprieties

call path. Fixing a hang gate limits the developer’s codaateir-

ing effort within its own logic. Interestingly, as we willlilstrate

through our experiments, hang gates are usually hot cab sis

well. This is in fact quite natural since hang gates are faters

and (often) entry points to the lower-level functions pomd by

external libraries. As in Figure Evn_client_1s3 is a hang gate
for the case iMortoiseSVN, while connect at the bottom is where
the hang would occur, in one of its external libraries.

4.6 Discussion

As we have discussed in Section 4.1, the analysis algorithm i
expressed as queries in a Datalog program.

e Responsive-invocations computation is a recursive queey o
call edges in a call graph. Responsive patterns providéesntr
of critical functions; our analysis computes invocatiomattare

reachable from the entries and prunes those that are out of

interest.

such as may-remote; other properties such as may-null can be e Blocking-invocations computation consists of recursiverigs

inferred automatically from source code.

2. Compute a set of variables that have the property via gapa
tions, e.g. variable assignments and parameter passing.

3. Combined with call site information, evaluate blockirandi-
tions of invocations by inspecting the property of corresting
parameters.

Similarly, we estimate sets in the fof¥hx C for other properties
such as may-nonzero and may-null listed in Table 1, and at@alu
corresponding blocking conditions. Most such propertashe di-
rectly inferred from code, so no annotations are requiresidies,
if a blocking pattern requires conditions on multiple paedens, it
can specify a conjunction of blocking conditions of the paggers.

45 Hang-Invocations Post-Processing

The intersection of responsive invocatioResponsivelvk and
blocking invocation®3locking vk is hang invocation# ang I vk,

our approximation to hang bugs. Each hang invocation is én th

form (i, ¢), a call site: in calling contexte, so we can identify a

hang call site with a call path that can reach from a root function,

€.g.main.

over dataflow edges (e.g. assignments, parameter padsorg).
blocking patterns conditioned on properties of parametrs
may-remote), our analysis propagates properties aloraglolat
edges.

A Datalog implementation will apply optimizations to theegies
automatically, and evaluate them efficiently to producgoesive
and blocking invocations. The intersection of these tws set
hang bugs.

We employ an interprocedural context-sensitive analysss.
we will explain in the evaluation section, a completely @t
sensitive analysis is neither practical nor required fogédareal-
world applications. The applications that we have examauedain
millions of lines of code. This poses serious challengegsims of
memory usage, even with an efficient logic database impleanen
tion. Motivated by the observation that a developer caresefes
about external libraries than main application logic, wed hy-
brid approach. Essentially, we perform context-sensitéimalysis
on the software internal code, and context-insensitivéyaizaon
external libraries that are deep down the call paths. Tlietodf is
that sometimes we will see more false positives, in the strate
properties such as may-remote are not propagated beyohditige

The results generate a hang bug report after a few more post-4iag.

processing steps. First, we merge hang invocations thabmre

the same call path, i.e. the same hang bug that is captured ong

more than one invocation by different patterns. We eithemuady

inspect a call path that leads to a hang bug or feed a call path

into more expensive analysis and testing tools (Ball andRaji

2002; Henzinger et al. 2002; Das et al. 2002; Xie and Aikerb200

Godefroid et al. 2008) to check its feasibility.
In addition, we rank hang bugs with the following significanc
factors.

In addition to false positives raised by the above practoal
traints, we may flag false positives for other reasons. @o-a
rithm is flow-insensitive, and it conservatively computall graphs
and propagate properties for blocking conditions. As sticare
can be no feasible paths that lead to a reported hang invocati
Besides, if blocking patterns are too conservative, i.esing pre-
cise blocking conditions, we may also report false hang bugs

Similar to previous static analysis work, we may miss some
hang bugs in practice, i.e. false negatives. They happeméan t

e Hot call site.If a call site causes hangs in several calling con- following cases.

texts, itis hot. Intuitively, if the hang bug at the hot categyets
fixed, more hang invocations get cured.

e Hot call path. Modern software may have integrated built-in

e Our collections of responsive pattern and blocking pattem
incomplete. A “sound” alternative is to specify non-resgiva
patterns and non-blocking patterns instead, and to prusseth

diagnosis mechanisms to monitor user actions. Some Ulractio
are triggered more often than others. This can be perceived

as feedback that gives weights to responsive invocatiamsh S
weight distribution assigns priority on which hang bugs to fi
first.

Modern software is composed by many modules and libraries. A

complete application often links its code with many extépek-
ages. A developer’s main interest is to fix bugs in the apptios
code. We defindhang gate the firstexternalfunction on a hang

invocations captured that obviously do not cause hangs.-How
ever, this alternative is infeasible and nonintuitivecsimeither
experts nor tools would be able to collect such patterns. &ve b
lieve that our approach allows incremental addition of gratt
collection and refinement once the system is tested in tHe rea
world, and thus it will become more complete over time.

