Characterizing and Predicting Which Bugs Get Fixed:
An Empirical Study of Microsoft Windows

Philip J. Guo* Thomas Zimmermann+

Nachiappan Nagappan+

Brendan Murphy+

= Stanford University
+ Microsoft Research

pg@cs.stanford.edu

ABSTRACT

We performed an empirical study to characterize factors that af-
fect which bugs get fixed in Windows Vista and Windows 7, focus-
ing on factors related to bug report edits and relationships between
people involved in handling the bug. We found that bugs reported
by people with better reputations were more likely to get fixed, as
were bugs handled by people on the same team and working in ge-
ographical proximity. We reinforce these quantitative results with
survey feedback from 358 Microsoft employees who were involved
in Windows bugs. Survey respondents also mentioned additional
qualitative influences on bug fixing, such as the importance of se-
niority and interpersonal skills of the bug reporter.

Informed by these findings, we built a statistical model to predict
the probability that a new bug will be fixed (the first known one, to
the best of our knowledge). We trained it on Windows Vista bugs
and got a precision of 68% and recall of 64% when predicting Win-
dows 7 bug fixes. Engineers could use such a model to prioritize
bugs during triage, to estimate developer workloads, and to decide
which bugs should be closed or migrated to future product versions.

Categories and Subject Descriptors:
D.2.5 [Software Engineering]: Testing and Debugging; D.2.7 [Soft-
ware Engineering]: Distribution, Maintenance, and Enhancement

General Terms:
Human Factors, Management, Measurement

1. INTRODUCTION

Validation often accounts for the majority of software development
costs [18]. It encompasses activities such as debugging, testing,
verification, and bug tracking. In both commercial and open-source
software, large projects have to keep track of hundreds of thousands
of bug reports. As of August 2009, the Mozilla bug database con-
tains over 500,000 and the Eclipse bug database over 250,000 bug
reports. On average, Mozilla received 170 and Eclipse 120 new
bug reports on each day from January to July 2009.

Bug triaging is the process of deciding which bugs should get
fixed, a decision that typically depends on several factors [39]: How
bad is the bug’s impact (severity)? How often does this bug occur

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE ’10, May 2-8 2010, Cape Town, South Africa

Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

{tzimmer, nachin, bmurphy}@microsoft.com

(frequency)? How much effort would be required to implement a
fix? What is the risk of attempting to fix this bug?

Bug triaging is a pervasive process that extends far beyond de-
velopers and testers. For example, at Microsoft, employees regu-
larly use and report bugs on versions of Microsoft software that are
under active development, a practice known as “dogfooding” [15].
Thus, managers, business staff, customer service representatives,
and contractors also report and edit bugs. 24,191 people in 379
office buildings in 63 countries were involved in either opening,
handling, commenting on, or resolving Windows Vista bugs. That
is an order of magnitude greater than the ~2,000 developers who
wrote code for Vista [10].

Some bugs are purposely left unfixed, for some of the follow-
ing reasons: The bug occurs rarely and affects only a few users.
Changes required to fix it could be large and expensive. Fixing
it could introduce new bugs (code changes that fix bugs are up to
twice as likely to introduce new bugs as other kinds of changes [40]).
Users might be relying on existing behaviour, and thus fixing the
bug could break their systems.

Ideally, developer time should be focused on bugs that will actu-
ally get fixed. However, this is not always the case. For example,
in the Eclipse bug database, unfixed bugs receive almost the same
amount of attention as fixed bugs, as measured by numbers of de-
veloper comments in the bug database (4.5 comments on average
vs. 5.8 comments). A better understanding of what bugs are fixed
could inform the design of improved triage tools and policies that
allow developers to more efficiently spend their time on bugs.

For this paper, we analyzed Windows Vista and Windows 7 bug
reports to characterize and predict which bugs get fixed with re-
spect to the involved people (bug reporter and assignees) and their
activities in the bug database (e.g., report edits, reassignments, and
reopenings). Existing studies of bug triaging focus on assigning
bugs to developers [3, 13] and detecting duplicates [22, 37, 25, 41],
but to our knowledge there is no prior published academic study
that characterizes which bugs get fixed. Our study contributes to
the empirical body of validated research in bug fixing and informs
the design of new bug tracking tools and policies.

1.1 Contributions

After surveying related work (Section 2) and describing our exper-
imental methodology (Section 3), we devote the bulk of this paper
to three main contributions:

e Characterization of which bugs get fixed

In a quantitative study of Windows Vista and Windows 7
bugs, we describe how people’s reputations, bug report edit
activities, and geographical and organizational relationships
affect the chances of a bug getting fixed (Section 4). We sum-
marize the findings in a logistic regression model (Section 5).

e Qualitative validation of quantitative findings

We conducted a survey of 1,773 Microsoft employees to ob-
tain feedback on our characterizations, of which 358 (20%)
responded. These responses corroborated our quantitative
findings and enriched them with qualitative insights (Sec-
tion 4). They also revealed additional influences on whether
a bug gets fixed, such as report quality, perceived customer
and business impact, and seniority and interpersonal skills of
the bug opener (Section 7).

o Statistical model to predict which bugs get fixed

We developed the first model in the research literature (to
the best of our knowledge) that can predict whether a bug
gets fixed (Section 6). Such predictions help to prioritize bug
reports and to decide which bugs to carry over to the next re-
lease of a product. To ensure that this model can generalize,
we developed it and evaluated its performance on separate
datasets (Windows Vista and Windows 7, respectively). We
achieved a precision of 68% and a recall of 64% when pre-
dicting Windows 7 bug fixes.

We conclude by addressing threats to validity (Section 8) and pro-

viding some recommendations for tool and policy design (Section 9).

2. RELATED WORK

Several studies modeled the lifetimes of bugs, investigating prop-
erties like time-to-resolve (how long it takes a bug report to be
marked as resolved), where the resolution can be of any outcome
(e.g., FIXED, WONTFIX, DUPLICATE, WORKSFORME). Hooimei-
jer and Weimer [23] built a descriptive model for the lifetime of a
bug report based on self-reported severity, readability, daily load,
reputation, and changes over time. Panjer [36] used information
known at the beginning of a bug’s lifetime such as severity, compo-
nent, platform, and comments to predict its time-to-resolve. Betten-
burg et al. [7] observed that bug reports are fixed sooner when they
contain stack traces or are easy to read. Anbalagan and Vouk [1]
found that the more people are involved in a bug report, the higher
its time-to-resolve. Mockus et al. [33] found that in Apache and
Mozilla, bugs with higher priority are fixed faster than bugs with
lower priority. Herbsleb and Mockus [20] observed that distributed
work items (e.g., bug reports) take about 2.5 times as long to re-
solve as co-located work items. Cataldo et al. [14] found that when
coordination patterns are congruent with their coordination needs,
the resolution time of modification requests (similar to bug reports)
was significantly reduced. In contrast to these time-to-resolve stud-
ies, we analyze and predict the probability that a bug is successfully
resolved, i.e, its resolution outcome is marked as FIXED.

