

“Not My Bug!” and Other Reasons for Software
Bug Report Reassignments

Philip J. Guo1
pg@cs.stanford.edu

Thomas Zimmermann2
tzimmer@microsoft.com

Nachiappan Nagappan2
nachin@microsoft.com

Brendan Murphy3
bmurphy@microsoft.com

1 Stanford University, USA 2 Microsoft Research, USA 3 Microsoft Research, UK

ABSTRACT
Bug reporting/fixing is an important social part of the soft-
ware development process. The bug-fixing process inherently
has strong inter-personal dynamics at play, especially in how
to find the optimal person to handle a bug report. Bug report
reassignments, which are a common part of the bug-fixing
process, have rarely been studied.

In this paper, we present a large-scale quantitative and qualit-
ative analysis of the bug reassignment process in the Micro-
soft Windows Vista operating system project. We quantify
social interactions in terms of both useful and harmful reas-
signments. For instance, we found that reassignments are
useful to determine the best person to fix a bug, contrary to
the popular opinion that reassignments are always harmful.
We categorized five primary reasons for reassignments: find-
ing the root cause, determining ownership, poor bug report
quality, hard to determine proper fix, and workload balanc-
ing. We then use these findings to make recommendations
for the design of more socially-aware bug tracking systems
that can overcome some of the inefficiencies we observed in
our study.

Author Keywords
Bug tracking, Bug triaging, Bug reassignment

ACM Classification Keywords
D.2.5 [Software Engineering]: Testing and Debugging; D.2.7
[Software Engineering]: Distribution, Maintenance, and En-
hancement

ACM General Terms
Human Factors, Management, Measurement

INTRODUCTION
Bug reporting/fixing is a central part of the software devel-
opment process, and one that always involves the coordina-
tion of multiple individuals. In large software projects (e.g.,
commercial ones like the Windows operating system or
open-source ones like Eclipse or Firefox), the bug tracking
system is the central hub for coordination, and the collection
of informal notes about bug reports and development issues
recorded within it form the main source of organizational

memory [1] about the project’s history. Developers often use
bug tracking systems to perform expertise finding [2], mak-
ing queries to determine who is the local expert on a certain
software module or sub-system so that relevant questions and
bug reports can be routed to him/her. For these reasons, we
consider bug trackers to be one of the primary CSCW sys-
tems in software development.

The CSCW community has been interested in the social dy-
namics of bug fixing [3,4] and tools that improve the colla-
borative aspects of bug fixing [5]. But in general, most work
on bug fixing have focused on how particular bugs should be
fixed (or who is the best person to fix it) [6] and which types
of bugs get fixed. To the best of our knowledge, there has
been little work done on the social dynamics regarding soft-
ware bug reassignments, a ubiquitous cooperative work
activity mediated by a CSCW software system (the bug
tracker).

For example, when a bug is assigned to someone, he/she can
reassign it to someone else for reasons ranging from simply
lacking the time to investigate deeply to a genuine attempt to
find a person with better expertise. Figure 1 shows the num-
ber of reassignments versus the time until the bug report is
first closed, for bugs in the Microsoft Windows Vista project.
As the number of reassignments increases, we observe that
the time required fixing a bug also increases. But contrary to
popular belief, reassignments aren’t necessarily ‘bad’, since it
does take a few reassignments to find the true cause of a bug
and who to properly fix it (it does take time, though). On the
other hand, if there were few reassignments but the optimal
bug fixer were not identified, then that could lead to a low-
quality or faulty fix.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW 2011, March 19–23, 2011, Hangzhou, China.
Copyright 2011 ACM 978-1-4503-0556-3/11/3...$10.00.

Figure 1. Number of reassignments vs. days until a Windows

Vista bug report is first closed (y-axis hidden for
confidentiality reasons)

Contributions: This paper presents a mixed qualitative and
quantitative study of the collaborative aspects of bug report
reassignments. Based on a widely-deployed qualitative sur-
vey at Microsoft, we categorized five primary reasons for
reassignments: finding the root cause, determining owner-
ship, poor bug report quality, hard to determine proper fix,
and workload balancing. We then built and interpreted a de-
scriptive statistical model to identify the relationship between
bug report features and reassignments. We also show that
there are certain harmful patterns of reassignments, like
cycles at the end of a sequence. Finally, we use these findings
to make recommendations for the design of more socially-
aware bug tracking systems that can overcome some of the
inefficiencies we observed in our study.

RELATED WORK
There has been a lot of work on bug triaging, not only in
software engineering but also in the CSCW [4,3,5], HCI
[7,8], and GROUP [9] communities. However to the best of
our knowledge, there has been little work on bug report reas-
signments.

Reassignments in bug reports. Based on interviews with
ten software developers and a qualitative analysis of an un-
specified number of bug reports, Halverson et al. [5] de-
scribed several problematic patterns in bug tracking. They
observed that assign/reassign cycles (or “ping pong” as called
by developers) indicate that a bug is not finding the right
owner or that the location of the bug is ambiguous. In an
empirical study of which bugs get fixed in Microsoft Win-
dows, Guo et al. [10] observed “reassignments are not always
detrimental to bug-fix likelihood; several might be needed to
find the optimal bug fixer.” Compared to this previous work
by Halverson et al. and Guo et al., this paper provides a com-
prehensive discussion of causes for reassignments. Our find-
ings are quantitatively validated on a large number of bug
reports.

Jeong et al. [11] analyzed bug report reassignments (which
they called “bug tossing”) in the Mozilla and Eclipse
projects. They used a graph structure and Markov chains to
reduce the number of reassignments. Jeong’s work was in-
spired by Shao et al. [12], who proposed an algorithm for
ticket routing. In ticket routing, a new ticket needs to find its
resolver with as few steps as possible—any assignment to
someone who cannot resolve the ticket is considered as inef-
ficient. However, as we show in this paper, there are many
legitimate reasons for bug reassignments, such as finding the
root cause and workload balancing.

