
State Exploration with Multiple State Groupings?

Colin Campbell and Margus Veanes

Microsoft Research, Redmond, WA, USA
colin,margus@microsoft.com

Abstract. Exploration algorithms are relevant to the industrial practice of gen-
erating test cases from an abstract state machine whose runs define the predicted
behavior of the software system under test. In this paper we describe a new explo-
ration algorithm that allows multiple state grouping functions to simultaneously
guide the search for states that are interesting or relevant for testing. In some
cases, our algorithm allows exploration to be optimized from exponential to lin-
ear complexity. The paper includes an extended example that illustrates the use
of the algorithm with the Spec Explorer tool developed as Microsoft Research.

1 Introduction

The problem we are addressing here arises in the context of test case generation from
model programs. This is a two step process: one first produces a finite transition system
that encodes interesting or relevant runs of the model program (a process called ”FSM
generation”) and then one traverses the transition system to produce test cases. A model
program is a particular form of an ASM: a set of guarded update rules and an implicit
input program that chooses any enabled rule in each step.

Although a model program is expressed as a finite text, it typically induces a tran-
sition system (an ”unwinding” of the model program) with a very large or even infinite
state space. Hence, FSM generation can benefit from various methods that reduce the
state space but preserve the ability of the generated test cases to discern behavioral
differences.

One such method is to use state-based expressions to group states. The basic ap-
proach of using state groupings for FSM generation [7] in the context of test case gen-
eration was developed in [7] where groups are called hyperstates. Any two states where
the grouping expressions evaluate to the same values are considered indistinguishable
with respect to the grouping and are said to belong to the same group.

One limitation of the approach described in [7] is that sometimes a single state
grouping may not be adequate. This situation arises if the model program has sev-
eral parts that correspond to logically independent sub-models each of which induces a
large state space on its own. The total state space induced by the whole program is then
a Cartesian product of the state spaces induced by the sub-models. If one uses a sin-
gle grouping that captures relevant properties of all the sub-models, then the generated
FSM has a state group for each combination of the values. However, one is typically

? Submission to ASM’2005, not for general distribution, January 17, 2005.



2

only interested in states where the different values of grouping expressions for the dif-
ferent sub-models are present, rather than the combination of all the possible values. To
overcome this limitation we extend the approach described in [7] to use multiple state
groupings.

We first provide some basic definitions in order to clarify the problem. We then
describe the use of multiple state groupings in the context of the exploration algorithm
and provide an example to illustrate the idea.

2 Preliminaries

A transition systemM is defined by the components(S, sinit , A, R), whereS is a set
of states, sinit ∈ S is the initial state, A is a set ofactions, andR ⊆ S × A × S is a
transition relation. A tuple(s, a, t) ∈ R is atransitionwith sources, labela, andtarget
t. The set ofenabled transtionsfrom a states is the set of all transitions inR whose
source iss. We say that an actiona ∈ A is enabledin a states ∈ S if a is the label of
some enabled transiton froms. In order to identify a component of a transition system
M , we index that component byM , unlessM is clear from the context.

A model programP is an implicit definition of a transition system by using a finite
collection ofguarded update rulesor ASM rules. A guarded update rule inP is defined
as a parameterizedaction methodusing AsmL [10] or Spec# [2], similar to the way
methods are written in normal programming languages like C#. The program declares
a finite vocabulary of modelvariables. A model stateis a mapping of those variables to
concrete values, i.e., a first-order state or an ASM state. The execution of a single step
of an action method is an ASM step [9]. The ASM semantics of the core of AsmL is
explained in [6].

An action methodm in P takes argumentsvin and produces a return valuevret;
the types ofvin and vret are specified by the method signature. Typically the meth-
ods of a model programP create objects and use unbounded data structures, like in-
tegers, strings, sets, sequences and maps. An action methodm is associated with a
state-dependent predicaterequirem[vin], called theenabling conditionof m.