Several groups of researchers developed techniques to prioritize
static analysis warnings by building models to predict which warn-
ings are likely to get triaged and fixed: Kim and Ernst [28] us-
ing static analysis tools for open-source Java projects, Ruthruff et
al. [38] for commercial Java projects, and Guo and Engler [17] for
open-source C projects. In contrast to these works, we predict the
likelihood of fix for bug reports in general and not just for static
analysis warnings. In addition, we consider in our models bug re-
port edit activities as well as people-related factors like reputation
and geographic and organizational relationships.

Several studies characterized properties of bug reports and their
edit activities: Bettenburg et al. [7] characterized what makes a
good bug report. By contrast, this paper analyzes which bug reports
get fixed. While the quality of a bug report certainly influences
the chances of getting the bug fixed, there are additional factors

discussed in this paper such as edit activities, developer relation-
ships, and severity. Aranda and Venolia [5] examined communica-
tion between developers about bug reports at Microsoft to identify
common bug fixing coordination patterns. Breu et al. [11] cate-
gorized questions asked in open-source bug reports and analyzed
response rates and times by category. Bettenburg et al. [8] quanti-
fied the amount of additional information in bug duplicates. Jeong
et al. [26] analyzed the reassignment of bug reports (called bug
tossing) and developed tossing graphs to support bug triaging ac-
tivities. Ko et al. [29] conducted a linguistic analysis of bug report
titles and observed a large degree of regularity. However, none of
these studies characterized and predicted which bugs get fixed.

To improve bug triaging, previous research proposed techniques
to semi-automatically assign developers to bug reports [3, 13, 4],
assign locations to bug reports [12], recognize bug duplicates [22,
37, 25, 41], assess the severity of bugs [32], and predict effort for
bug reports [42]. With this paper, we provide support for another
triaging activity: deciding which bugs should get fixed.

Independently from us, Diederik van Liere explored factors that
affected which bugs were fixed in Mozilla Firefox; he published
his findings on his blog [31]. In another study, he investigated how
the information provided by open-source community members in-
fluences the repair time of software defects [30].

Empirical studies allow us to build a validated body of knowl-
edge in software engineering and are crucial for informing the de-
sign of new bug tracking tools. This paper adds a characterization
of what makes bug reports successful to that body of knowledge.

3. METHODOLOGY

For this study, we performed a quantitative analysis of bug datasets
(Section 4), built logistic regression models using features extracted
from them (Sections 5 and 6), and analyzed results from a sur-
vey consisting of both multiple-choice and free-response questions
(Sections 4 and 7). Here are our data sources:

Windows Vista bug database: Our primary data source was the
set of bug reports for Windows Vista, containing all pre- and post-
release bugs collected in July 2009 (2.5 years after Vista’s release
date). We consider our dataset to be fairly complete for the factors
we want to investigate, since very few new Vista bugs are being
opened, compared to when it was under active development. For
confidentiality reasons, we cannot reveal the exact number of re-
ports, but it is at least an order of magnitude larger than datasets
used in related work [23].

For each bug report, we extracted a list of edit events that oc-
curred throughout its lifetime. Each event alters one or more of
these fields in the bug report:

e Editor: Who made this edit?
o State: OPENED, RESOLVED, or CLOSED

e Bug source: How was the bug found? See Table 1 for details.
e Bug type: What kind of bug is it? e.g., bug in code, specifi-
cation, documentation, or test suite

e Component path: Which component is the bug in? e.g.,
Desktop Shell/Navigation/Start Menu

e Severity: An indicator of the bug’s potential impact on cus-
tomers. Crashes, hangs, and security exploits have the high-
est severity (Level 4); minor UI blemishes, typos, or trivial
cosmetic bugs have the lowest severity (Level 1).

e Opener: Who opened this bug?

o Assignee: Who is now assigned to handle this bug?

Bug source Description

Human review code, design, spec, security reviews
Code analysis tool — automated program analysis tools
Ad-hoc testing exploratory and ad-hoc testing
Component testing unit tests, model-based tests
System testing integration, build, stress tests
Customer reported by non-Microsoft user

Internal user reported by Microsoft user

Table 1: Sources of Windows Vista bugs

e Resolution status: How was this bug resolved? For this
study, we only care whether a bug was resolved as FIXED
or not. Other statuses include DUPLICATE and WON'T FIX.
(null if state is not RESOLVED)

We excluded fields that were edited infrequently or unreliably.
Most notably, we excluded the Priority field, which represents a
subjective rating of bug importance, since there was too much in-
consistency in how different teams within Microsoft used it (there
are similar inconsistencies in open-source projects [21]).

Here is a typical bug’s life cycle: When it is first opened, all of
its fields except for Resolution status are set. Then the bug might be
edited a few times (e.g., to upgrade its severity). A special type of
edit called a reassignment occurs when the Assignee field is edited.
When somebody thinks he/she has resolved the bug, its Resolution
status field is set. After the resolution attempt is approved (usually
by the opener), the bug is closed. However, it might be reopened
if the problem has not actually been properly resolved.

The main goal of our study is to characterize what factors lead
a bug to be successfully resolved as FIXED (as opposed to related
studies like Hooimeijer and Weimer [23] that investigate whether a
bug is resolved in any manner within a set period of time). When
a bug has been resolved more than once (i.e., it was reopened),
we use its final resolution status to determine whether it has been
successfully resolved.

Geographical data: To correlate location-related factors with bug
fixes, we obtained from people management software the building
and country where each employee worked when Vista was being
developed. Sometimes people switch locations, but in general Mi-
crosoft tries to keep employees in the same location during a prod-
uct cycle [10]. Like Bird et al. [10], we also considered campus
(e.g., Redmond, Silicon Valley) and continent as factors, but our
findings using those were so similar to simply using country that
we omitted them for brevity.

Organizational data: Nagappan et al. [34] found that organiza-
tional factors are correlated with bugs. Motivated by that study, we
obtained the name of each employee’s manager, which allows us to
build an organizational tree and determine whether two employees
are part of the same team (i.e., share the same manager).

Microsoft employee survey: To get feedback about the fidelity of
our quantitative results, we sent out an online survey to 1,773 Mi-
crosoft employees. Since we wanted to get the opinions of people
well-versed in handling Windows bugs, we chose as our survey par-
ticipants the top 10% of people who have opened, been assigned to,
and resolved Vista bugs.

The main question in our survey was: In your experience, how
do each of these factors affect the chances of whether a bug will
get successfully resolved as FIXED? We chose the factors based on

First bug o ®
.

% Fixed

0%

0O 01 02 03 04 05 06 07 08 09 1
Bug opener reputation

Figure 1: Percent of fixed Vista bugs vs. bug opener reputation
(rounded up to nearest 0.05). “First bug” represents all bugs
whose opener had never opened a bug before the current one.
The y-axis is unlabeled for confidentiality.

our quantitative findings, and asked respondents to rate the effect of
each on bug fixes on a 7-point Likert scale, ranging from “Signif-
icantly increase chances of fix” to “Significantly decrease chances
of fix” (we also included a “No opinion” option).