Communication, coordination, communities, and bugs.
Several researchers investigated how people communicate
and coordinate in bug reports. In his Ph.D. thesis, Sandusky
used qualitative methods on open-source bug reports for an
empirically grounded description of the information practices
used by a distributed open-source project [13]. Sandusky and
Gasser studied the role of negotiation and its effect on the
organization of information in software problem manage-

ment [9]. Ripoche and Sansonnet analyzed speech acts
across the Mozilla corpus of bug reports [14]. Breu et al. [3]
categorized questions asked in open-source bug reports and
analyzed response rates and times. Carstensen studied coor-
dination via physical bug forms [15].

Aranda and Venolia [16] reported on a study of coordination
activities around bug fixing at Microsoft. They identified
common coordination patterns and provided implications for
tool designers and researchers. Bertram et al. [4] conducted a
qualitative study of issue tracking systems as used by small,
collocated software development teams. They found that
even in collocated teams, issue trackers are a focal point for
communication and coordination. Ko and Chilana [7] quan-
tified the value of contributions by “power users” to open
bug reporting in Mozilla. They observed that the primary
value comes from recruiting a small pool of talented devel-
opers and reporters, and not from the masses. Diederik van
Liere [17] studied how the information provided by open-
source community members influences the repair time of
software defects; he found that user contributions shorten
repair times.

Characterization of bug reports. Ko et al. [18] looked at
bug report titles and identified fields that could be incorpo-
rated into new bug report forms. Bettenburg et al. [19] con-
ducted a survey among developers and users from the
Apache, Eclipse, and Mozilla projects to determine which
information contents comprise good quality bug reports. Just
et al. [20] analyzed the responses from the same survey to
suggest improvements to bug tracking systems.

METHODOLOGY
We studied bug report reassignments in the context of the
Microsoft Windows Vista operating system project, which
we feel is a representative example of a large-scale commer-
cial software project. Vista contains several thousand source
code files and 40+ million lines of code, written by more than
2000 software engineers. The findings we present in this pa-
per are derived from three sources related to Windows Vista
bug reports: free-response answers from a survey sent to Mi-
crosoft employees, a manual examination of randomly-
selected bug reports, and a high-level quantitative analysis of
the entire Windows Vista bug database.

Survey free-response answers
Our primary data source is an online survey we sent in Au-
gust 2009 to 1,773 Microsoft employees with questions about
various aspects of the bug triaging and fixing process. Since
we wanted to get the opinions of people well-versed in han-
dling Windows-related bugs, we chose as our survey partici-
pants the top 10% of people who have opened, been assigned
to, or resolved Windows Vista bugs. We received 358 res-
ponses (20% response rate). Most respondents were either
developers (55%) or testers (30%). Most were fairly expe-
rienced, with a median of 11.5 years of work experience in
the software industry and 9 years at Microsoft.

We analyzed responses to most of the survey questions for
another paper [10]; for this paper, we analyzed responses to
the following free-response question, which we did not ex-
plore in our other paper:

In your experience, what are some reasons why a bug
would be reassigned multiple times before being suc-
cessfully resolved as Fixed? E.g., why wasn’t it as-
signed directly to the person who ended up fixing it?

Response length varied from one phrase (e.g., “bug cause
was not initially understood”) to long paragraphs. We printed
out all 358 responses on index cards and performed card sort-
ing [21]. Two of the authors independently performed an
open card sort and then merged their results into a single tax-
onomy. Then a third author read over all of the responses to
check and made minor adjustments to the categories.

Manual examination of bug reports
Informed by our analysis of survey results, we informally
examined the contents of 50 Windows Vista bug reports,
chosen by randomly sampling from all bug reports with more
than 5 reassignments (10% of total bug reports had more than
5 reassignments). The main reason we manually examined
selected bug reports was to corroborate the survey respon-
dents’ opinions with firsthand observations from the bug
reports themselves.

Quantitative analysis of bug and personnel data
We quantified certain observations to the extent possible by
mining data from the Windows Vista bug database and the
Microsoft employee personnel database. We collected all
pre- and post-release bug reports for Windows Vista in July
2009 (2.5 years after Vista’s release date). We consider our
dataset to be fairly complete for the factors we want to inves-
tigate, since very few new Vista bugs are being opened,
compared to when it was under active development (2002-
2007). For confidentiality reasons, we cannot reveal the ex-
act number of bug reports, but it is at least an order of magni-
tude larger than datasets used in related work [22]. For each
bug report, we extracted a list of edit events that occurred
throughout its lifetime. Each event alters one or more of the
following fields (fields not relevant to our analysis in this
paper have been omitted):

 State: OPENED, RESOLVED, or CLOSED

 Opener: Who opened this bug?

 Assignee: Who is now assigned to handle this bug?

 Severity: An indicator of the bug’s potential impact on
customers. Crashes, hangs, and security exploits have the
highest severity (Level 4); minor UI blemishes, typos, or
trivial cosmetic bugs have the lowest severity (Level 1).

 Component path: Which component is the bug in? e.g.,
DesktopShell/Navigation/StartMenu

 Bug type: What kind of bug is it? e.g., bug in code, speci-
fication, documentation, or test suite

 Bug source: How was this bug found? e.g., by a customer,
an internal Microsoft user, or a system test

 Resolution status: How has this bug been resolved? e.g.,
FIXED, BY DESIGN, WON’T FIX, NOT REPRODUCIBLE.
(Null if state is not RESOLVED)

Here is a typical bug’s life cycle: When it is first opened, all
of its fields except for “Resolution status” are set. Then the
bug might be edited a few times (e.g., to upgrade its severi-
ty). A special type of edit called a reassignment occurs
when the “Assignee” field is edited. When somebody thinks
that he/she has resolved the bug, its “Resolution status” field
is set. After the resolution attempt is approved (usually by
the opener), the bug is closed. However, it might be reo-
pened if the problem has not actually been properly resolved.

To explore the impacts of geographical and organizational
distance on bug reassignments, we obtained the office loca-
tion and manager of each employee circa July 2009 from the
Microsoft employee personnel database. Thus, we can de-
termine whether two employees worked in the same building,
campus, country, or on the same team (i.e., had the same
manager). Sometimes people switch locations or teams, but
in general Microsoft tries to keep employees in the same lo-
cation and team during a product cycle [23].