The transition systemMP = (S, sinit , A, R) defined by a model programP is a
complete unwinding or expansion ofP as explained next. The initial statesinit is the
initial model state given by the initial assignment of variables to values as declared inP .
The transition relationR is the smallest relation that is closed under method execution:

– Given a states, an action methodm of P , and input argumentsvin for m, there is
a transition(s, 〈m,vin, vout〉, t) ∈ R provided that
• requirem[vin] holds ins, and
• some execution ofm(vin) in s returns the valuevout and produces updates on

s that yield the sequel statet.

The setS is the smallest set of states closed underR, andA is the set of all labels of
transitions inR. If the return value of a methodm is (of type)void, indicating absence
of an explicit return value, the action is denoted by〈m,vin〉. Whenvin is the empty
sequence we abbreviate〈m,vin〉 by m.



3

We make the assumption that all methods are void in this paper.This will not affect
the algorithm described in the following section where the structure of labels is irrele-
vant. In AsmL, execution of a method callm(vin) in a states may be nondeterministic,
in which caseMP is nondeterministic, i.e. there are several transitions froms with the
same label but different targets [6,10].

A groupingfunctionG for MP is a function from states ofMP to concrete values
defined by a state-dependent expression.1 A grouping expression may use state vari-
ables and functions defined in the model program but may not have any side effects
(i.e. may not change any of the state variables). Given a states, the valueG(s) is called
the G-label of s. Two states areG-equivalentif they have the sameG-label. A G-
equivalence class of states is called aG-group. A groupingG is finite if its range is
finite, i.e. there are only finitely many distinctG-groups. For example a predicate can
be used as a finite grouping, whereas a groupingx.Length wherex is a state variable
of type sequence is not finite, unless the length ofx in SMP is bounded.

3 FSM generation with multiple state groupings

Groupings provide a way of defining “what is an interesting state partition” from a
given testing point of view. The usage of state groupings in FSM generation is that
states with the same grouping label are considered to be indistinguishable with respect
to the given grouping. This allows the statespace of the model to be collapsed to a finite
state machine (FSM) with respect to a given finite grouping. Test cases can then be
generated from the FSM using known techniques. The basic algorithm with a single
grouping function was introduced in [7], where grouping labels are called hyperstates.
The new insight presented here is that a tester may provide several state groupings and
associate each one with an integer-valued bound expression. In the following sections
we illustrate the use of multiple groupings on a sample model and show why this is a
practically useful pruning technique that cannot, in general, be achived with a single
grouping.

To define a grouping function formally, consider a model programP and letM =
MP = (S, sinit , A, R). Let G be a given grouping function forM . A G-group ofS is
denoted by[s]/G, wheres is a representative of the group.G induces the partitioning
M/G = (S/G, [sinit ]/G, A,R/G) of M , whereS/G is the set of allG-groups and

R/G = {([s]/G, a, [t]/G) : (s, a, t) ∈ R}.

We are now ready to describe the FSM generation algorithm with multiple group-
ings. LetP be the given model program and let(Gi)1≤i≤k be the given grouping func-
tions forMP . In addition there is a givenboundfunctionBi associated with each group-
ing Gi that maps a state to a non-negative integer or the value∞ indicating absence of
bound for the given state. The value ofBi(s) is called theGi-boundof states. It is
assumed that for any integern, n < ∞. The use of bounds is explained below.

1 We sometimes saygroupingto either mean the function or the expression defining the function,
depending on the context.



4

The algorithm keeps a set of states that have been discovered so far (States ), a
frontier of states that have not been fully explored yet (Frontier ), a set of transi-
tions included in the generated FSM (Transitions ), and a set of transitions that have
been traversed (Traversed ). Initially, the statesinit has been discovered but not fully
explored, no transitions have been included so far in the generated FSM, and no transi-
tions have been traversed yet.

We describe the exploration algorithm using AsmL as pseudo-code.

structure Transition
Source as State
Label as Action
Target as State

var Transitions as Set of Transition = {}
var Traversed as Set of Transition = {}
var States as Set of State = { sinit }
var Frontier as set of State = { sinit }

The following helper functions are used:

– Count (i, s) = #(States ∩ [s]/Gi
) returns the number of states in[s]/Gi

that have
been discovered so far.