Evaluating blocking conditions for some conditional blimck
patterns relies on computing sets likay-remoteThis requires
annotations on function parameters or return values ofgsrop

executables LOC
version | main plug-ins| internal external total brief description
TortoiseSVN 145 5 1 254K 918K 1.1IM| network client
GIMP 24.0 1 167 864K 198K 1.0M | graphics editor
lighttpd 1.5.0 1 42 62K 311K 0.3M | web server

Table 2: Benchmarks. The “executables” columns list thelmnsiof main programs and plug-ins. The “LOC” column liste§ of internal
code, external dependent code and those in total.

analysis reported false hangs
time invocations| alarms| invocations gates
TortoiseSVN 17m30s 229 77 152 26
GIMP 1h29m57s 69 35 34 10
lighttpd 3m19s 33 9 24 10
Total - 331 121 210 46

Table 3: Experimental results.

ties like may-remote. If the annotations are incompletemag
miss corresponding hang bugs.

For a practical tool that needs to deal with large, compléi so
ware package, our implementation has to make a few com-
promises. For instance, we track function pointers interer
durally with a best-effort approach. To avoid too many false
alarms, we also ignore any unresolved call sites insteag-of a
suming that they will be calls to any functions. These compro
mises will lead additional missing hang bugs.

A traditionally difficult problem of practical static analig tools

is to capture implicit invocations, such as callbacks frqrarat-

ing systems, dynamic loading techniques (e.g. sharedilisra
and reflections). It requires additional efforts to captilrese
implicit invocations for a more complete call graph, e.gat
notate on functions or to perform reflection analysis (Litsh

et al. 2005). Thus, we may compute an incomplete call graph
on unresolved call sites and miss some invocations thahiavo
hang bugs.

For open programs such as plug-ins, the callee code is missin
Consequently, the call graph is also incomplete in suchscase

alog implementation based on binary decision diagramsthat
been proven to scale to large programs.

As discussed in Section 4.6, our analysis algorithm reguire
annotations to compute setay-remote for variables that may be
remote file paths, and to capture implicit callbacks fromrapeg
systems. Besides manual effort, we also obtain such amgat
from Windows header files, since most of them are well anadtat
using the Standard Annotation Language (SAL) (Hackett et al
2006).

6. Evaluation

We apply our hang analysis systemaiticW1z to a number of large
applications summarized in Table 2. These applicationkidec
both main programs and plug-ins. Our experiments are caeduc
on a Windows Server 2003 x64, with Intel Xeon 2.0 GHz CPU
and 32 GB memory. As the Datalog implementatiatdbddb we
used is implemented in Java, we specify the maximum heafbgize
command-line parameters to reduce garbage collectionfoma
better performance.

We will describe the responsive patterns used in the exgertisn

We can compute a more complete call graph for open programs individually. We use 102 blocking patterns (53 uncondisiband

using domain-specific expert knowledge.

5. Implementation

We use thePhoenix compiler framework (pho) to analyze pro-
grams and dump their intermediate representations (IRPM&nix

enables us to analyze C/C++ sources and C#/.NET bytecode, we,

develop a back-end plug-in to extract database relatiosschan

49 conditional) in these experiments. As we have discudbey,
are general and independent of applications.

Our results are summarized in Table 3, including the amalysi
time, the number of reported hang invocations, false alahasg
invocations and the corresponding hang gates. Overaliethe-
plications are very large and contain millions of lines oflepwe
have succeeded in finding many hang bugs and the false gositiv
rates are moderate.

For each experiment, we summarize top hang gates , including

thePhoenix IR, including variable assignments, memory accesses, the number of call paths that reach a gate, the function nares

invocations, parameter passing, and other instructions.

In our current implementation, responsive patterns areifipe
by experts. Blocking patterns are collected from two sosirsar-
veys by product teams provide frequent blocking patterng/on
dows; we also inspect suspicious runtime traces that caaisg h
problems on several popular desktop applications such e®kbift
Office, and manually extract blocking patterns from them. Block-
ing conditions for conditional blocking patterns are farthefined
by experts based on API reference documentations.

Responsive patterns, blocking patterns, and our analigis a
rithm described in Section 4 are all expressed as Datalogesue
We solve them over database relations extracted from scode
using thebddbddb database (Lam et al. 2005), an effective Dat-

hang gates, and the blocking patterns that capture theatieos
at the bottom of call paths. We also report the call depth feom
top invocation to a gate and the remaining call depth to aobott
invocation on a call graph (denotedag_L).

6.1 Network Client: TortoiseSVN

TortoiseSVN is a popular source control client software. It contains
several GUI applications to synchronize between local wmork
copies and their remote repository sources, and to supploer o
file operations such as merge and diff. In addition, it presic
shell extension as a Microsoft COM component that plugs into
Windows Explorer. As a typical network client, it is multireaded,