Follow-up survey
Lastly, we solicited additional feedback on our findings in
another survey among 397 Microsoft employees. We chose
as our participants based on the number of bug reports they
have been assigned to or the number of reassignment cycles
they have been involved in Windows 7. We received 118
responses (30% response rate)

CAUSES OF BUG REPORT REASSIGNMENTS
In this section, we combine card sort results from our survey,
observations from examining selected bug reports, and de-
scriptive statistics to characterize the 5 main causes of bug
reassignments in the Windows Vista project:

1. Finding the root cause

2. Determining ownership

3. Poor bug report quality

4. Hard to determine proper fix

5. Workload balancing

A typical bug report gets reassigned a few times before it gets
resolved. The median number of reassignments for Windows
Vista bug reports is 2, and the mean is 2.5. 90% of reports
have 5 or fewer reassignments. In general, reassignments
aren’t necessarily detrimental, but they do take up time and
cause developers to context-switch between multiple reports.

Finding the root cause
The most common reason bug reports are reassigned is be-
cause people want to find the root cause of the problem be-
fore they are willing to attempt a fix. Bug reports usually
only indicate superficial symptoms, but a high-quality fix
should address the root cause and not merely patch the re-
ported symptoms. The root cause is often in a completely
different component than symptoms indicate, though. A

survey respondent elaborates on this reason for why bugs are
reassigned multiple times before being resolved:

“Bugs many times are exposed in the UI [user inter-
face], but are not caused by the team writing the UI
code. These bugs can pass down several layers of com-
ponents before landing on a lower level component
owner. As the UI team gets more familiar with the com-
ponent layers they can more directly assign bugs to the
offending component, but that takes time and know-
ledge.”

We can quantify the above phenomenon by correlating reas-
signments with changes in the “Component path” field of
bug reports, which indicates in which component people cur-
rently believe a bug originates. People don’t usually change
a bug’s component path without also reassigning it: If a bug
report had no reassignments, then it only has a 13% chance
of its component path being changed, while a bug with some
reassignments has a 35% chance of its path being changed
(almost 3x more). There is a Spearman’s rank correlation
[24] of 0.32 between the numbers of reassignments and path
changes for individual bug reports, which indicates a mod-
erate positive correlation.

Oftentimes the bug reporter doesn’t have the expertise re-
quired to ascertain the root cause, so he/she must reassign the
bug to someone with more domain-expertise. As a survey
respondent describes:

“Usually this seems to stem from inaccurate assump-
tions on the part of the bug filer. For example, someone
clicks a button in a feature, and there’s a corresponding
crash — usually the bug is assigned to the most proxim-
al piece of interaction — the button owner. However,
given software complexities, sometimes the crash is ac-
tually due to an underlying layer. The filer either lacked
the expertise, will, or time to investigate deep enough to
understand the issue at hand.”

Our data corroborates these anecdotal observations: Bugs
originating from different sources have different average
numbers of reassignments. On one end, internal users (Mi-
crosoft employees using beta versions) have a hard time re-
porting bugs to the right components, thus resulting in the
most reassigns of any bug source (mean of 3.14, median of
2). For example, one of the authors of this paper (a Micro-
soft employee) once reported a bug for Microsoft Office, but
since he did not work on the Office project, it was hard for
him to determine which exact component to file the bug un-
der. On the other extreme, bugs found by component and
system tests have relatively few reassigns (mean of 2.4, me-
dian of 1), since they are purposefully designed to isolate
particular components, so their root causes are quite certain.

Unfortunately, reassignments are also done out of laziness;
some people don’t do a thorough job of determining root
cause and simply punt the bug to get it off their task queue:

“Insufficient root cause analysis. People are willing to
do just enough to convince themselves it isn’t their prob-

lem and then re-assign to the person who they think is
closer to the right owner.”

At the end of this paper, we make design recommendations
for improving expertise finding [2] and thereby minimizing
the number of reassignments required to ascertain a bug’s
root cause.

Determining ownership (which is often unclear)
A concept related to root cause is ‘ownership’, which is de-
fined roughly as “what team is responsible for the component
that exhibits this bug?” In a large software project like Win-
dows Vista, ownership of components can often be unclear
or ambiguous, since many components lie at the intersection
of several teams’ jurisdictions. These survey respondents
lament:

“It is often very difficult to identify the correct owner for
the bug, even when the cause of the bug is known.”

“The bug falls into an area between two teams. Say, the
USB team and the WPD (Windows Portable Devices)
team. The bug gets kicked around many times while the
teams decide who is actually at fault.”

When we manually looked through bug reports, we saw these
disagreements over ownership play out in their edit histories.
As an example of such a scenario, in one bug report, Person
A first assigns to Person B, with the message “You or [Per-
son C]?” An hour later, Person B reassigns to Person C with
the message “Reassign to [Person C] …” along with a brief
explanation of why he thought that the bug was in a compo-
nent that Person C owned. The next morning, Person C reas-
signs back to Person B with the message “Dunno who gets
this one, but it’s not me. I don’t have anything to do with
[Component X], AFAIK [as far as I know].” After another
day of investigation, Person B then reassigns to Person D,
who works on the bug for 2 weeks and then successfully re-
solves it as “Fixed”.

When there are disagreements over ownership, bugs can be
reassigned back-and-forth between two (or more) teams, an
undesirable, time-wasting phenomenon known to our survey
respondents as “bug pong” or “hot potato”:

“Not clear ownership: Sometimes different teams work
together to develop a product. In such cases sometimes
the ownership boundaries are not clear so the bugs get
re-assigned back and forth till the ownership gets deter-
mined.”

“Playing bug pong between teams who don’t agree on
ownership. It’s stupid, but some teams use this as a de-
laying-until-it’s-bad-enough-that-someone-more-
important-demands-a-fix.”

In the follow-up survey, we also asked about the frequency
of hot potatoes. The majority of respondents replied that hot
potato is “uncommon”. Yet some respondents pointed out
situations where hot potatoes occur frequently: for compo-
nents shared by multiple teams, high in the system stack, or

with unclear ownership; near milestones; or for bugs with
incomplete steps to reproduce.

At the end of this paper, we make recommendations for mak-
ing ownership more explicit so as to reduce the amount of
these inefficient reassignments.