– Bound(i, s) = Bi(s) evaluates theGi-bound of states.

The algorithm repeats the following step until the frontier is empty. Upon completion
the outcome of the algortitm is an FSM given by the subsetTransitions of R and the
subsetStates of S. The groupings are enumerated from 1 tok.

choose s in Frontier
choose tr in R - Traversed where tr.Source = s

let t = tr.Target
Traversed := Traversed + {tr}
if t in States then

Transitions := Transitions + {tr}
elseif exists i in {1..k} where Count(i,t) < Bound(i,t) then

Transitions := Transitions + {tr}
States := States + {t}
Frontier := Frontier + {t}

else
skip

ifnone
Frontier := Frontier - {s}

ifnone
skip

The main purpose of a bound function for a groupingG is to specify the desired
number of representatives inG-groups. Notice that exclusion of a states and its incom-
ing transition from the FSM happens only ifall grouping bounds have been breached
for s. Typically the bound function is constant, however, it is sometimes desirable to
temporarily raise (or lower) the bar for particular states or groups so that transitions



5

to important (or unimporatant) states are included in (or excluded from) the generated
FSM.

The algorithm is described at a very high level to illustrate the main idea, an imple-
mentation of it will look different. Most importantly, an implementation would work
directly with P , rather thanMP that is typically infinite.P is only partially unwound
into MP and this happens on a need-to-know basis. For example, the choice of transi-
tion in the secondchoose -statement would correspond roughly to the following steps.

1. An action methodm is chosen fromP so thatm has not been fully explored froms.
2. Assumem has not been explored at all froms.

(a) A state-based parameter generator is used to generate a finite collection of pos-
sible input argument sequencesI for m.

(b) The methodm is fully explored for all input argumentsvin ∈ I such that
requirem[vin] holds ins. The resulting transitions are stored as untraversedm-
transitions froms.

(c) tr is selected randomly among the untraversedm-transitions froms.
3. Assumem has been partially explored but not fully explored froms. In this case

there is at least one untraversedm-transition froms; tr is selected randomly among
such transitions.

The use of a multiple state grouping extends the original approach using a single
grouping [7] is a way that is analogous to partial order reduction or pairwise parameter
combination. For example, a common technique for stateless, combinatorial testing is
the use of pairwise selection of parameters for actions. The use of multiple state group-
ings can be used to apply a similar approach to state-based testing as follows. Assume
that the state variables in the model program arev1, . . . , vn. For any two distinct vari-
ablesvi andvj define the grouping functionGij by the pair(vi, vj) with the associated
bound functionBij = 1. Thus, two statess ant areGij-equivalent ifvi(s) = vi(t) and
vj(s) = vj(t). Running the exploration algorithm with these groupings yields a state
space where all reachable pairwise combinations of variable values are present but not
necessarily all states. Notice that a single groupingG defined by the tuple(v1, . . . , vn)
would not reduce the state space at all since all states would have distinctG-labels.

4 Example: Counting Problem

In this section we study an example to illustrate the use of multiple state groupings.
The example shows the exploration of the abstract state space of a 1-bit counting proto-
col, expressed in terms of a multi-agent game. The example is also available under the
same name in the Spec Explorer distribution [1]. The example was suggested by Yuri
Gurevich.

4.1 The problem

There aren prisoners and a prison warden. The warden chooses one prisoner per day to
be interviewed privately by drawing from a hat containing the names of all prisoners.



6

During the interview the prisoner is asked “Have all of the prisoners been interviewed
yet?” The prisoner may answer or remain silent. If a prisoner does not answer, he is
sent back to his cell. If a prisoner answers correctly, then all prisoners go free; however,
an incorrect answer results in the execution of alln prisoners. Before the first interview
occurs, the prisoners are allowed to get together as a group to devise a strategy. Then
they are isolated from each other and the interviews begin. The prisoners know of a
light switch by the warden’s door. They can observe the state of this switch (“on” or
“off”) when they are interviewed and can change it on their way back to their cell. The
prisoners know that the light switch is initially “off” prior to the first interview, and
that the warden never touches the switch. Is there a strategy the prisoners can to use to
guarantee their freedom?