hit | gate [bottom | T/L hit | gate | bottom [T/L
24 | svn_client_open_ra_session | connect 377 28 | g_file_test_utf8 GetFileAttributesw | 4/1
17 | svn_client proplist2 connect | 3/8 1 | FcFontLlist readdir 3/8
15 | svn_client_cat2 connect 5/8 1 | FcConfigAppFontAddDir | readdir 2/8
Table 4: TopTortoiseSVN hang gates. Table 5: TopGIMP hang gates.
and operates on files on local disks and communicates witbteem hit | gate | bottom | T/L
servers. 6 | getaddrinfo getaddrinfo 4/0
TortoiseSVN depends on the portabl8ubversion library, 5 | readdir readdir 3/0
which further relies on numerous other software packagetyd- 5 | 1dap_simple_bind_s | gethostbyname | 2/9
ing Apache Portable Runtime an@penSSL. These libraries con-
tain more than 900K lines of code, and the complete apptinati Table 6: Toplighttpd hang gates.
has more than 1.1 millions lines of code.
We use Pattern 2.1 (an invocation to any function in the Ul
thread is responsive) as the responsive pattern for the Glica- rectories and loading fonts, captured by the POSIX API fianct
tions. Windows GUI applications have a fairly standard citice, readdir that is used to read all entries in a directory in a loop. We
and we add implicit callbacks to Ul message processing mdstho consider an invocation teeaddir as blocking, because its run-
from the Windows operating system. For the shell extensian, ning time highly depends on the numbers of entries in a dirgct
mark invocations inside the public interface methods apaes in outer environments, which is non-deterministic. Thisvisy it
sive. We have found 152 hang invocations at 26 hang gates. Toptakes rather a long time to st&tMP if a number of fonts are in-
hang gates are summarized in Table 4. stalled, which causes the splash window unresponsive.
All the hang gates capture network invocationJ tntoiseSVN There are 35 false alarms. Similar to thos@amtoiseSVN, they

Ul threads. This is what we have shown in Figure 1: clicking to are also mostly caused by invocationsGitFileAttributesW.
expand a repository tree would cause a hang. We follow tHe cal Consider the following code snippet GTK+-.

paths and find another more serious problem: refreshingen th
repository browser would make it become unresponsive fonetm
longer time, even up to several minutes.

There are 77 false alarms, most of which are due to invoca-
tions toGetFileAttributesW with a file path from outer envi- Since g_home_dir is read from an outer environment variable
ronments. While we consider file paths from outer envirorisien HOME, itis may-remote. Later it is passed into functigrfile_test
as may-remote, and according to Pattern 2.3 all invocations that subsequently calBetFileAttributesW. It will hang if the
GetFileAttributesW with a may-remote file path are blocking, environment setd0ME as a network path, which may happen in
we reported such invocations as blocking. Actually, pgt8ources an intranet. However, as this is of low probability in praetiwe
at a network path may cause hangs. However, it rarely hagpens classify them as false alarms. Again, once we inspectedattie, Gt

g_home_dir = g_strdup (g_getenv ("HOME"));
if (!(g_path_is_absolute(g_home_dir) &&
g_file_test(g_home_dir, ...)))

practice; users usually keep a working copy on local dis&teind. was easy to remove such false alarms.

We manually re-classify these reported hang invocationilas .

alarms. All these false alarms were easily identified onceesé 6.3 Web Server: lighttpd

ized the semantics of the file path. The lighttpd web server is fast and flexible to serve millions of

N pages per day. It is widely deployed to power many Web 2.8 site
6.2 Editor: GIMP includingMySpace.com andYouTube.com. To achieve high scal-
GIMP is a popular graphics editor available on many platforms. It ability and performance, it adopts a single-process, esenén
contains a main program and many plug-ins that enhancernts fu ~ (SPED) architecture. Its execution requires neither carswitch-

tionalities. It is built based on the portab@Tl K+ toolkit and re- ing nor synchronization. However, a SPED web server has a ma-
lies on a number of external libraries. We have analy@llP jor disadvantage: if the underlying operating systems peddent
and parts ofGTK+ that provide system-related utilities, ignoring libraries do not provide support for asynchronous openatithe
rendering-related external libraries that do not countikénTor- synchronous substitutes will block the process and leadds |
toiseSVN, GIMP’s own logic is the majority, containing more than of performance (Pai et al. 1999). In this experiment, we stive
800K lines of code; the complete application has about lignill gate such synchronous operations, i.e. blocking invoestised in
lines of code. lighttpd.

Since GIMP is a GUI application, we again use Pattern 2.1 Like many other web serverighttpd is composed of dozens

as the responsive pattern, with seven additional rules perex of module plug-ins that can be dynamically loaded. The cetepl
knowledge to capture callbacks to Ul processing methods fro application has more than 300K lines of code, includingntlie
GTK+. Because there are almost no networking operations in a libraries ofOpenLDAP andMySQL.

desktop editor such aSIMP, we did not expect there would be Each module provides an entry function to register event han
hang bugs. Surprisingly, we have found 34 hang invocatioi® a dlers. In a SPED web server, all invocations there can bederesl
hang gates. Top hang gates are summarized in Table 5. as responsive. Thus, we mark invocations in all handlersate
GTK+ API functiong_file_test_utf8 holds the first place, registered in the entry functions as responsive, sincestagr no
which further calls to Win32 API functioBetFileAttributesW explicit calls from the main program to plug-ins. We haverfd24

or POSIX API functionstat. As in Pattern 2.3, it causes hangs hang invocations at 10 hang gates. Top hang gates are surechari
in Ul threads when a given file path is may-remote. In facts thi in Table 6.

is a common problem for desktop editors: to input a netwokk fil Among the hang gategetaddrinfo is a POSIX API func-
path would cause hangs. Other two hang cafentList and tion that synchronously resolves a DNS hostname and IP ad-
FcConfigAppFontAddDir may cause hangs when scanning di- dresses, so that it would cause hangs. T&wldir function is

hit | pattern

43 | GetFileAttributesW
41 | connect
6 | getaddrinfo

| brief description
Pattern 2.3

Pattern 2.2

POSIX API function

Table 7: Statistics of top effective hang patterns.

similar to the cases ilGIMP. Another source of hang bugs is
blocking invocations to functions in external librariesick as
ldap_simple_bind s in LDAP.