Poor bug report quality
If a bug report is poorly written or contains too little informa-
tion, then it might need to be reassigned a few times as
people struggle to decipher its cause:

“The most important factor in multiple reassigning in
my experience is unclear bug reports. If the person as-
signed to the bug doesn’t understand the issue, they will
either assign it back to the person who opened it, or
(rarely, but it happens) assign it to the wrong person
based on misunderstood information, and then it will be-
come even worse.”

“If a bug report cites only basic symptoms (such as
‘crash’) and has little or no information hinting at cause
(such as call stack), then triage is very difficult and a
bug can end up being bounced around.”

When we manually looked through bug reports, we saw the
detrimental effects of poor report quality in some of their edit
histories. An example scenario: For a particular user inter-
face bug, Person A first assigns to B with the 2-word bug
report “please investigate” without providing much further
detail. Person B investigates for ~2 hours and reassigns to
Person C with the message “I debug to [function F]. I can-
not match the source code. Before this function return, No
permission dialog pops up. Please take a look.” Person C
immediately reassigns back to B with the message “um …
[function F] is the guy who’s rendering the dialog. If you’re
complaining about the dialog you should find out who re-
quested the dialog to show up.”

It’s difficult to quantify bug report quality without doing
some sort of heuristic-based text analysis that is outside the
scope of this project; however, one proxy indicator of poor
report quality is that a bug report’s “Bug type” field changes
throughout its lifetime. If people aren’t even sure about the
type of the bug (e.g., is it a bug in code, specs, docs, or
tests?), then chances are that it’s a poor-quality bug report.
9% of all Windows Vista bugs had their bug type field
changed. Bugs whose type changed had, on average, more
reassigns than those whose types didn’t change: mean of 3.6
reassigns vs. 2.4, and median of 3 vs. 2.

Hard to determine proper fix even after cause known
Even after the root cause and ownership have been deter-
mined, a bug might still need to be reassigned as people de-
bate the proper way to fix it. As our survey respondents ob-
served:

“There can be multiple possible fixes for a given issue
which can straddle teams, so the bug can bounce back
and forth until the bug fix strategy is solidified.”

“Bug could be fixed or worked around in multiple plac-
es, and each place punts the fix to one of the other
teams.”

Workload balancing (or the appearance thereof)
Once a bug report gets to the proper team that is eventually
going to fix it, it still might get reassigned a few times be-
tween team members as a matter of workload balancing. For
example, some developers might be busy with other tasks, so
they will reassign to their teammates (with the hopes of reci-
procity in the future). Such load-balancing reassignments
can be beneficial, since bugs might get fixed sooner:

“Once the bug has found the right team, the biggest fac-
tor in reassigning is often load balancing issues across
team members to drive down totals. Bugs will be fairly
static early in the development cycle but as bug counts
become more important, we’ll move issues around fre-
quently to ensure they get prompt attention.”

However, sometimes within-team reassignments are done for
political reasons, giving the appearance of being load-
balanced to satisfy managers while the bug sits idle
(‘parked’):

“A bug is parked with someone. This may be for inves-
tigation. It may be for some desire to appear load ba-
lanced. I believe reassignment is more common when
playing games with balancing than it is when investiga-
tion finds that the responsible code is owned by another
individual to whom the bug is transferred.”

At the end of this paper, we make recommendations for mon-
itoring developer activities in order to facilitate load balanc-
ing.

DESCRIPTIVE STATISTICAL MODEL
To quantify factors that contribute to bug reassignments, we
built a descriptive statistical model and interpreted its coeffi-
cients with reference to the qualitative findings we presented
in the previous section.

Logistic regression model building
Specifically, we built a logistic regression model for the
probability that a bug report has excessive numbers of reas-
signments, where we define “excessive” as greater than 5.
We used 5 as our cutoff threshold since 90% of bugs had 5 or
fewer reassignments, so those with greater than 5 can be
thought of as having “excessive numbers of reassignments”
(in the top 10%). We used a cutoff since we only wanted to
separate reports with “normal” and “excessive” numbers of
reassignments; it didn’t make much sense to try to predict the
exact number of reassignments (e.g., it doesn’t matter if a
bug has 23 or 42 reassignments; both are “excessive”).

A logistic regression model aims to predict the probability of
an event occurring (e.g., does this bug report have excessive
numbers of reassignments?) using a combination of factors
that can be numerical (e.g., number of component path
changes), Boolean (e.g., was its severity level upgraded?), or
categorical (e.g., bug source).

Table 1 shows the model we constructed by training on the
entire Windows Vista bug report dataset using the R statistics
package. We determined that all factors had independent
effects by adding each one to an empty model and observing
that the model’s deviance (error) decreases by a statistically
significant amount for all added factors (a standard technique
called Analysis of Deviance [25]).

Note that the sole purpose of our model is to describe various
independent effects on bug reassignments. It cannot actually
be used in practice to predict the probability that a newly-
opened bug report will have excessive (greater than 5) reas-
signments, since it uses factors that are not available at the
time a bug is first opened (e.g., number of component path
changes).

How to interpret logistic regression coefficients
One main benefit of using logistic regression over other types
of statistical models (e.g., support vector machines) is that its
parameters (e.g., the coefficients in Table 1) have intuitive
meanings.

For numerical and Boolean factors, the sign of each coeffi-
cient is its direction of correlation with the probability that a
bug contains excessive reassignments. For example, “Num.
component path changes” is positively correlated with reas-
signments, so its coefficient is positive (0.72). The magni-
tude of each coefficient approximately indicates how much a
particular factor affects reassignments. See Hosmer and Le-
meshow [25] for details on how to transform these coeffi-
cients into exact probabilities. In general, it’s hard to com-
pare coefficient magnitudes across factors, since their units of
measurement likely differ. However, it’s possible to com-
pare coefficients for, say, two Boolean factors like “Severity
level upgraded?” and “Bug type changed?” The coefficient
of the former (1.30) is larger than that of the latter (0.87),
which means that a severity upgrade has a larger positive
effect on the probability that a bug will have excessive reas-
signments than a change in bug type does.