We concluded the survey with 3 free-response questions: What
are reasons why a bug might be reassigned multiple times, why a
bug might be closed then reopened multiple times, and any other
comments about what factors influence whether a bug gets fixed.

We received 358 responses (20% response rate). Most respon-
dents were either developers (55%) or testers (30%). Most were
fairly experienced, with a median of 11.5 years of work experience
in the software industry and 9 years at Microsoft. We integrate
our survey results into the findings of Section 4 and focus on the
free-response answers in Section 7.

Replicated study on Windows 7: After completing our study on
Windows Vista, we extracted bug reports from its successor project,
Windows 7, and replicated our study on it. We used the entire bug
database for the development period of Windows 7 (~3 years).

4. INFLUENCES ON BUG-FIX LIKELTHOOD

In this section, we present factors related to people and bug re-
port edit activity that affect the likelihood of a bug being fixed. Our
findings are consistent across both Windows Vista and Windows 7,
but here we only present the Vista results, for space reasons (Sec-
tion 4.6 summarizes some differences with Windows 7).

4.1 Reputations of bug opener and 1st assignee
We found that a bug opened by someone who has been successful
in getting his/her bugs fixed in the past (has a better reputation with
respect to bug reporting) is more likely to be fixed. We quantify
reputation using the same metric as Hooimeijer and Weimer [23]":

|OPENED () FIXED|

bug opener reputation = [OPENED| + 1

For each bug, we calculate its opener’s reputation by dividing the
number of previous bugs that he/she has opened and gotten fixed by
the total number of previous bugs he/she has opened (41). Adding
1 to the denominator prevents divide-by-zero (for people who have
never previously opened any bugs) and, more importantly, prevents

"We copied their reputation metric verbatim, to facilitate compar-
isons with related work. Building a robust, meaningful, and fair
reputation metric is difficult and beyond the scope of this project.

T 1
et o]
990%-L0 .
o0 *II'T‘ P L3N

© o © : TE
Q . Q .
x ‘e x
LL . LL
X X
X X
o [TTTTTTTITT T o Frrr1r 1111l
1 6 12 19 1 35 7 9
editors # assignees

Figure 2: Percent of fixed Vista bugs vs. numbers of unique bug
report editors and assignees. Vertical bars are 95% confidence
intervals for binomial probabilities (most are invisible). The
y-axes are unlabeled for confidentiality.

people who have opened very few bugs from earning high reputa-
tions: Without the extra +1 term, someone who has opened 1 bug
and gotten it fixed will have the same reputation as someone who
has opened 100 bugs and gotten all 100 fixed; intuitively, the latter
person should have a higher reputation (which our metric ensures).

In Figure 1, we grouped Windows Vista bugs by ranges of opener
reputations and plotted the percentage of bugs in each group that
were fixed. The leftmost two points were specially calculated:
The “First bug” point considers all bugs where the opener had not
opened any bugs before this one. The “0” point considers all bugs
where the opener had opened some bugs but had gotten none fixed.
The rest of the points consider all bugs with opener reputations
within a 0.05-point range. For instance, the rightmost point repre-
sents all bugs with opener reputations between 0.95 and 1.

There is a consistent monotonic increase in bug-fix likelihood as
the opener reputation increases, with the exception of those with
zero reputation. Interestingly, bugs opened by first-timers (“First
bug” point) had a higher likelihood of fix than bugs opened by peo-
ple with low reputations. All differences between points are statis-
tically significant since their 95% confidence intervals for binomial
probabilities [16] never overlap. In fact, all confidence intervals are
negligible, so they are invisible in Figure 1.

Employee intuitions corroborated our data. For the final free-
response survey question on what factors influence bug fixes, one
respondent (who was not aware of our quantitative findings) wrote:

“A big influence [on bug fixes] is the “reputation” of the person

opening the bug. I often see nonsense bugs get opened indicat-

ing opener had done zero work. Contrast this with some very
high quality bugs I see from some folk who have done a bunch of
background work and often target the exact underlying problem.

If submitter has a history of submitting high quality bugs then

new bugs from that person get better attention |[...]”

When we repeated these calculations for the reputations of the
first person who was assigned to each bug, the trends were nearly
identical. This result shows that certain people are more effective
at either fixing bugs or reassigning bugs to others who can fix them.

Summary: People who have been more successful in getting their
bugs fixed in the past (perhaps because they wrote better bug re-
ports) will be more likely to get their bugs fixed in the future.

4.2 Bug report edits and editors

Each act of editing a bug report field (especially by a new editor)
provides evidence that somebody is taking an interest in it and im-
proves its likelihood of being fixed. It doesn’t take much effort to

Severity upgraded

0 re-assignments

Few (< 10) editors

Many (>= 10} editors
Few (1-5) re-assignments
Atleast 1 re-open
Severity downgraded

Many (> 30) re-assignments

-3 -2 -1 0 1 2 3
Figure 3: Likert scores for survey questions about the per-
ceived impact of bug report edits on bug fixes, averaged over
all 358 respondents. —3 means “Significantly decrease chances
of fix” and +3 means “‘Significantly increase chances of fix”.

edit a bug report field (e.g., to upgrade its severity), since an editor
isn’t necessarily the person assigned to handle the bug. Bugs with
at least 1 edit are 50% more likely to be fixed as those with no edits
(all two-group ratio differences reported in this paper are statisti-
cally significant at p < 0.001 according to a chi-square test [16]).
However, too many edits might indicate a dispute over how to han-
dle the bug, so it might not be fixed: Bugs with over 50 edits are
24% less likely to be fixed than those with fewer than 50 edits.

There is a similar positive correlation between the number of
unique people who have edited a bug report and its likelihood of
being fixed. The left half of Figure 2 shows that if a bug report
has more editors (up to around 15), its likelihood of being fixed
steadily increases. The differences are all statistically significant
since the confidence intervals never overlap (most are invisible).
The percent of fixed bugs seems to flatten out at around 15 editors,
but the sample sizes grow too small to provide statistical power.

Contrary to our data, our survey respondents thought that the
number of editors had only a weak effect on the likelihood that a
bug would be fixed (Figure 3). This perception could exist because
developers aren’t usually aware of how many people have edited
their bug reports. However, one specific type of edit — a change in
severity level — elicited stronger responses. Respondents thought
that a severity upgrade greatly increased chances of fix (mean Lik-
ert score of 1.6), which our data corroborates: Vista bugs whose
severity had been upgraded were 20% more likely to get fixed. Re-
spondents also thought that a severity downgrade would decrease
chances of fix (mean Likert score of —1.4), but our data actually
showed almost no difference from the control population of bugs
whose severity level never changed.

Summary: The more people who take an interest in a bug report,
the more likely it is to be fixed.