There are nine false alarms, due to false blockingnect in-
vocations. While a bloated set of socket API functions on Win
dows (e.gioctlsocket, WSAAsyncSelect) will set a socket into
non-blocking mode automaticallypnnect on a socket after these
functions would not block. We conservatively considekalinect
invocations as blocking, and thus we may report false alaams
connect. A better version would perform flow analysis to refine
the blocking condition otonnect and prune such invocations.

6.4 Experience

We have mentioned in Section 4.6 that we employ a hybrid ap-
proach that applies context-sensitive and context-inisemsnal-
ysis to an application’s code and external libraries, retyaly.
Context-sensitive analysis is precise; and we did not ahdbe
hybrid approach as an accident. Even with the efficient B2Bedl
Datalog implementation, our first attempt to apply contesitive
analysis over the complete application has failed. In scmses, we
ran out of memory on the 32 GB memory server. Though a BDD
can represent relations compactly in general, its sizeuallyssen-
sitive to BDD variable orders; some “bad” order would leacgto
exponential size as well. However, finding an optimal ordean
NP-complete problem (Bryant 1986).

As reported earlier, the hybrid approach does bring sonse fal
positives, but still at an acceptable rate. To improve thadadslity
for a precise and complete context-sensitive analysisqtires
extra efforts to find a better BDD variable order for BDD-bdise

were local. Transparently supporting legacy storage I/QsAP
that work over networked file path has its cost. Unawarenkss o
such may-block APIs is another dominant source of hang. It is
even worse to perform such testing while a user is intergctin
with an application. For instance Eclipse JDT, when creating

a project whose directory is remote mounted, it will cause
hang every time a user presses a character when inputing the
directory path.

Loading or saving filesMany editors try to load and save files

in Ul threads. After all, this is the most convenient place to
code in such logic. This is not an issue for small files, but wil
most certainly generate hangs when the format is complex to
parse, or afile is large and stored on a slow device or a remote
machine over networks. Besides, an editor often employs an
extensible structure that enables plug-in modules to stippo
more file formats. These modules may come from third parties,
and expose the application to the similar level of resp@mses
risks. Some recent editors such as the latest Micr@fite do

the job in a better way. They load files in a separate thread and
pop up a dialog box indicating the status with a cancel button

In our current implementation, most blocking patterns foon

OS-level API functions, such as the patterns listed in Tabl#
high-level API functions are similarly attached with blads pat-
terns, we will arrive at a more scalable solution since engtion
can stop at these function calls. However, high-level hjpraPI
functions may involve more complex blocking conditions.n€o
sider the followingSubversion API function.

svn_error_t *
svn_client_status(...

, const char *path,
, svn_boolean_t update,

..., svn_client_ctx_t *ctx,
)

It retrieves the status of a working copy fieth; if update is

true, it connects to the repository specified dnx. It may block

if the working copypath is remote,or update is trueand ctx
database queries, particularly for analyzing C/C++ codes Will represents a remote repository. Such a blocking patteralsarbe
be addressed in future work. expressed in Datalog and solved by a logic database. Howeiger

We inspect the most effective hang patterns, i.e. the top API not practical to enforce developers to specify the blockimagition
functions that cause the most hangs in our experiments fr@m T for every API of their libraries. Thus, our future work withdk into
ble 7, and find some interesting results. automatic specification synthesis for high-level API fuoics.

o Implicit blocking specifications of high-level library ARTon- . .
temporary large software packages depend on a great number/- D€aling with Hangs

of external libraries. This is the casedl three applications we Once hangs are discovered, they must be fixed. Refactoritig co
have examined. A subtle problem is that certain blockingfun s the most fundamental approach, and it calls for soundngpdi
tions such agonnect can be hidden deep down the call paths discipline as well as correct architecture. For legacy iapfibns,
insideexternal libraries. This makes the blocking specifications refactoring may not always be possible, and we need to iigest
of high-level library API such aSubversion andMySQL im- techniques to safely cure hangs at runtime.

plicit. These high-level APIs are entry points to external li-

braries. Unawareness of whether these APIs are blocking — 7.1 Code Refactoring

in other words whether they are hang gates — puts the devel- |, generq) it should be considered as a domain-spetiffing
oper at the risk of bringing hangs into their applicatiomsor requirementthat a part of a program should be responsive. The
results,connect holds the one of the top killer places of hang blocking property of an operation, on the other hand, is denaf
causes, but the call paths all traverse to the externalrié¥a jing specificationA hang bug occurs if the timing specification
through the hang gates. of an operation contradicts the timing requirement at a y@nog
point.