For categorical factors (“Bug source” is the only one in our
model), if a factor has N categories (levels), then N – 1 of
them get their own coefficient, and the remaining one gets its
coefficient folded into the intercept term (the R statistics
package we use chooses the alphabetically earliest category
to fold, so that’s why “Ad-hoc testing” has no coefficient in
Table 1). What matters isn’t the value of each coefficient but
rather their ordering across categories. For example, “Inter-
nal user” has a larger coefficient than “Human review”,
which means that the former is more positively correlated
with reassignments than the latter.

Interpreting our model’s coefficients
Bug source is a categorical factor whose coefficients can
only sensibly be compared against one another. Bugs re-
ported by internal Microsoft users are likely to have exces-
sive reassignments, since Microsoft employees using beta
versions of software have permission to directly submit bug
reports but often lack the expertise to submit a high-quality
report targeting the specific component exhibiting the bug.

In contrast, QA staff usually vet bugs submitted by customers
before entering them into the bug database. Bugs found by
component and system tests are less likely to be reassigned
since it’s much easier to pinpoint their root causes and own-
ership; after all, tests are designed to target specific well-
defined areas. Finally, bugs found by human review (e.g.,
code or documentation review) are unlikely to have excessive
reassignments, since if a bug is found in someone’s code or
documentation during a review, then they are likely the own-
er responsible for fixing it.

Number of component path changes is positively corre-
lated with excessive reassignments, since a bug’s component
path changes throughout the normal process of ascertaining
root cause and determining ownership.

Initial severity level is positively correlated with excessive
reassignments, since higher-severity bugs get more attention
so people might pass them around in an effort to triage and
fix them. In contrast, many low-severity bugs are simply
‘parked’ in someone’s task queue and receive little attention
(since they are probably busy handling higher-severity bugs).

If a bug’s severity level is upgraded, then that’s a strong
“call to action” for developers to work harder to find the root
cause, assign ownership, and actually fix the bug. Thus, it’s
also positively correlated with reassignments.

If a bug’s type is changed, then it’s likely a low-quality bug
report (it doesn’t even contain enough information for people
to accurately determine its type), which our survey respon-
dents mentioned was positively correlated with reassign-
ments.

Factor Coefficient

Bug source:
(categorical)

Internal user 0.26
Component test 0.11
System test 0.11
Human review 0.05
Ad-hoc testing †
Code analysis tool *
Customer *

Num. component path changes 0.72
Initial severity level 0.15
Severity level upgraded? (Boolean) 1.30
Bug type changed? (Boolean) 0.87

Bug opener reputation -0.16
Opener / 1st assignee same manager -0.52
Opener / 1st assignee same building -0.26

Table 1. Descriptive logistic regression model for whether a
bug report has greater than 5 reassignments, trained on all

Windows Vista bugs. Factors labeled * had statistically insig-
nificant coefficients (with p > 0.001), so they cannot be mea-

ningfully compared. The factor labeled † folds into the
intercept term, which is omitted for confidentiality.

The bug opener’s reputation is negatively correlated with
reassignments. We quantify reputation using the same metric
as Hooimeijer and Weimer [22]:

bug opener reputation ൌ
|OPENED ת FIXED|

|OPENED| ൅ 1

For each bug report, we calculate its opener’s reputation by
dividing the number of previous bugs that he/she has opened
and gotten successfully fixed by the total number of previous
bugs he/she has opened (+1). Adding 1 to the denominator
prevents divide-by-zero and, more importantly, prevents
people who have opened very few bugs from earning high
reputations (e.g., 1/(1+1) << 100/(100+1)). Bug openers
with higher reputations (i.e., those better at getting their bugs
successfully fixed) might be more experienced in finding the
right person to assign bugs to, thus not incurring as many
reassignments.

If the bug’s opener and first assignee have the same manag-
er (i.e., are on the same team), then the bug is less likely to
have excessive reassignments. Bugs assigned between team
members get the benefits of better communication and more
face-to-face discussions rather than having disagreements
recorded in the bug database as reassignments.

Similarly, if the bug’s opener and its first assignee work in
the same building, then the bug is also less likely to have
excessive reassignments, again due to the benefits of face-to-
face contact.

QUANTIFYING REASSIGNMENT PATTERNS
We performed a quantitative analysis to explore the question
of whether certain patterns of reassignments (e.g., cycles or
back-and-forth “bug pong”) had an impact on the chances
that a bug gets successfully fixed. By “successfully fixed”
we mean that its final resolution status is FIXED (as opposed
to an unsuccessful resolution status like BY DESIGN, WON’T

FIX, or NOT REPRODUCIBLE).

Certain patterns of reassignments are beneficial to bugs get-
ting successfully fixed (so they are “good reassignments”),
while others are detrimental (“bad reassignments”). Thus, in
order to improve the chances that a bug will be successfully
fixed, we should strive to make recommendations to encour-
age “good reassignments” while discouraging bad ones (not
to merely reduce the total number of reassignments).

Reassignment cycles at the beginning of triage
We observed that reassignment cycles at the beginning of the
triage process are beneficial for getting a bug successfully
fixed. By ‘cycle’ we mean reassignment back to a person
who has previously been assigned the bug, thus forming a
cycle in the sequence of assignees.

For concreteness, let’s use x to denote the base probability of
any Windows Vista bug being successfully fixed (we cannot
reveal the exact value of x due to confidentiality reasons).
Let’s use sequences of letters to denote reassignment pat-
terns: e.g., “ABA” means the bug is first assigned to Person

A, who then reassigns it to Person B, who then reassigns it
back to Person A.

An ABA sequence at the beginning of triage has a 1.16x
chance of getting successfully fixed: 16% greater than the
baseline. In contrast, an ABC sequence has a 1.05x chance,
and an AB[END] sequence (Person A assigns to Person B,
and then the investigation stops) has only a 0.96x chance of
being successfully fixed. Thus, it’s better to have a cycle at
the beginning of triage (ABA) than to pass it onto a new per-
son (ABC) or simply ending the investigation.

This same pattern holds true for sequences of length 4:
ABCA has a 1.11x chance of successful fix, ABCB has a
1.08x chance, ABCD has a 1.06x chance, and ABC[END]
has only a 1.02x chance. Again, the presence of a cycle
(ABCA and ABCB) is more beneficial than its absence
(ABCD and ABC[END]).