4.3 Bug report reassignments and assignees

A reassignment is a major type of bug report edit, since it shifts
responsibility to a new person. The right half of Figure 2 shows
that reassigning a bug report to up to 6 people increases its like-
lihood of being fixed, but the likelihood decreases with more as-
signees. Most confidence intervals are invisible, but as the number
of assignees approaches 10, they become visible. Calculations for
number of reassignments (rather than unique assignees) show sim-
ilar trends: Bugs that are reassigned at least once are 18% more
likely to be fixed than those that are never reassigned, but bugs that

are assigned more than 30 times are 14% less likely to be fixed than
those assigned fewer than 30 times.

One explanation for this phenomenon is that people often need
to reassign a bug several times (possibly across teams or locations)
to find the optimal developer who can best address it. A survey
respondent cited the following reason for reassignments:

“Bugs many times are exposed in the Ul [user interface], but are
not caused by the team writing the Ul code. These bugs can pass
down several layers of components before landing on a lower
level component owner.”

However, too many reassignments means that no one person or
team is taking responsibility for handling the bug, so it might never
get fixed [26].

According to Figure 3, survey respondents concurred that having
too many reassignments (> 30) is detrimental to the chances of a
bug being fixed. However, they also thought that even having a few
reassignments (1-5) would be detrimental, which is contradictory
with our data. This perception could exist because developers asso-
ciate reassignments with inefficiencies in the bug triaging process
(as indicated by some other free-response answers).

Summary: Reassignments are not always detrimental to bug-fix
likelihood; several might be needed to find the optimal bug fixer.

4.4 Bug report reopenings

Sometimes a bug is reopened after someone has already resolved
and closed it. Our data shows that bugs that are reopened up to 4
times are not any less likely to eventually be fixed. However, if a
bug is reopened too many times, then it probably will not be fixed:
Bugs with more than 4 reopenings are 34% less likely to be fixed
than those with fewer than 4, and those with more than 5 are 46%
less likely to be fixed (too few bugs had more than 6 reopenings for
the differences to be statistically significant).

Consistent with our data, survey respondents felt that reopenings
only had a slightly negative effect on bug-fix likelihood (Figure 3).
In a free-response question on why people felt that certain bugs
might need to be reopened several times before being successfully
fixed, respondents cited reasons like the following: The bugs might
be difficult to reproduce, so they were first closed as NOT REPRO
and later reopened when someone improved report quality. The
initial fix might trigger regression test failures, so the bug must be
reopened to attempt another fix.

Summary: Reopenings are not always detrimental to bug-fix like-
lihood; bugs reopened up to 4 times are just as likely to get fixed.

4.5 Organizational and geographical distance

We found that bugs assigned to someone in a different team or
geographical location as the bug opener were less likely to be fixed.
We quantified these effects by partitioning bugs into groups based
on organizational and geographical profiles of their openers and as-
signees. Then we calculated the percent of bugs in each group that
were successfully fixed. In Table 2, we report ratios relative to the
anonymized baseline percentages X, Y, and Z. For instance, bugs
opened by and initially assigned to people with different managers
are 0.85 times as likely to be fixed as those opened and initially as-
signed to the same person (shown in bold near the top of Table 2).

At one extreme, bugs opened by and assigned to the same per-
son are the most likely to get fixed (the X and Y baselines), since
the opener is probably a developer who wants to and is able to fix
his/her own bug. Bugs assigned to someone in the same team or

ORGANIZATIONAL FACTORS

Opened by and initially assigned to ...

... the same person X
...someone with the same manager 0.97-X
...someone with a different manager 085 - X
Assigned to opener at some point in time Y
Never assigned to opener, but assigned to
someone with the same manager as opener 0.56 - Y
Never assigned to anyone with same manager 0.62-Y
Opened by a permanent employee Z
Opened by a temporary employee 0.84-Z
Initially assigned to temp. employee 094 .7
Assigned to temp. employee at any point 097- 7
GEOGRAPHICAL FACTORS
Opened by and initially assigned to ...
.. the same person X
..someone in the same building 094 X
..someone in a different building
but in the same country 0.77- X
..someone in a different country 0.79- X
Assigned to opener at some point in time Y
Never assigned to opener, but assigned to
someone in the same building 0.66 - Y
Never assigned to anyone in same building, but
assigned to someone in the same country 0.63-Y
Never assigned to anyone in the same country 033.Y

Table 2: Effect of organizational and geographical factors on
percentage of Vista bugs that get fixed. Exact percentages for
each group are anonymized; only ratios are shown.

building are almost as likely to get fixed (0.97 and 0.94 times, re-
spectively). These colleagues can easily talk face-to-face to resolve
ambiguities in bug reports and to hold each other accountable.

However, if bugs are assigned to people who work in differ-
ent buildings or countries, then there is greater overhead in com-
munication. In a free-response question about what factors affect
bug fixes, one survey respondent cites “poor communication, lan-
guage barrier problems with other countries” as hindrances. Bugs
that were never assigned to anyone in the same country as their
opener were only 0.33 times as likely to be fixed as those assigned
to the opener at some point in time (shown in bold at the bottom
of Table 2). Survey results in Figure 4 corroborate these findings.
Herbsleb and Grinter found that cultural and language barriers ex-
isted at Lucent software development sites just within Western Eu-
rope [19]; Microsoft employees in 63 countries across 6 continents
were involved in Windows Vista bugs, so the potential barriers are
even greater.

Also, Microsoft tries to organize teams so that all members are
located in the same building. Thus, when bugs are assigned across
buildings, chances are that the participants do not personally know
one another. Another survey respondent pointed out that there is
less implicit trust between people in different teams or locations:

“Personal relations between the bug opener and members of the
team it is assigned to [affects bug triaging]. Whenever I open
bugs assigned to people I know, they are investigated thoroughly
as there is a trust in the report I write. Often when reporting a

Opener [assignee same person
Opener / assignee same manager
Opener / assignee same building
Opener / assignee same country
Opener /[assignee diff managers
Opened by temp. employee
Opener [assignee diff countries

Assigned to temp. employee

-3 -2 -1 0 1 2 3

Figure 4: Likert scores for survey questions about the per-
ceived impact of people factors on bug fixes, averaged over all
358 respondents. —3 means “‘Significantly decrease chances of
fix’ and +3 means ‘“Significantly increase chances of fix”.

bug within areas where I don’t know the owners, there is inherent
distrust in the bug report.”

At another extreme, temporary employees (e.g., contractors or
interns) have lower reputation and fewer relationships with Win-
dows developers, so their bug reports might not be taken as seri-
ously as those from core employees. Figure 4 shows that survey
respondents felt that bugs opened by and assigned to temporary
employees were less likely to get fixed. The section of Table 2 with
the Z baseline corroborate these hunches. It’s more detrimental for
a bug to be opened by a temp than to be assigned to a temp, though,
since the burden is on the opener to find someone to fix the bug.

As a bug is reassigned across several buildings, its likelihood of
being fixed drops monotonically. There is a 7% drop in bug-fix
likelihood when going from 1 to 2 buildings, and another 7% drop
when going from 2 to 3 (the drops get smaller as the number of
buildings increases). Recall from Figure 2 that more assignees (up
to 6) actually improves likelihood of fix, but that is not true for
assignee buildings.