The general fix is to spawn a separate thread that takes the
task, with a progress dialog box that also allows a user tgadan
the operation. For simple patterns, this strategy is alfreabpted
by developers. Some latest software such as Micrd3tffte has

Testing the existence of a pathis generally a gentle way to
test whether a directory or a file exists before taking furthe
operations. However, the corresponding API functions lsua
do not provide a timeout parameter for developers to specify
maximum wait span. Thus, calls to these functions may block i
kernel and then timeout at rather a large value, often defiged adopted such a practice for some of its file operations.

drivers. This is an issue of legacy platform assumption ftioen It becomes extremely difficult for developers to understered
days when computers were not connected and all storage I/Otiming behavior of some invocations. This is where hang yaisi

tools such as the one we presented. in this paper bring valioh. S org.eclipse.update.internal.core.SiteFileFactory |
tools makes clear where the potential hangs can be, whétber t -

are hang gates to external libraries or platform APIs that heang private void parsePackagedplugins(File pluginDir) .. {
depending on the calling context (e@tFileAttributesW and String[] di

N . = plugi ir‘.lis.t(...);
stat). Once they are found, they should be generally fixed with the \
same strategy as outlined above. for (int i = @; i < dir.length; i++) {

However, there are a group of hang bugs that cannot be resolve

by simply spawning separate threads. One category is preble File file = new File(pluginDir, dir[il);

jarReference = new JarContentReference(null, file);

atic platform implementations. For example, the standairtidivs ref = jarReference.peek("META-INF/MANIFEST.MF", ..);
print dialog thats pops up before printing may internallyl tdae if (ref != null) {
Win32 API functionEnumPrintProcessorDatatypesW to con- in = ref.getInputStream();

nect to the default printer. The printer is usually localfsaahed or
shared in an intranet. As such this API will return quicklpwver,
if the environment has changed, e.g. users reopen the paiogd
in another workplace, or when there happens to be some pnsble
with the printer or the intranet, this API will block, caugia hang.
This problem is difficult to fix at the user level, since these-
tion that triggers the APthasto be in the Ul thread. One way to fix
this problem is to let the print dialog include a cancel optiblore
fundamentally, however, it is the API that should be fixed.

The long debate about the design of high-performance, event
driven web servers (Pariag et al. 2007) is qualitativelyilsimif the
platform does not support an asynchronous API for the sethiat

an incoming event handling relies oor, that the event handling Besides. i | ; hat d e
must process this event in its entirety (i.e. cannot reiserit in esides, it cannot cancel operations that do not use synizaiten

a separate thread), the hang is unavoidable (e.g. the haegota objects, SLfCh asa yvait by checking a flag variable in allod.perat
lighttpd). than a wait for a signal. In these cases, code refactoringiream

necessary to fix hang bugs.

Figure 6: Example of long-running loops ktlipse 3.3. The stop
condition depends oair.Length of the outer environment, and
thus the loop may take a long time.

While useful, this tool isnot a silver bullet solution. First,
though modern operating systems such as Windows Vista may
support cancelable 1/0 (Maffeo and Sliwowicz 2005), it wbstill
be dangerous to cancel I/O operations in some cases, pariydtfi
the application code is unaware of cancellation. In worsesait
can result in inconsistent application states and eventteachsh.

7.2 RuntimeCure

We have also developed a tool to cure hangs in legacy software8. Extensions
at runtime without touching the source code. When an apjita
hangs and a user presses a hot key, our tool will try to brieg th
application back to control.

The basic idea is to intercept functions that may block and to
avoid falling into a coma. The tool requires no source codeio
nary instrumentation (Guo et al. 2008a). It takes API fuortiro-
totypes as input and generates wrapper code automatieaigdmn
a given code template (Guo et al. 2008b). The wrapper codkswvor
as follows.

Our model has taken the granularity of invocation; this neatthe.
Furthermore, the concepts of responsive and blocking atiaes
can both be generalized. Below is an incomplete list of jobssi
extensions.

Responsiveness is a design attribute, meaning certainreede
gion/path should be completed quickly. Invocation is aljyshe
simplest instance when we talk about responsiveness. Antyp-
ical and useful instance is lock. If a lock is being held fooad
period of time, lock contention can result in performancgreda-

e For invocations tavait functions for a long timeout that most tion. A simple rule is that there should be no long-runnir@ in
blocking functions may end up with, we break the timeout into a lock region. Thus, lock region can be considered as a res@on
shorter intervals (500 ms). If a user presses the cure hpthey pattern.
tool returns immediately with a timeout error code. The blocking property, too, can refer to code regions maoae th

e For invocations to other functions that may block in keriel, just blocking invocations. The essence of blocking patigrnot
they do not callrait functions in user space, we put them in a that it will always be Ipng-runnlng_, but _that it some tlmesedo_'l'_he
queue that are taken by threads in a separate pool. We periodi "00t of the problem is theinpredictability plus high probability
cally (500 ms) check the status, and it returns immediataly w ~ Of becoming long running. Hypothetically, a system writteith
a preset error code if a user presses the cure hot key. many connect calls may not hang at all if it always connects to a