In fact, the benefits of cycles at the beginning of triage are
present even as the cycle size increases. Table 2 shows the
relative chances of a bug being successfully fixed if it con-
tains cycles of sizes 2 through 7. For reference, ABA is a
cycle of size 2, while ABCA is a cycle of size 3. The left-
most “Beginning” column shows that cycles at the beginning
of triage are better than those in the middle or at the end.
Furthermore, all bugs containing cycles at the beginning have
greater than the baseline x chance of being successfully fixed.

The respondents of the follow-up survey pointed out that the
main reason for beneficial cycles in the beginning is that if
the initial assignee passes the bug onto someone else but then
it gets back to him/her, there is now more information to ef-
fectively fix the bug rather than give up on it.

“The initial bug report is incomplete or inaccurate and
Alice sends back to the tester (Bob) for more informa-
tion, better repro steps, etc. This is a common cycle.
Once the bug is improved, it has a high likelihood of be-
ing fixed.”

Respondents also pointed out that cycles occur often when
someone is searching for the correct owner of a bug report.
Such a cycle in the beginning indicates that while Bob was
not the actual owner, he probably provided some pointers to
Alice on who can fix the bug.

Cycle size Beginning Middle End

2 1.11x 1.05x 0.96x
3 1.10x 1.06x 0.96x
4 1.12x 1.06x 0.93x
5 1.04x 1.03x 0.89x

6 1.07x 1.01x 0.97x

7 1.03x 0.99x 0.88x

Table 2. The effects of cycle size and location on the likelihood
of a bug report being successfully fixed. The exact percentag-
es are confidential, so we present values normalized relative to
x, which is the likelihood of successful fix for any bug report

with at least one cycle.

Reassignment cycles at the end of triage
In contrast, Table 2 shows that reassignment cycles at the end
of the triage process are detrimental to the chances of a bug
being successfully fixed. An example of a cycle at the end of
the triage process is ABCDEFGF[END], where FGF is a
cycle of size 2 at the end of triaging. All entries in the
rightmost “End” column have less than the baseline x chance
of being successfully fixed.

The respondents of the follow-up survey pointed out that the
main reason for detrimental cycles at the end (whereas cycles
in the beginning are beneficial) is that they are related to dis-
cussions whether a bug should be fixed at all.

“This example feels more like a triage cycle where Alice
is the PM [program manager] (or opener) and Bob is
the war team/triage team, etc. The war team is sending
the bug back to PM/opener for justification why the bug
should be fixed (and not punted). The fact that this con-
versation is happening at all means the bug is at risk
and likely to be punted.”

Unclear ownership was another reason mentioned occasio-
nally in the responses to the follow-up survey:

“When ABA is at the end, I think the bug is likely going
back and forth between two developers, who either do
not agree, or do not want the responsibility of fixing the
bug.”

THREATS TO VALIDITY
Internal validity: In a qualitative study of ten bugs, Aranda
and Venolia [16] found that sometimes details are discussed
even before a bug report is created and that not all informa-
tion is recorded in bug tracking systems. For our study, this is
only a minor threat because bug reassignments must be rec-
orded in the bug database. We also validated our quantitative
results with qualitative feedback from Microsoft employees.

Bird et al. [26] raised the issue of bias in bug datasets for
defect prediction in open-source projects. However, the like-
lihood of bias in our dataset is low since we analyzed the
entire population of Windows Vista bug reports.

External validity: Drawing general conclusions from empir-
ical studies in software engineering is difficult because any
process depends on a potentially large number of relevant
context variables [27]. For this reason, we cannot assume a
priori that the results of our study generalize beyond the spe-
cific environment in which it was conducted. That is, other
large-scale systems software projects.

LESSONS LEARNED AND RECOMMENDATIONS FOR
BUG TRACKING SYSTEM DESIGN

Not all reassignments are necessarily bad
Previous research [5,11] considered all bug reassignments to
be problematic and consequently proposed ways to avoid
reassignments. However, as the study in this paper shows,
bug reassignments are often needed to locate the root cause
and the person who should fix the bug. Unfortunately, it is
not yet possible to automatically separate the wheat (benefi-

cial reassignments) from the chaff (unnecessary reassign-
ments). While in some cases, it is possible to identify prob-
lematic patterns such as “ping pong” bugs [5], such patterns
typically apply to only a small fraction of bug reports. In the
follow-up survey, most respondents considered ping pong
bugs to be fairly uncommon. We also asked about the per-
centage of detrimental/wrong reassignments. On average
respondents considered only 17.6% of reassignments to be
detrimental; the median was even lower with 10%.

Ideally, bug tracking systems would have ways to assess and
rate reassignments. Beneficial reassignments could be
marked by users or automatically identified with heuristics.
This would help to increase the quality of tools that leverage
reassignment information to make recommendations to engi-
neers. Bug tossing graphs [11] are an example of such a tool,
which can reduce the number of reassignments. However,
bug tossing graphs do not have the concept of beneficial
reassignment; their goal is simply to direct a bug report to the
final resolver via as few intermediate people as possible.
Thus, it is possible and likely that an essential person is omit-
ted from the list of people who inspect a bug report.

Tool support for finding root causes and owners
A salient finding from our study is the significance of root
causes and component owners when fixing bugs. Often it is
not immediately clear from the bug description which part of
the software needs to be fixed; bug reassignments narrow
down possibilities for fault location. Once the fault location
is known, another challenge is identifying the right person
who is able to fix the fault; again this can lead to reassign-
ments because ownership is not always clearly defined.
Based on this observation, we make several recommenda-
tions for improving bug tracking systems:

1. Integrate a knowledge database of top experts and their
areas of expertise into bug tracking software. For exam-
ple, recommending the best engineers to fix heap corrup-
tion errors would allow other engineers to assign specia-
lized types of bug reports to the people who are most
skilled to either fix the bug report or to find someone who
can.

2. Similarly, having experienced technical engineers on the
team who are intimately familiar with the entire module’s
code base and can pick the right engineers to work on
bugs, will help to reduce the number of misdirected as-
signments. While several projects have engineers respon-
sible for bug triaging, especially in open-source projects
[6,28], there is only limited tool support in existing bug
tracking systems related to bug triaging.