Herbsleb and Mockus found that Modification Requests (MRs),
which include bug reports, took longer to resolve when develop-
ment was globally distributed [20]. Our findings supplement theirs
by showing that bug reports assigned across teams, buildings, and
countries are less likely to be successfully resolved. Herbsleb and
Mockus attributed these delays in part to the fact that more peo-
ple were usually involved in MRs distributed across sites. In our
data, bug reports distributed across sites did not involve signifi-
cantly more people (usually only one extra editor and assignee),
but we still observed noticeable drops in bug-fix likelihood.

Summary: Bugs assigned across teams or locations are less
likely to get fixed, due to less communication and lowered trust.

4.6 Replicated study on Windows 7

Although the exact numbers and graphs for Windows 7 data are
slightly different than those for Vista, the overall trends are the
same. Here are some notable differences: Figure 5 shows the same
plots on Windows 7 data as Figure 2 does for Vista. There is a
sharper upward progression and sudden flattening in percent fixed
at 11 editors and a larger spike at 4 assignees. Also, there is a much
sharper drop-off in percent of fixed bugs as the number of assignee
buildings increases (not pictured for space). For example, Win-
dows 7 bugs whose assignees were distributed across 2 buildings

T
seo7 T°

eece T
o0 250l
11

S o ¢ e ?
(] . o ® .
x . x
LL o ® LL .
S X
X X
o [TTTTTTTTTITTTIIT T 1T o T 1T T T T T T
159 14 20 1 3 5 7 9
editors # assignees

Figure 5: Percent of fixed Windows 7 bugs vs. numbers of
unique bug report editors and assignees (analogous to Figure 2
for Vista bugs). Vertical bars are 95% confidence intervals for
binomial probabilities (most are invisible).

were 29% less likely to get fixed than those that remained within 1
building, versus only a 7% decrease for Vista.

5. DESCRIPTIVE STATISTICAL MODEL

A problem that often arises when presenting a series of single-
variable correlations (as we’ve done in Section 4 with factors that
correlate with whether a bug is fixed) is that their effects might
be cross-correlated, thereby diminishing their validity. To show
that the factors we picked have independent effects that do not con-
found, we built a logistic regression model and ran an Analysis of
Deviance test on all factors [24].

5.1 Model building

A logistic regression model aims to predict the probability of
an event occurring (e.g., will this bug be fixed?) using a combi-
nation of factors that can be numerical (e.g., bug opener reputa-
tion), boolean (e.g., was severity upgraded?), or categorical (e.g.,
bug source). We built a model to predict the probability that a Win-
dows Vista bug will be fixed, using our entire bug dataset as training
data (Table 3). We chose our factors (explanatory variables) from
those described in Section 4. We also built a model for Windows 7
using the same factors; we obtained almost identical results, so we
do not show them here due to space constraints.

We determined that all factors had independent effects by incre-
mentally adding each one to an empty model and observing that
the model’s deviance (error) decreases by a statistically significant
amount for all added factors (a standard technique called Analy-
sis of Deviance [24]). We found that all factors were statistically
significant at p < 0.001 according to an Analysis of Deviance
chi-square test.

We also checked for interactions between the factors in Table 3.
In particular, we were worried about interactions between opener
and assignee having the same manager and being in the same build-
ing, since people on the same team often work in the same building.
We found no interactions between any pairs of factors, though.

The purpose of this model is to describe the various independent
effects on bug fixes. Note that this model cannot actually be used to
predict the probability that a newly-opened bug report will be fixed,
since it uses factors that are not available at bug opening time (e.g.,
number of reopens).

5.2 Meaning of logistic regression coefficients
One main benefit of using logistic regression over other types of

statistical models (e.g., support vector machines) is that its param-

eters (e.g., the coefficients in Table 3) have intuitive meanings.

FACTOR COEFFICIENT

Bug source (7 categories)
Human review 0.51
Code analysis tool 0.36
Component testing 0.07
Ad-hoc testing 1
System testing —-0.13
Customer * —0.35
Internal user x —0.45

* (Relatively fewer bugs from sources marked as * were fixed,
due to numerous duplicate bug reports and the difficulty of
reproducing bugs reported by users in the field.)

Reputation of bug opener 2.19
Reputation of 1st assignee 2.46
Opened by temporary employee? —0.12
Initial severity level 0.03
Opener / any assignee same manager? 0.68
Opener / any assignee same building? 0.27
Severity upgraded? 0.26
Num. editors 0.24
Num. assignee buildings -0.26
Num. re-opens —0.13
Num. component path changes —-0.23

Table 3: Descriptive logistic regression model for bug-fix prob-
ability, trained on all Vista bugs. The factor labeled 1 folds into
the intercept term, which is omitted for confidentiality.

Numerical and boolean factors: The sign of each coefficient is its
direction of correlation with the probability of a bug being fixed.
For example, bug opener reputation is positively correlated with
bug fixes, so its coefficient is positive (2.19). The magnitude of
each coefficient roughly indicates how much a particular factor af-
fects bug-fix probability. See Hosmer and Lemeshow [24] for de-
tails on how to transform these coefficients into exact probabilities.

In general, it’s hard to compare coefficient magnitudes across
factors, since their units of measurement might differ. However, it’s
possible to compare coefficients for, say, two boolean factors like
“Opener / any assignee same manager” and “Opener / any assignee
same building”. The coefficient of the former (0.68) is larger than
that of the latter (0.27), which means that having the same manager
has a larger positive effect on bug-fix probability than working in
the same building.

Categorical factors: If a factor has N categories (levels), then
N —1 of them get their own coefficient, and the remaining one gets
its coefficient folded into the intercept term (the R statistics pack-
age chooses the alphabetically earliest category to fold, so that’s
why “Ad-hoc testing” has no coefficient in Table 3). What matters
isn’t the value of each coefficient but rather their ordering across
categories. For example, for the categorical factor “Bug source”,
the coefficient for “Human review” is higher than that for “Code
analysis tool”, which means that bugs in the former category are
more likely to be fixed than bugs in the latter.

5.3 Interpreting our descriptive model

The following factors already discussed in Section 4 are posi-
tively correlated with bug-fix probability, so their corresponding
coefficients are positive: reputations of the bug opener and 1st as-

signee, whether the opener and any assignee had the same manager
or worked in the same building, whether severity was upgraded,
and number of bug report editors. These factors are negatively cor-
related with bug-fix probability, so their coefficients are negative:
whether the bug was opened by a temporary employee and numbers
of reopens and assignee buildings.

We also included in our model three additional factors that we
did not have space to discuss in depth in Section 4:

Bug source: Bugs from different sources vary in how often they
are fixed. We have sorted the bug source categories in Table 3 in
decreasing order of coefficient values, which ranks them by how
many percent of bugs in each category were fixed. In general, bugs
that are easier to triage, reproduce, and confirm are fixed more fre-
quently. On the high end, human review and code analysis bugs are
easy to triage and require no separate reproduction steps. On the
low end, bugs reported by users can be difficult to reproduce (users
are not trained to write methodical bug reports like testers are) and
are often resolved as DUPLICATE and not as FIXED (many users
might encounter different symptoms of the same underlying bug).