4.2 The solution

The prisoners divide themselves into one observer andn − 1 signalers. The signalers
perform the following action whenever they are interviewed: if the light switch is off,
they turn it on one time (in other words, if they have not already done so in a previous
interview). Otherwise they do not alter the state of the switch. The observer, whenever
he is called in for an interview, checks the state of the switch. If it is on he adds one
to a total he keeps in his head and turns the switch off. When the count that the ob-
server keeps track of reachesn− 1, he knows that all of his fellow prisoners have been
interviewed. At this point, he answers yes to the question, and the prisoners are freed.

4.3 Model state

We can encode the solution as an abstract state machine with the following state:

type Prisoner = Integer // prisoners are identifed by number
enum Mode

Initializing // prisoners are counting themselves
Interviewing // interviews are happening
Answered // an answer has been given
Decided // the outcome of the game has been decided

var mode as Mode = Initializing; // phase of the protocol
var prisoners as Set of Prisoner = {} // who are the prisoners?
var signal as Boolean = False // is the switch on?
var interviewed as Set of Prisoner = {} // who has been interviewed?
var signalled as Set of Prisoner = {} // who has signalled?
var nCounted as Integer = 0 // how many signals seen?

We introduce several derived functions for convenience:

NPrisoners() as Integer return prisoners.Size
NInterviewed() as Integer return interviewed.Size
NSignalled() as Integer return signalled.Size
IsObserver(p as Prisoner) as Boolean return p = 1
IsSignaler(p as Prisoner) as Boolean return p <> 1
HasSignaled(p as Prisoner) as Boolean return p in signalled



7

These methods answer the respective questions: How many prisoners are there?
How many have been interviewed? How many have sent signals so far? Is prisonerp
the chosen observer? Is prisonerp one of the signalers? Has prisonerp previously sent
a signal?

4.4 Actions

There are three actions methods that move the game forward:Start , Interview and
Finish . Any sequence(a1, a2, . . . , ak) of actions is avalid run if a1 is enabled in the
initial states0 and, for1 ≤ i ≤ k, the transition(si−1, ai, si) is enabled in statesi−1.
The game ends when there are no enabled actions.

Start action

Start(n as Integer)
requires n > 1 and mode = Initializing
prisoners := {1..n}
mode := Interviewing

The action〈Start , n〉 corresponds to the prisoners’ strategy meeting, where they
choose an observer (by convention, this will be prisoner number 1) and make a count
of how many prisoners there are. Note thatn is externally given.

Interview action

Interview(p as Prisoner)
requires p in prisoners and mode = Interviewing
// observer behavior
if IsObserver(p) and signal then

let newCount = nCounted + 1 // 1) compute the new count
nCounted := newCount // 2) remember the new count
signal := false // 3) turn the switch off
if newCount = NPrisoners() - 1 then

mode := Answered // 4) give answer if possible

// signaler behavior
if IsSignaler(p) and not HasSignaled(p) and not signal then

signal := true // 1) give the signal
signalled += {p} // 2) remember that signal was given

// warden behavior
interviewed += {p} // remember the interviewed prisoner

The〈Interview , p〉 action represents each occurrence of an interview. If the pris-
onerp being interviewed is the observer and the switch has been set, then the observer
increments his count and resets the switch. If the observer determines that all of the
signalers have given a signal (there willn − 1 of these), then he gives the answer to
the warden (mode becomesAnswered ). If p is a signaler who has not previously given
his signaland there is no previous signal pending the observers’ attention, then the
prisoner sets the signal. Finally, the warden observes thatp has been interviewed. This
knowledge will be used later to decide the outcome of the game.



8

Finish action

Finish()
requires mode = Answered
if NInterviewed() == NPrisoners() then

WriteLine("All prisoners are freed.")
else

WriteLine("All prisoners are executed.")
mode := Decided

TheFinish action evaluates the answer given by the observer and determines the
outcome.