Ideally, bug triagers act as information hubs and are
aware of the entire social network of engineers and the
technical dependency network. To support engineers stay-
ing on top of these networks, tools and techniques from
the field of socio-technical congruence [29,30] should be
integrated into bug tracking systems.

3. Once the fault location has been narrowed down, better
tools for finding code ownership and expertise based on
actual code contributions would help in identifying the
appropriate person who can resolve the bug report and
avoiding unnecessary reassignments. Note that in prac-
tice, ownership and expertise are often two different con-
cepts. Someone who owns a piece of code might not nec-
essarily have the most expertise to change it. While it is
difficult to mine ownership automatically, several ap-
proaches can identify engineers who are familiar with a
piece of code [31,32,2].

Assign bugs to arbitrary artifacts rather than just people
Another more radical change to bug tracking is to allow as-
signment of bug reports to one or more arbitrary artifacts
rather than just one person. Examples of artifacts include
components, files, but also UI elements, features, or simple
keywords. Based on historical data and social networking
techniques or expertise finding techniques [32,2], keywords
could then fluidly map to people who probably can fix the
bug. For example, engineers who previously have fixed bug
reports about keyword WindowManager will see any new
bug reports about this keyword (and related keywords).

This extra layer of indirection means that bug reports can be
assigned to multiple persons rather than individuals. While
this might come at the cost of lower accountability, we be-
lieve that more bug reports will find the right person faster.
Rather than developers fixing bugs reactively when assigned
reports, the role of developers would be more proactive, con-
stantly picking bug reports from a pool. If certain reports are
not picked after a certain amount of time, they could be au-
tomatically assigned to the most appropriate developers,
based on heuristics.

Tool support for awareness and coordination
Another recommendation is to increase the awareness of the
changes happening around bug (re)assignments. For ex-
ample, if Person A assigns to B, but then B assigns to C, then
A typically does not know that B assigned the bug to C, and
would be under the impression that B should get future bugs
(of that type or component) when in fact C should be as-
signed those bugs. If Person A were more aware of the up-
dates to reassignments, that could help better direct his/her
own future reassignments.

Bug tracking systems should also include better visualiza-
tions of reassignment patterns to help engineers identify
problematic patterns such as reassignment cycles or ping
pongs. Similar to context awareness, a visualization of the
status of the bug reassignment would help engineers under-
stand the process of finding the right engineer for a bug so
that this knowledge can be applied to future bugs. Halverson
et al. [5] proposed visualizations for the history of individual
work items and the social health of all open work items in a
project. Their primary focus was to identify problematic pat-
terns. Ultimately, we believe that the way that engineers inte-
ract with bug reports needs to move away from a bug list and
to-do list to more flexible presentation. One of these presen-
tations might consist of (code) bubbles [33,34]. A bubble is a

fully editable and interactive view of an artifact that exists in
a large, pannable 2-D virtual space.

Furthermore, information on bug reassignments can be used
by engineers for archival purposes too. For example, if an
engineer wants to find out who should be assigned bugs that
are part of component X, he/she can extract the bugs from the
database and look though the reassignment patterns to gain a
better understanding of the correct person to assign the bug
to. Currently, the reassignment information in bug databases
is simply presented as a series of text fields and edits, which
is hard to decipher and makes it cumbersome to extract high-
level patterns. We feel that historical reassignment data
should be easily accessible for engineers to make the right
triaging decisions.

Finally, most bug tracking systems measure only when a
person edits a bug report, but not when they are in the
process of investigating the report. To increase workload
awareness, we recommend building a system that would let
developers/testers pick a bug they plan to work on and have
the system to passively (unobtrusively) monitor their activity
while they work on that bug. This way, team members and
managers will know if a developer is actively working on a
bug or whether the bug is parked (inactive). This will allow
team members and managers to find out if a developer is
already overloaded, so that they will know to find alternative
options to fix this bug.

CONCLUSION
In this paper, we have investigated the bug reassignment
process in Windows Vista using qualitative and quantitative
approaches. To the best of our knowledge, our paper is the
first to study these social dynamics in the bug reassignment
process. In sum, we learned that:

 Reassignments are not always harmful. They are in fact
beneficial to find the best person to fix a bug. Excessive
reassignments are harmful, though.

 Qualitatively, the five primary reasons for reassignments
are finding the root cause, determining ownership, poor
bug report quality, hard to determine proper fix, and
workload balancing.

 Quantitatively, the number of component path changes,
initial severity level, upgrading the severity level, and bug
type change correlate positively with reassignments, whe-
reas the bug opener’s reputation and co-location of opener
and first assignee correlate negatively.

 Based on quantifying reassignment patterns, we observe
that cycles at the beginning of bug triage are useful for
finding the right person to fix the bug, but cycles at the
end are detrimental.

Bug reassignments currently occur in an ad-hoc manner as
part of the software development process. There is little tool
support in current bug tracking systems for efficiently direct-
ing reassignments. We hope that designers of future bug
tracking systems can adopt our recommendations to create
more socially-aware systems that, amongst other goals, elim-
inate inefficient reassignments.

Acknowledgments: Thanks to the CSCW reviewers for their in-
sightful critiques and to the Microsoft Windows team for their help
in understanding the data. Philip Guo performed this work during a
summer internship and a visit to Microsoft Research.

REFERENCES
1. Randall, D., Jon, O., Rouncefield, M., and Hughes, J.A. Organizational

Memory and CSCW: Supporting the Mavis Phenomenon. In
Proceedings of the 6th Australian Conference on Computer-Human
Interaction (1996), 26-33.

2. McDonald, D.W. and Ackerman, M.S. Expertise recommender: a
flexible recommendation system and architecture. In Proceeding on the
ACM Conference on Computer Supported Cooperative Work (2000),
231-240.

3. Breu, S., Premraj, R., Sillito, J., and Zimmermann, T. Information needs
in bug reports: improving cooperation between developers and users. In
Proceedings of the ACM Conference on Computer Supported
Cooperative Work (2010), 301-310.