Initial severity level: Bugs opened with a higher severity value (in
the range of 1-4) are more likely to be fixed, as reflected by its 0.03
coefficient. Our Windows Vista data shows that a Severity 4 bug is
11% more likely to be fixed than a Severity 2 or 3 bug and 17%
more likely to be fixed than a Severity 1 bug.

Num. component path changes: Bugs with more component path
changes are less likely to be fixed, as reflected by its —0.23 coef-
ficient. If people edit a bug report to change its component path,
then that’s a sign that they are unsure of the bug’s root cause and/or
where a fix should be applied. Our Windows Vista data shows that
a bug with its path changed at least once is 12% less likely to be
fixed than one with no path changes.

5.4 Excluded factors

We excluded several factors in Section 4 from our model, be-
cause they had similar yet weaker effects than factors we already
included. Trying to add these factors did not further decrease our
model’s deviance by statistically significant amounts, so we ex-
cluded them in order to form the simplest possible model.

We used num. assignee buildings rather than num. assignees be-
cause the former had a monotonic effect while the latter did not.
Similarly, the effect of num. reassigns was not monotonic. We used
num. editors rather than num. edits since the former had a stronger
and more consistent effect. We used buildings rather than countries
since the former had a stronger effect.

6. PREDICTIVE STATISTICAL MODEL

Engineers cannot directly use the descriptive model of Section 5
to predict the probability that a newly-opened bug will be fixed,
since it contains factors that are not available at open-time (e.g.,
num. reassignments). To remedy this limitation, we created a sim-
ple predictive model and evaluated its performance.

6.1 Model building

We built a predictive model using only factors that are available
at the time a bug report is opened (Table 4). To do so, we modified
our descriptive model of Table 3 by removing the last 5 factors,
changing “Opener / any assignee ...” to “Opener / 1st assignee

...”2, and re-training on our entire Windows Vista dataset to obtain

2 At the time a bug is opened, it must be assigned to someone.

FACTOR COEFFICIENT

Bug source (7 categories)

Human review 0.39
Code analysis tool 0.10
Component testing ~ 0.00
Ad-hoc testing 1
System testing -0.21
Customer * —0.35

—0.47

* (Relatively fewer bugs from sources marked as * were fixed,
due to numerous duplicate bug reports and the difficulty of
reproducing bugs reported by users in the field.)

Internal user x

Reputation of bug opener 2.19
Reputation of 1st assignee 2.39
Opened by temporary employee? —0.04
Initial severity level 0.06
Opener / 1st assignee same manager? 0.27
Opener / 1st assignee same building? 0.03

Table 4: Predictive logistic regression model for bug-fix proba-
bility, trained on all Vista bugs. The factor labeled { folds into
the intercept term, which is omitted for confidentiality.

new coefficients. The two models are quite similar: Although the
exact values of the coefficients are different, their signs and magni-
tudes relative to one another remain unchanged.

6.2 Model performance
We evaluated the predictive power of our model using cross-

validation [35] and by predicting bug fixes on an entirely new dataset.

For cross-validation, we randomly picked 2/3 of our data to train
the model, and the other 1/3 to test its accuracy. We predict a bug
as being fixed only when the model gives a probability exceeding
0.5. We performed 20 rounds of randomized cross-validation and
obtained an average precision of 0.67 and recall of 0.68. We also
did 10-fold cross-validation [35] and found identical results.

We also ran cross-validation on our descriptive model (Table 3),
and its precision and recall were only 0.04 greater than that achieved
by our predictive model. This provides encouragement that factors
available at the time a bug is first opened are almost as effective as
factors from the entire bug lifetime.

The ideal way to evaluate model performance is to train on one
dataset and test on an entirely new dataset that we didn’t have ac-
cess to when we were creating the model (cross-validation is an ap-
proximation to this ideal when only one dataset is available). After
developing and running our analyses on the Windows Vista dataset,
we extracted bug reports from Windows 7, the successor of Vista.
We then trained our model on the entire Windows Vista dataset and
used it to predict which bugs will be fixed in Windows 7. We ob-
tained a precision of 0.68 and recall of 0.64. These values are com-
parable to those obtained with cross-validation on the Vista dataset
alone, so we are confident that this model has predictive powers
that generalize beyond the dataset on which it was developed.

For the proof-of-concept model presented here, we didn’t focus
on optimizing performance — we chose logistic regression because
its parameters are relatively easy to interpret. Using more sophisti-
cated classifiers (e.g., support vector machines) or ensemble learn-
ing methods (e.g., boosting) could improve precision and recall.

Are these precision and recall values “good enough”? Unfortu-

nately, we cannot directly compare to related work, since we know
of no prior work that provides such performance numbers for mod-
els that predict bug-fix probability. We feel that our model performs
well enough to consider deploying it to help triage bugs within Mi-
crosoft. Only by collecting user feedback and understanding the
role which a predictive model plays in a specific triage process can
we figure out what performance numbers are adequate and how to
best improve our model.

6.3 Applications of predictive model

In practice, such a model can improve bug triaging as follows:

e Prioritizing bug reports during triage: During software
development, resources are often spent on bugs that are never
fixed. Our prediction model helps to prioritize bug reports
and to focus resources on the bugs that are most likely to be
fixed. Thus, wasted effort can be reduced.

e Deciding which bugs to prematurely close: In the Mozilla
project, bug reports are automatically closed after an inactiv-
ity period of 90 days [11]. Even though the auto-close feature
is not very popular among users [27], it is necessary to con-
trol the number of open bugs. Our prediction model could
improve this situation by closing bugs more selectively, pre-
ferring bugs that are predicted not to be fixed.

Knowing which bugs will get fixed also helps to monitor and
track the progress of software projects. For example, our prediction
model can be used to provide an estimate of how many of the open
bugs have yet to be fixed. Similarly, the model helps to estimate the
number of fixed bugs by developers; rather than just counting as-
signed bug reports, we can additionally estimate how many of each
developer’s bug reports will be fixed. Such estimates can improve
automatic triaging techniques such as the one introduced by Anvik
and Murphy (“Who should fix this bug?”) [4], because in practice
every developer can fix only a limited number of bugs.

7. ADDITIONAL INSIGHTS FROM SURVEY

Our final survey question was free-response: Please write any
other comments about what factors influence whether a bug gets
successfully fixed. 189 out of the 358 respondents answered this
question. When we examined their responses, we found that many
of them mentioned the following qualitative factors:

Textual quality of bug report: Precise, well-written reports are
more likely to gain the triager’s attention, especially if there are
clear steps for reproducing the bug (confirming the findings of Bet-
tenburg et al. [7]):

“Just to re-emphasize: The quality of the bug description is very
important. Not necessarily filling in the dozens of fields in the
bug database with all sorts of crap (build numbers, dates, classi-
fications, etc) - but just the plain-text description of the problem,
the implication and maybe even the potential solution.”