4.5 State groupings

The example shows how using the technique of multiple state groupings can reduce the
number of test cases needed to cover the desired configurations of state variables. In
this case the state groupings help to reduce the size of the explored state space to be
linear in the size of prisoners. Full exploration would yield a state space that grows ex-
ponentially with the number of prisoners. Exploration with a single combined grouping
(G1, G2, G3) yields a number of groups that is quadratic in the number of prisoners.

The appropriate state groupings for exploring this model are

– Warden state:G1 = NInterviewed()
– Prisoner state:G2 = (signal , nCounted )
– Control state:G3 = mode

Suppose that the three groupings reflect the desired testing coverage. We also assume
that the bound for each grouping is the constant function 1. In other words, we wish
to see at least one state for each count of prisoners that have been interviewed, but we
do not care about which prisoners have been interviewed. We also care about the state
that the observer keeps about prisoners. Finally, we want to see all the modes. It is
immaterial for the testing purpose if all the combinations of the groupings have been
reached.

4.6 Analysis

We consider runs of the system where the number of prisoners is fixed at 3. We see in
Figure1 that full exploration of the model program produces an FSM with 47 transitions
among 17 distinct states. The FSM encodes all possible traces of the system as paths
from the initial state S0 to the end state S10. The number of possible traces is infinite
and also the maximum number of steps in a given trace has no limit (due to looping
Interview -actions).

We can use the FSM in Figure1 to generate test sequences that cover all transitions.
For example, it takes 8 test sequences that begin in S0 and end in S10, with a total of
79 steps, to cover every transition given in the state machine.

We can project the FSM in Figure1 on a chosen state grouping; see Figure2. For
example, if we consider control state, we project the 17 distinct states of the FSM into



9

S8 3 2

S9

1

S10

Finish()

S2 3

S17

2

S15

1

S3 1

S12

2

S11

3

S0

S1

Start(3)

3

1

S4

2

S6 3 2

S7

1

3

1 2

3

2

S5

1

3

2 1S13

1

3 2

13

2 3

1

S14

2

3 2

S16

1

2

3 1 2

3 1

1

2 3

Fig. 1. Full FSM generated from the model with 3 prisoners. Transition labels corre-
sponding toInterview -actions are abbreviated by the prisoner being interviewed.

four groups (and the 47 transitions into 6), as shown in Figure2(a). Clearly, by generat-
ing tests for the full FSM in Figure1 we would achieve this goal. However, if we would
start for example with ten prisoners, this solution would already be infeasible. Let us
apply the state exploration algorithm using multiple state groupings with the groupings
G1, G2 andG3 and the constant bound function1 for all groupings. Figure3 shows an
example result: an FSM with seven states and eleven transitions.

The FSM shown in Figure3 is advantageous because it contains many fewer states
and transitions than the FSM of Figure1, but it still produces projections forG1, G2

andG3 with the same group labels as those generated from the FSM of Figure1. As
mentioned above, if we increase the number of players (”prisoners”), the full FSM
grows exponentially while the FSM given by the method described here grows linearly.

The benefit of this can be seen in the test cases: the FSM of Figure3 requires only a
single test sequence from S0 to S6 (with 11 total steps) to achieve the same coverage of
groups under projectionsG1, G2 andG3 as the FSM of Figure1 which required 8 se-
quences with a total length of 79 steps. If we increase the number of prisoners to 10 say,



10

a)
Interviewing

Interview(3)|
Interview(2)|
Interview(1)

Answered
Interview(1)

Initializing
Start(3)

Decided
Finish()

b) (F,1)

Interview(3)|
Interview(2)|
Interview(1)

(T,1)

Interview(2)|
Interview(3)

(F,0)

Start(3)|
Interview(1)

(T,0)

Interview(2)|
Interview(3)

Interview(2)|
Interview(3)

(F,2)
Interview(1)

Finish()

Interview(1)

Interview(2)|
Interview(3)

c)
2

Interview(3)|
Interview(2)|
Interview(1)

3

Interview(1)|
Interview(2)|
Interview(3)

1

Interview(1)|
Interview(2)|
Interview(3)

Interview(1)|
Interview(2)|
Interview(3)

0

Interview(3)|
Interview(2)|
Interview(1)

Start(3)

Interview(3)|
Finish()|

Interview(2)|
Interview(1)

Fig. 2. Projections of FSM in Figure1 with respect to: a)control stategroupingG3;
b) prisoners stategroupingG2; c) warden stategroupingG1. All groups are displayed
with their respective labels. Bold arrows indicate that there are more than one underly-
ing state transition.