4. Bertram, D., Voida, A., Greenberg, S., and Walker, R. Communication,
collaboration, and bugs: the social nature of issue tracking in small,
collocated teams. In Proceedings of the ACM Conference on Computer
Supported Cooperative Work (2010), 291-300.

5. Halverson, C.A., Ellis, J.B., Danis, C., and Kellogg, W.A. Designing task
visualizations to support the coordination of work in software
development. In Proceedings of the 20th Anniversary Conference on
Computer Supported Cooperative Work (2006), 39-48.

6. Anvik, J., Hiew, L., and Murphy, G.C. Who should fix this bug? In
Proceedings of the 28th International Conference on Software
Engineering (2006), 361 - 370.

7. Ko, A.J. and Chilana, P.K. How power users help and hinder open bug
reporting. In Proceedings of the 28th International conference on Human
Factors in Computing Systems (2010), 1665-1674.

8. Avnon, Y. and Boggan, S.L. Fit and Finish using a bug tracking system:
challenges and recommendations. In Proceedings of the 28th of the
International Conference on Human Factors in Computing Systems
(Extended Abstracts) (2010), 4717-4720.

9. Sandusky, R.J. and Gasser, L. Negotiation and the coordination of
information and activity in distributed software problem management. In
Proceedings of the international ACM SIGGROUP Conference on
Supporting Group Work (2005), 187-196.

10. Guo, P.J., Zimmermann, T., Nagappan, N., and Murphy, B.
Characterizing and predicting which bugs get fixed: an empirical study
of Microsoft Windows. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (2010), 495-504.

11. Jeong, G., Kim, S., and Zimmermann, T. Improving bug triage with bug
tossing graphs. In Proceedings of Joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (2009), 111-120.

12. Shao, Q., Chen, Y., Tao, S., Yan, X., and Anerousis, N. Efficient ticket
routing by resolution sequence mining. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (2008), 605-613.

13. Sandusky, R.J. Information, activity and social order in distributed work:
The case of distributed software problem management. PhD Thesis,
University of Illinois at Urbana-Champaign, 2005.

14. Ripoche, G. and Sansonnet, J.-P. Experiences in Automating the
Analysis of Linguistic Interactions for the Study of Distributed
Collectives. Journal Computer Supported Cooperative Work, 15, 2-3
(June 2006), 149-183.

15. Carstensen, P.H. Computer Supported Coordination. (PhD Thesis). Risø
National Laboratory, Roskilde, Denmark, 1996.

16. Aranda, J. and Venolia, G. The secret life of bugs: Going past the errors
and omissions in software repositories. In Proceedings of the 31st
International Conference on Software Engineering (2009), 298-308.

17. van Liere, D.W. How Shallow is a Bug? Open Source Communities as
Information Repositories and Solving Software Defects. In ERIM Report

Series Reference Forthcoming. http://ssrn.com/abstract=1507233
(2009).

18. Ko, A.J., Myers, B.A., and Chau, D.H. A Linguistic Analysis of How
People Describe Software. In Proceedings of the IEEE Symposium on
Visual Languages and Human-Centric Computing (2006), 127-134.

19. Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., and
Zimmermann, T. What makes a good bug report? In Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (2008), 308-318.

20. Just, S., Premraj, R., and Zimmermann, T. Towards the next generation
of bug tracking systems. In Proceedings of the IEEE Symposium on
Visual Languages and Human-Centric Computing (2008), 82-85.

21. Barker, I. What is information architecture?, 2005. KM Column,
http://www.steptwo.com.au.

22. Hooimeijer, P. and Weimer, W. Modeling bug report quality. In
Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering (2007), 34-43.

23. Bird, C., Nagappan, N., Devanbu, P.T., Gall, H., and Murphy, B. Does
distributed development affect software quality? An empirical case study
of Windows Vista. In Proceedings of the 31st International Conference
on Software Engineering (2009), 518-528.

24. Cohen, J. Statistical Power Analysis for the Behavioral Sciences.
Routledge Academic, 1988.

25. Hosmer, D.W. and Lemeshow, S. Applied Logistic Regression. John
Wiley & Sons, 2000.

26. Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V.,
and Devanbu, P.T. Fair and balanced? Bias in bug-fix datasets. In
Proceedings of the 7th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering (2009), 121-130.

27. Basili, V., Shull, F., and Lanubile, F. Building knowledge through
Families of Experiments. IEEE Trans. Software Eng., 25, 4 (1999), 456-
473.

28. Anvik, J., Hiew, L., and Murphy, G.C. Coping with an open bug
repository. In Proceedings of the OOPSLA Workshop on Eclipse
Technology eXchange (2005), 35-39.

29. Cataldo, M., Herbsleb, J.D., and Carley, K.M. Socio-technical
congruence: a framework for assessing the impact of technical and work
dependencies on software development productivity. In Proceedings of
the 2nd ACM-IEEE international symposium on Empirical software
engineering and measurement (2008), 2-11.

30. Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., and Carley, K.M.
Identification of coordination requirements: implications for the Design
of collaboration and awareness tools. In Proceedings of the 20th
anniversary conference on Computer supported cooperative work
(2006), 353-362.

31. Fritz, T., Ou, J., Murphy, G.C., and Murphy-Hill, E.R. A degree-of-
knowledge model to capture source code familiarity. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering
(2010), 385-394.

32. Mockus, A. and Herbsleb, J.D. Expertise browser: a quantitative
approach to identifying expertise. In Proceedings of the 22rd
International Conference on Software Engineering (2002), 503-512.

33. Bragdon, A., Zeleznik, R.C., Reiss, S.P., Karumuri, S., Cheung, W.,
Kaplan, J., Coleman, C., Adeputra, F., and Jr., J.J.L. Code bubbles: a
working set-based interface for code understanding and maintenance. In
Proceedings of the 28th International Conference on Human Factors in
Computing Systems (2010), 2503-2512.

34. Bragdon, A., Reiss, S.P., Zeleznik, R.C., Karumuri, S., Cheung, W.,
Kaplan, J., Coleman, C., Adeputra, F., and Jr., J.J.L. Code bubbles:
rethinking the user interface paradigm of integrated development
environments. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering (2010), 455-464.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