) loopback socket running on the same machine. Followinglities
We applied our cure tool on several software systems and suc-of reasoning, there are more blocking patterns.

cessfully recovered them from comas. A hang case occuns iofte The blocking property may highly depend omter environ-
Microsoft Office when a user clicks on a faulty network path or ments, such as a may-remote file path we have discussedefgur
an HTTP URL, such as iWord documentsPowerPoint slides or jjjystrates a loop irEclipse 3.3 when a user starts the update man-
Outlook emails. Our tool is able to cancel all these blocking invo- ager. The platform begins to examine each plug-in in sucmess
cations in the Ul threads and bring the.applications backstpmnpl. The loop depends ogiir.length, which further depends on the
Furthermore, we can extract patterns in these cases fonalysis number of files in an outer directory. If there are a large nenuf
algorithm. plug-ins installed irEclipse, as is usually the case, the action causes
» The Ul thread oDutlook blocks on a networking API function @ hang bug. Thus, the loop structure is potentially a blagiiat-
WNetEnumResourceW for a network path. tern, and it critically depends on the stopping conditi@imilarly,

.) scanning a directory of files, computing a MD5 digest of a fije b

* The Ul threads ofVord and PowerPoint block on the Win32 reading its data sequentially, all have highly structuratiigyns that
API functionGetFileAttributesW for a network path. we can generally lump into the blocking patterns.

e The Ul thread ofPowerPoint blocks on a wait API function Besides, the blocking property contextually depends oresta
WaitForMultipleObjectsEx inside another API function that the blocking code is conditioned on. This brings up thile
HlinkNavigate for an HTTP URL. issue ofwait. We consider it generally an unsound practice to wait

in responsive invocations, since they introduce more digmecies
among multiple components and increase the complexity ftf so
ware. As a minimumyait should have a timeout to prevent that
crashing of the signaler from hanging the thread altogether

The difficulty of wait in the case of hang analysis is that
it depends not on any state at the local calling context, lout o
the execution of the signaler, which can be generalized timto
“condition” of the blocking property of th@ait. In its simplest
form, if a wait is on termination of a separate thread, then we
can mark the invocations in the separate thread as resporifiv
on the other hand, a wait is for a signal that is to be triggéned
a separate thread, then we must trace signals passing énediff
threads and perform a flow analysis to compute happensebefor
relations between invocations.

The above are technically feasible to be performed semi-
automatically. The most difficult part is when the wait is te b

Ashcraft 2003; Williams et al. 2005), which usually occurs i
multi-threading systems. More generally, it is a fundarakhalt-
ing problem to prove that a program terminates or to find eorre
sponding bugs (Cook et al. 2006, 2007) that prevent it fromglo
s0. Hang bugs are not correctness bugs, and the technigfigistto
them need to be driven by a different model. Our hang analysls

is complementary to previous work in the perspective of liagk
correctness problems.

There are also a rich set of existing work on performance de-
bugging. They aim at understanding root causes, and maigof t
rely on techniques to extracting patterns. There are numsegper-
formance analysis tools (Aguilera et al. 2003; Chen et ab420
Barham et al. 2004; Chanda et al. 2007; Liu et al. 2008) foneve
tracing and performance profiling. In addition, machinermézy
techniques (Wang et al. 2004; Yuan et al. 2006; Basu et alf)200
can be applied on traces for pattern extraction. These werkat

triggered by other processes. We have developed a depgndencdirectly related to our study, but the pattern extractiathteques

tracker that intercepts synchronization and schedulingtfans in
kernel to track dependencies between multiple threads amd p
cesses. For the hang case of clicking an HTTP URRdterpoint
slides (see Section 7.2), we found that three processesavegied

in a complicated manner, which we still do not fully undensta

9. Related Work

We believe that our hang analysis framework is the first tatsisth
a hang-focused model and apply it against large, real-wswftt
ware. In the course of this research, we have borrowed ideasd
large body of existing work. We summarize them below acecaydi
to several categories.

9.1 Responsiveness

and potentially some of the patterns extracted can be usedrin
hang analysis work.

9.3 StaticAnalysis

Many existing static analysis tools catch bugs such as resdeak
and invalid use based on system-specific rules or pattemglE
et al. 2001; Hallem et al. 2002; Larus et al. 2004). Our anglys
system focuses on the problem of hang, but can also levenege t
tools for a more complete diagnosis.

Our framework relies on a few techniques at the next level. In
consistency inference via property propagation is usedmoptite
the condition of blocking invocations (e.g. may-remotehisTis
similar to taint analysis that finds system vulnerabilitf€hankar
etal. 2001; Martin et al. 2005) such as SQL injection. Our-maly
analysis is related to null-deference analysis (HovemagdrPugh

This work is motivated by large number of hang cases that have 2007; Dillig et al. 2007).

plagued our daily research work. However, improving resp@n

We use annotations to inject expert knowledge into the hang

ness has been a long standing research problems for many othe@nalysis system. Annotation languages such as SAL (Haekatt

critical software.