Perceived customer/business impact: Bugs that are likely to hurt
the company financially or in terms of reputation amongst cus-
tomers will get more attention:

“Customer impact can be a very big impact on a bug if evidence
exists to show the cost of not fixing the bug for one or more cus-
tomers.”

“The biggest factor is the impact on end users. If the impact on
end users is high, the bug will always be fixed.”

Seniority of bug opener: Bugs reported by and affecting higher-
ranked employees often get preferential treatment:
“A bug opened because something went wrong on a VPs [vice
president’s] laptop has better chance [of being fixed] than a bug
opened because the same thing happened to an intern.”

Interpersonal skills of bug opener: With limited resources avail-
able to fix bugs, people who are more persuasive champions for
their bugs are more successful in getting them addressed and fixed:
“One other ‘soft’ factor is the speaking skill persuasiveness of
the developer (or other representative) when arguing for the bug.”

“How hard someone fights for the bug to be fixed (may be the
opener, customer or feature owner). Whether there is someone
on the team particularly passionate about the issue (or somebody
very senior or influential in the company).”

8. THREATS TO VALIDITY

Construct validity: Antoniol et al. [2] pointed out that not all bug
reports are related to software problems; in some case bug reports
correspond to feature requests. For our study, we used the bug type
field to distinguish between different kinds of bug reports such as
code bug, spec bug, test bug, and feature request. However, since
this factor had little influence on the accuracy of our models, we
excluded it from the discussion in this paper.

Internal validity: In a qualitative study of 10 bugs, Aranda and
Venolia [5] found that many details are discussed even before a
bug report is created and that not all information is recorded in
bug tracking systems. For our study, this is only a minor threat
because most of the events we analyzed must be recorded in the bug
database (e.g., reassignments and reopenings). Moreover, people
make triage decisions based on data available in the bug database.
We also validated our quantitative results with qualitative feedback
from Microsoft employees involved in handling these bugs.

Bird et al. [9] raised the issue of bias in bug datasets for defect
prediction in open-source projects. However, the likelihood of bias
in our dataset is low since we analyzed the entire population of
Windows Vista and Windows 7 bug reports.

External validity: Drawing general conclusions from empirical
studies in software engineering is difficult because any process de-
pends on a potentially large number of relevant context variables [6].
For this reason, we cannot assume a priori that the results of our
study generalize beyond the specific environment in which it was
conducted. However, we feel that our results can potentially gen-
eralize (at least to other large-scale systems software projects) be-
cause they were consistent when we replicated the initial Windows
Vista study on Windows 7.

Replication studies on projects outside of Microsoft are essential
for strengthening external validity. Concurrently with our work,
Diederik van Liere applied logistic regression to predict which bugs
were fixed in the Mozilla Firefox project, using some factors sim-
ilar to those in our models (e.g., bug opener reputation) [31]. Al-
though his findings were only published as a short blog post, they
still help improve the generality of our own findings and motivate
us to replicate our study in more detail on open-source projects.

Common misinterpretation: Lastly, a common misinterpretation
of empirical studies is that nothing new is learned (e.g., “I already
knew this result”). However, such wisdom has rarely been shown to
be true and is often quoted without scientific evidence. This paper
provides such evidence: Most common wisdom is confirmed (e.g.,
“distributed bug reports are less likely to be fixed”) while others
are challenged (e.g., “bug reassignments are always bad”).

9. CONCLUSIONS

Fixing bugs is a crucial software maintenance activity. It is very
important for software developers and managers to know how and
what types of bugs get fixed. Our study investigated factors related
to people and report edit activities that affect the bug triage process.

Quantitatively, our findings characterized which bug reports get
successfully fixed. To highlight, we found that at least one reassign-
ment increases but too many reassignments decrease the likelihood
of a bug getting fixed. We also observed that the higher reputation
a bug opener has, the more likely his/her bugs are to get fixed, and
that bugs handled by multiple teams and across multiple locations
are less likely to get fixed.

Qualitatively, our survey results provide insights into difficult-
to-measure social factors that affect the bug triaging process. For
example, survey respondents pointed out the influence of seniority,
reputation, personal relations, and trust.

Informing tool and policy design: Based on our findings, we can
make the following recommendations to improve bug triaging tools
and processes:

e Use prediction models to rank and filter bugs during triage.

e Improve collective awareness of each developer’s areas of
expertise, to minimize the number of reassignments required
to find the optimal person to fix a particular bug.

e Minimize the number of times a bug must be reopened before
being fixed, perhaps by improving regression testing.

e Train employees to write high-quality bug reports (highlight-
ing the importance of reputation), which can reduce both un-
necessary reassignments and reopenings.

e Reorganize teams to reduce the number of cross-team and
cross-building reassignments.

e Improve communication and trust amongst people working
in different teams and locations, to improve the likelihood of
distributed bugs being fixed.

e Encourage more fairness and objectivity in prioritizing bugs,
so that seniority and personal connections are less influential.

Future work: Looking forward, we plan to replicate this study on
other projects within Microsoft and also on open-source projects,
taking into account the ways that open-source project developer dy-
namics differ from those in commercial projects. More broadly, we
plan to build a social network of developers in Windows based on
their personal interactions and also a developer network of people
who worked together to write code and fix bugs; using these two
networks, we can assess the importance of social connections in
software development and bug fixing. In the end, people are the
core of any software development process, so it is crucial to un-
derstand how they work in aggregate (using quantitative methods
like data analysis) as well as their perceptions of inefficiencies in
their workflow (using qualitative methods like surveys). This study
is one step in that direction; we hope it can inform future work on
people-related factors that affect bug triaging.

Acknowledgments: Thanks to Christian Bird and ICSE reviewers
for their insightful critiques. Thanks to the Microsoft Windows
team for their help in understanding the data. Philip Guo performed
this work during a summer internship at Microsoft Research.

1[?]' P. m%%l}&g(ﬁSOn predicting the time taken to correct

bugs in open source projects (short paper). In ICSM "09: Proceedings
of the 25th IEEE International Conference on Software Maintenance,
September 2009.

(2]

3

—

[4

=

(51

(6]

[7

—

[8

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc.
Is it a bug or an enhancement?: a text-based approach to classify
change requests. In CASCON ’'08: Proceedings of the 2008
conference of the center for advanced studies on collaborative
research, pages 304-318, 2008.

J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In
ICSE ’06: Proceedings of the 28th International Conference on
Software Engineering, pages 361-370, 2006.

J. Anvik and G. Murphy. Reducing the effort of bug report triage:
Recommenders for development-oriented decisions. ACM
Transactions on Software Engineering and Methodology (TOSEM).
J. Aranda and G. Venolia. The secret life of bugs: Going past the
errors and omissions in software repositories. In ICSE’ 09:
Proceedings of the 31st International Conference on Software
Engineering, 2009.

V. R. Basili, F. Shull, and F. Lanubile. Building knowledge through
families of experiments. /EEE Trans. Softw. Eng., 25(4), 1999.