S2

Interview(3)

S3
Interview(1)

Interview(3)
Interview(1)

S4
Interview(2)

S0 S1
Start(3) Interview(3)

S6

Interview(3)
Interview(2)

S5
Interview(1) Finish()

Fig. 3.FSM generated from the model with three prisoners, using the exploration algo-
rithm with multiple state groupingsG1, G2 andG3.

the difference becomes more visible. The full FSM has then 40650 states and 406472
transitions, whereas the algorithm using the grouping functions generates an FSM like
the one in Figure4, and test generation from it produces 4 test sequences with a total
length of 173 steps, that provide the desired covergage under all of the three group-
ings. If we combined all the three groupings into a single grouping (NInterviewed() ,
signal , nCounted , mode) we would obtain in this case 32 test cases with the total
length of 882 steps.

From our experience, this technique is mostly useful for model-based testing of
loosely coupled componentized systems, where the aim is to reach all the interesting
states of all the components, but not necessarily all the possible combinations of those.
When the components are essentially independent, combining the groupings may lead
to state space explosion. Such patterns occur frequently for example in system-level
testing of platforms for distributed applications or testing services of the operating sys-
tem that interact with the environment.

5 Related work

The multiple state grouping algorithm described in this paper is one aspect of the FSM
generation algorithm implemented in the Spec Explorer tool, the overall goal of which is



11

S24 S25 S26 S27 S28
S2

S3

S4

S0 S1 S6

S7 S8

S5
S9

S10

S16

S19 S20
S18

S13 S14S12S11

S17

S15

S21 S22 S23

Fig. 4. FSM generated from the model with 10 prisoners, using the exploration algo-
rithm with the state groupingsG1, G2 andG3.

to get a finite state space of the size that allows one to explore the state space for testing.
To this end, Spec Explorer enables the tester also to generate a finite but representative
set of parameters for the action methods. FSM generation from ASMs, based on a single
state grouping, was introduced in [7]. This algorithm was initially implemented in the
AsmLT tool that is the predecessor of Spec Explorer; the algorithm is also described
in [4]. Similar techniques involving the use of state groupings for state space reduction
have been used in other model-based testing tools [11,13], although, as far as we know,
not with multiple simultaneous groupings as described in this paper. The notion of state
grouping is analogous to predicate abstraction in the context of model-checking when
the grouping expressions are tuples of Boolean expressions, in which case a grouping
label of a state is a tuple of Boolean values. The use of multiple state groupings would
correspond to the use of multiple simultaneous predicate abstractions, which to the
best of our knowledge has not been considered in this context. The effect of using
multiple state groupings on a large state space is sometimes reminiscent to partial order
reduction, although we believe there is no direct connection between the two.

For testing large reactive multithreaded or distributed systems, it is sometimes not
feasible to first generate an FSM and then generate tests from it. On-the-fly testing is a
technique in which test derivation from a model program and test execution are com-
bined into a single algorithm. It can also be called behavioral stress testing or model-
basedonline testing, to distinguish it fromoffline test generation as a separate process.
On-the-fly testing is supported by Spec Explorer and other model-based testing tools
like TorX [15] and TGV [12]. The on-the-fly testing algorithm that is currently im-
plemented in Spec Explorer uses state-dependent action weights to select controllable
actions during testing [16]. One of our current plans is to use the multiple state group-
ings algorithm to dynamically record the coverage of the state space and to use this
information in the on-the-fly action selection strategies, e.g. to avoid reentering groups
that have already been visited. This idea has not been implemented yet.