The pioneer work TIPME (Endo and Seltzer 2000) introduces a
measurement infrastructure to detect response time of @&tkbms
such as Microsoft Windows and the X Window system. It focuses
on interactive performance or responsiveness issues, ranties
a basis for tracing abnormal cases and diagnosing respoess
problems at runtime. We further generalize the model to teven
driven servers and other time-critical applications, amsetbp
several tools to deal with hang bugs.

One important category of performance-critical progra®s i
drivers (Ball et al. 2006; Zhou et al. 2006; Anderson et aD7)0
In essence, our work shares a lot of similarities. Howeveveds
have a much smaller code base, and their interface is muca mor
restricted. Scale and complexity are unique challengéswhaust
tackle, and to some extent we have tackled them via a scatable
precise analysis framework .

Another type of applications that have received many atten-
tions are web servers. Scalability and performance are ¢ritih
cal for web servers. Event-driven servers usually can setbeth
goals. However, they also suffer from performance probléms
there are blocking operations, as shown by one of the applica
tions we have examined. There are ongoing discussions ¢n hig
performance web server architecture (Pai et al. 1999; XaiHo
et al. 2003; EImeleegy et al. 2004; Wassermann and Su 200), a
we expect that their lessons are relevant to other software.

9.2 Correctnessand Performance
A possible cause of responsiveness problems is due to torrec

ness bugs that prevent a program from making progress. A typ-

ical instance of such correctness bugs is deadlock (Engldr a

2006) and Deputy (Zhou et al. 2006) are effective to spegBcs
ifications and find system bugs. We use SAL for building manito
ing and analysis tools. Our patterns for finding bugs canrifnrte
to the annotation languages to specify additional spetiifics for
functions, e.g. blocking conditions.

10. Conclusion

Soft hang is a widespread defect that plagues many software s
tems. This bug type is not correctness related, but harmsexpe-
rience in desktop applications as well as degrades perfurenaf
server software. This paper presents a simple and effectogel
that defines the hang issue: a hang occurs when time-crijpeat
ations invoke blocking calls. We have built several toold evalu-
ated against several large, real-world applications. €kelts show
that our static analysis tool is effective to uncover hangsbwith
an acceptable false alarm rate. To the best of our knowlétigdas
the first work that addresses the issue of hang at this scale.

Our study also yields a number of insights of the causes of
hang. One of the dominant causes is that the legacy storagje AP
hides the fact that the underlying storage may be remotelynteal.
While backward compatibility is always important, the cisstre-
ating more opportunities to obscure the fact that invocatioan
be blocking. Compounding the issue further, modern sofvgs-
ically reuses existing external libraries. Calls into ity interfaces
that may hide blocking invocations reside many layers belitin
the libraries. A lack of clear knowledge about the timingdfie
cations of these library APls is another source of hang bugs.
have discussed various code refactoring principles arthigaes,
as well as automatic and transparent runtime fix for legaét so
ware.

We are actively pursuing this line of research further. In- pa

ticular, we are investigating more efficient and scalablalysis
to compute hang bugs more precisely, and pattern extrataim
nigues to automatically synthesize conditional blockiragterns.

Godefroid, M. Y. Levin, and D. Molnar.
testing. INNDSS 2008.

Automated whitebbixzz

. Guo, X. Wang, X. Liu, W. Lin, and Z. Zhang. BOX: Icing the ARI

Technical Report MSR-TR-2008-03, Microsoft, 2008a.

We are also continuing to understand more complex intenasti Z.Guo, X. Wang, X. Liu, W. Lin, and Z. Zhang. Towards pragrodibrary-

among processes that result in responsiveness issues. based replay. Technical Report MSR-TR-2008-02, MicroRfosb.

B. Hackett, M. Das, D. Wang, and Z. Yang. Modular checkinglfoffer
overflows in the large. IIICSE 2006.

S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and larggidor
building system-specific, static analyses.PinDI, 2002.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazyrabton. In

POPL, 2002.

Hovemeyer and W. Pugh. Finding more null pointer bugs,nmtittoo

many. InICSE 2007.

S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots, MCarbin,
and C. Unkel. Context-sensitive program analysis as ds¢éafaeries.
In PODS 2005.

R. Larus, T. Ball, M. Das, R. DeLine, M. Fahndrich, J. Pec8. K.

Acknowledgments

We would like to thank our shepherd, Terence Kelly, and tloagn
mous reviewers for their insightful comments. Thanks tonJoh
Whaley for useful discussions abobiidbddb. We thank Frans
Kaashoek, Wei Lin, Linchun Sun, Jian Tang, Ming Wu, Yuan Yu,
Lintao Zhang and Lidong Zhou for valuable feedback. We are D.
grateful to Ben Canning, Ben Ross, Vlad Sudzilouski, IgokZa

and the MicrosofOffice team for their support. Xi Wang and Xi- M.
aoge Wang are supported in part by National High-Tech Rekear

and Development Plan of China under Grant No. 2006AA012198
and by Basic Research Foundation of Tsinghua National laabor J.

tory for Information Science and Technology.