N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and

T. Zimmermann. What makes a good bug report? In FSE ’08:
Proceedings of the 16th International Symposium on Foundations of
Software Engineering, November 2008.

N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Duplicate
bug reports considered harmful... really? In ICSM "08: Proceedings
of the 24th IEEE International Conference on Software Maintenance,
pages 337-345, September 2008.

C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu. Fair and balanced? bias in bug-fix datasets. In
ESEC-FSE '09: Proceedings of the European Software Engineering
Conference and ACM SIGSOFT Symposium on Foundations of
Software Engineering, 2009.

C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy. Does
distributed development affect software quality? an empirical case
study of windows vista. In ICSE "09: Proceedings of the 2009 IEEE
31st International Conference on Software Engineering, pages
518-528, Washington, DC, USA, 2009. IEEE Computer Society.

S. Breu, R. Premraj, J. Sillito, and T. Zimmermann. Investigating
information needs to improve cooperation between developers and
bug reporters. In CSCW ’10: Proceedings of the ACM Conference on
Computer Supported Cooperative Work, February 2010.

G. Canfora and L. Cerulo. Fine grained indexing of software
repositories to support impact analysis. In MSR '06: Proceedings of
the International Workshop on Mining Software Repositories, pages
105-111, 2006.

G. Canfora and L. Cerulo. Supporting change request assignment in
open source development. In SAC ’06: Proceedings of the 2006 ACM
Symposium on Applied Computing, pages 1767-1772, 2006.

M. Cataldo, J. D. Herbsleb, and K. M. Carley. Socio-technical
congruence: a framework for assessing the impact of technical and
work dependencies on software development productivity. In ESEM
"08: Proceedings of the Second ACM-IEEE international symposium
on Empirical software engineering and measurement, pages 2—11.
ACM, 2008.

CNET News.com Staff. Microsoft tests its own ‘dog food’. http:
//news.zdnet.com/2100-3513_22-130518.html, 2003.
S. Dowdy, S. Weardon, and D. Chilko. Statistics for Research,
volume 1345 of Wiley Series in Probability and Statistics. John Wiley
& Sons, New Jersey, 2004.

P. J. Guo and D. Engler. Linux kernel developer responses to static
analysis bug reports. In USENIX ATC ’09: Proceedings of the 2009
USENIX Annual Technical Conference, pages 285-292, June 2009.
B. Hailpern and P. Santhanam. Software debugging, testing, and
verification. IBM Systems Journal, 41(1):4—12, 2002.

J. D. Herbsleb and R. E. Grinter. Architectures, coordination, and
distance: Conway’s law and beyond. IEEE Softw., 16(5):63-70, 1999.
J. D. Herbsleb and A. Mockus. An empirical study of speed and
communication in globally distributed software development. I[EEE
Trans. Software Eng., 29(6):481-494, 2003.

1. Herraiz, D. M. German, J. M. Gonzalez-Barahona, and G. Robles.
Towards a simplification of the bug report form in Eclipse. In MSR
’08: Proceedings of the 2008 international working conference on
Mining software repositories, pages 145-148. ACM, 2008.

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

(391

[40]

[41]

[42]

L. Hiew. Assisted detection of duplicate bug reports. Master’s thesis,
The University of British Columbia, 2006.

P. Hooimeijer and W. Weimer. Modeling bug report quality. In ASE
’07: Proceedings of the twenty-second IEEE/ACM International
Conference on Automated Software Engineering, pages 34—43, 2007.
D. W. Hosmer and S. Lemeshow. Applied Logistic Regression. John
Wiley & Sons, 2nd edition, 2000.

N. Jalbert and W. Weimer. Automated duplicate detection for bug
tracking systems. In DSN ’08: Proceedings of the Annual IEEE/IFIP
International Conference on Dependable Systems and Networks,
pages 52-61, 2008.

G. Jeong, S. Kim, and T. Zimmermann. Improving bug triage with
bug tossing graphs. In ESEC-FSE ’09: Proceedings of the European
Software Engineering Conference and ACM SIGSOFT Symposium
on Foundations of Software Engineering, 2009.

S. Just, R. Premraj, and T. Zimmermann. Towards the next
generation of bug tracking systems. In VL/HCC ’08: Proceedings of
the 2008 IEEE Symposium on Visual Languages and Human-Centric
Computing, pages 82-85, September 2008.

S. Kim and M. D. Ernst. Which warnings should I fix first? In
ESEC-FSE ’07: Proc. 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pages 45-54. ACM, 2007.
A.J. Ko, B. A. Myers, and D. H. Chau. A linguistic analysis of how
people describe software problems. In VL/HCC ’06: Proceedings of
the 2006 IEEE Symposium on Visual Languages and Human-Centric
Computing, pages 127-134, 2006.

D. W. van Liere. How Shallow is a Bug? Open Source Communities
as Information Repositories and Solving Software Defects. SSRN
eLibrary, 2009. http://ssrn.com/paper=1507233.

D. W. van Liere. Improving Bugzilla’s bug overview list by
predicting which bug will get fixed, June 2009.
http://network-labs.org/2009/06/
improving-bugzilla’ s-bug-overview—-1list-%
by-predicting-which-bug-will-get-fixed/.

T. Menzies and A. Marcus. Automated severity assessment of
software defect reports. In ICSM ’08: Proc. 24th IEEE International
Conference on Software Maintenance, pages 346-355, Sept 2008.
A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of
open source software development: Apache and Mozilla. ACM
Trans. Softw. Eng. Methodol., 11(3):309-346, 2002.

N. Nagappan, B. Murphy, and V. Basili. The influence of
organizational structure on software quality: an empirical case study.
In ICSE *08: Proceedings of the 30th international conference on
Software engineering, pages 521-530, 2008.

J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman.
Applied Linear Statistical Models. Irwin, 4th edition, 1996.

L. D. Panjer. Predicting Eclipse bug lifetimes. In MSR ’07:
Proceedings of the Fourth International Workshop on Mining
Software Repositories, 2007. MSR Challenge Contribution.

P. Runeson, M. Alexandersson, and O. Nyholm. Detection of
duplicate defect reports using natural language processing. In /CSE
'07: Proceedings of the 29th International Conference on Software
Engineering, pages 499-510, 2007.

J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and

G. Rothermel. Predicting accurate and actionable static analysis
warnings: an experimental approach. In ICSE "08: Proceedings of
the 30th international conference on Software engineering, pages
341-350. ACM, 2008.

E. Sink. My life as a code economist, November 2005.
http://www.ericsink.com/articles/Four_Questions.html.

1. Sliwerski, T. Zimmermann, and A. Zeller. When do changes
induce fixes? In MSR ’05: Proceedings of the 2005 international
workshop on Mining software repositories, pages 1-5. ACM, 2005.
X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach to
detecting duplicate bug reports using natural language and execution
information. In /CSE ’08: Proceedings of the 30th international
conference on Software engineering, pages 461-470. ACM, 2008.
C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long will
it take to fix this bug? In MSR ’07: Proceedings of the Fourth
International Workshop on Mining Software Repositories, 2007.