For modelingreactivesystems, Spec Explorer allows the action methods to be split
into controllableandobservableones. Testing of a reactive system is viewed as a game,
where the two players are the test tool and the implementation under test [3,14]. Only
one of the two players, namely the tester, has a goal. The other player is disinterested
and makes random choices. A variation of the multiple state grouping algorithm is used
in this context as a pruning technique to generate what we call a finitetest graphfrom
the model program. Test case generation algorithms from test graphs use techniques



12

from Markov decision process theory for expected cost optimization [3], and special-
ized algorithms for other optimization criteria [14]. The definition of conformance of
the implementation under test to the model is in this case alternating simulation of inter-
face automata [5], rather than trace inclusion or simulation of transition systems. Games
for testing are also discussed in [17].

Spec Explorer is briefly described in [8]; a more comprehensive description of it
is in preparation. The tool can be downloaded via the homepage of the Foundations of
Software Engineering group in Microsoft Research [1].

References

1. Spec Explorer. Available through the URL: http://research.microsoft.com/foundations.
2. M. Barnett, R. Leino, and W. Schulte. The Spec# programming system. In M. Huisman,

editor,Cassis International Workshop, Marseille, LNCS. Springer, 2004.
3. A. Blass, Y. Gurevich, L. Nachmanson, and M. Veanes. Play to test. 2005. Submitted to

CAV’05, extended version of the paper as an MSR technical report is in preparation.
4. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System Design

and Analysis. Springer, 2003.
5. L. de Alfaro. Game models for open systems. In N. Dershowitz, editor,Verification: Theory

and Practice: Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday,
volume 2772 ofLNCS, pages 269 – 289. Springer, 2004.

6. U. Glässer, Y. Gurevich, and M. Veanes. Abstract communication model for distributed
systems.IEEE Transactions on Software Engineering, 30(7):458–472, July 2004.

7. W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating finite state machines
from abstract state machines. InISSTA’02, volume 27 ofSoftware Engineering Notes, pages
112–122. ACM, 2002.

8. W. Grieskamp, N. Tillmann, and M. Veanes. Instrumenting scenarios in a model-driven
development environment.Information and Software Technology, 46(15):1027–1036, De-
cember 2004.

9. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor,Specification and
Validation Methods, pages 9–36. Oxford University Press, 1995.

10. Y. Gurevich, B. Rossman, and W. Schulte. Semantic essence of AsmL.Theoretical Computer
Science, 2005. To appear in special issue dedicated to FMCO 2003, preliminary version
available as Microsoft Research Technical Report MSR-TR-2004-27.

11. A. Hartman and K. Nagin. Model driven testing - AGEDIS architecture interfaces and tools.
In 1st European Conference on Model Driven Software Engineering, pages 1–11, Nurem-
berg, Germany, December 2003.

12. C. Jard and T. J́eron. TGV: theory, principles and algorithms. InThe Sixth World Conference
on Integrated Design and Process Technology, IDPT’02, Pasadena, California, June 2002.

13. V. V. Kuliamin, A. K. Petrenko, A. S. Kossatchev, and I. B. Bourdonov. UniTesK: Model
based testing in industrial practice. In1st European Conference on Model Driven Software
Engineering, pages 55–63, Nuremberg, Germany, December 2003.

14. L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann, and W. Grieskamp. Optimal strategies
for testing nondeterministic systems. InISSTA’04, volume 29 ofSoftware Engineering Notes,
pages 55–64. ACM, July 2004.

15. J. Tretmans and E. Brinksma. TorX: Automated model based testing. In1st European
Conference on Model Driven Software Engineering, pages 31–43, Nuremberg, Germany,
December 2003.



13

16. M. Veanes, C. Campbell, W. Schulte, and P. Kohli. On-the-fly testing of reactive systems.
Technical report, Microsoft Research, January 2005.

17. M. Yannakakis. Testing, optimization, and games. InProceedings of the Nineteenth Annual
IEEE Symposium on Logic In Computer Science, LICS 2004, pages 78–88. IEEE, 2004.