Rajamani, and R. Venkatapathy. Righting softwaieEE Software21
(3):92-100, 2004.

X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, and Aang.

Refe'jences_ D3S: Debugging deployed distributed systemsNBD|, 2008.

Phoenix .compller framework. http://research.microsoft.com/ V. B. Livshits, J. Whaley, and M. S. Lam. Reflection analysis Java. In
phoenix/. APLAS 2005.

M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and Auti- G. Maffeo and P. Sliwowicz Win32 1/0O cancellation support i
tacharoen. Performance debugging for distributed systefirtsack Windows Vista. http://msdn2.microsoft.com/en—us/librgfy/
boxes. INSOSF 2003.) a2a480216.aspx, 2005.

Z. Qndelrson, Ei:Béiwer’ é] Cor:jdg, R.f_Eg_nal.s,SD. ((31ay, M. Han(_é. C. M. Matrtin, V. B. Livshits, and M. S. Lam. Finding applicati@rors and
Li(ra\El:(ainaﬂotds 283'7 eyond bug-finding: Sound program afeafpr security flaws using PQL: a program query languag®© @GP SLA 2005.

) : ’ - . V. S. Pai, P. Druschely, and W. Zwaenepoely. Flash: An efftcnd

T.Balland S. K. Rajamani. The SLAM project: Debugging systoftware portable Web server. INSENIX Annual Technical Conferende99.

via static analysis. IPOPL, 2002. D. Pari T Brecht A. Harii P. Buhr. A. Shuki 4 b. R.eflto
. .) . Pariag, T. Brecht, A. Harji, P. Buhr, A. Shukla, and D. R. n.

T. Ball, E. Bounimova, B: COOK.' V. Levin, J. Lichtenberg, CcBle_arvey, Comparing the performance of web server architecturesEuioSys
B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough statalysis 2007
of device drivers. IfEuroSys2006. ' . . .

. . T. Reps. Demand interprocedural program analysis using tiegabases.

P. Barham, A. annelly, R. Isaacs, and R Mortier. Using Madipr In R. Ramakrishnan, editoApplications of Logic Database&luwer
request extraction and workload modelling.@$DI, 2004. Academic Publishers. 1994.

S. Basu, J. Dunagan, and G. Smith. Why did my PC suddenly stom@ U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Deteétingat-string
In SysML, 2007. vulnerabilities with type qualifiers. IWUSENIX Security Symposiym

R. E. Bryant. Graph-based algorithms for Boolean functi@nipulation. 2001.

IEEE Transactions on Computer35(8):677-691, 1986. J. D. Ullman. Principles of Database and Knowledge-Base Systemwis

A. Chanda, A. Cox, and W. Zwaenepoel. Whodunit: Transaatiprofiling
for multi-tier applications. IrFEuroSys2007.

ume Il. Computer Science Press, 1989.

H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang. Auttic
M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, ox, and misconfiguration troubleshooting with PeerPressureO &bl 2004.
E. Brewer. Path-based failure and evolution managementNSD|, G. Wassermann and Z. Su. Sound and precise analysis of Wetssipps
2004. for injection vulnerabilities. IPLDI, 2007.
B. Cook, A. Podelski, and A. Rybalchenko. Termination psdof systems J. Whaley. Context-Sensitive Pointer Analysis using Binary Decishia-

code. InPLDI, 2006.

B. Cook, A. Podelski, and A. Rybalchenko. Proving threachteation. In
PLDI, 2007.

M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive progeification
in polynomial time. InPLDI, 2002.

I. Dillig, T. Dillig, and A. Aiken. Static error detection irgy semantic
inconsistency inference. RALDI, 2007.

grams PhD thesis, Stanford University, 2007.

. Whaley and M. S. Lam. Cloning-based context-sensitiiatpoalias

analysis using binary decision diagrams.PlinDI, 2004.

Williams, W. Thies, and M. D. Ernst. Static deadlock détat for Java
libraries. INECOOR, 2005.

Xie and A. Aiken. Scalable error detection using Booleatis§iability.
In POPL, 2005.

K. Elmeleegy, A. Chanda, A. L. Cox, and W. Zwaenepoel. Lazynas c. yyan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and Y¥Ma.
chronous 1/O for event-driven servers. WSENIX Annual Technical Automated known problem diagnosis with event traces. ElmoSys
Conference2004. 2006.

Y. Endo and M. Seltzer. Improving interactive performanséng TIPME. N. Zeldovich, A. Yip, F. Dabek, R. T. Morris, D. MaziéresyncaM. F.
In SIGMETRIC$2000. Kaashoek. Multiprocessor support for event-driven progra In

D. Engler and K. Ashcraft. RacerX: Effective, static deattof race USENIX Annual Technical Conferen@903.
conditions and deadlocks. BOSP2003. F. Zhou, J. Condit, Z. Anderson, |. Bagrak, R. Ennals, M. BiayG. Nec-

D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugslesiant
behavior: A general approach to inferring errors in systeode. In
SOSR2001.

ula, and E. Brewer. SafeDrive: Safe and recoverable extessising
language-based techniques.QSD|, 2006.

